organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-[(2-Hy­dr­oxy­eth­yl)amino]-7H-dibenzo[de,h]quinolin-7-one

aState Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China
*Correspondence e-mail: ycliugxnu@yahoo.cn

(Received 7 May 2012; accepted 29 May 2012; online 2 June 2012)

The title compound, C18H14N2O2, is a new oxoisoaporphine derivative synthesized by alkyl­ation of 6-chloro-1-aza­benzanthrone. The oxoisoaporphine fragment deviates significantly from planarity with a dihedral angle of 5.1 (1)° between the heterocycle and the remote benzene ring. The amino and oxo groups are involved in an intra­molecular N—H⋯O hydrogen bond, while the hy­droxy groups form inter­molecular O—H⋯N hydrogen bonds, which link pairs of mol­ecules into inversion dimers. In the dimer, two approximately parallel oxoisoaporphine fragments exhibit ππ inter­actions between the aromatic rings, the shortest centroid–centroid distance being 3.649 (3) Å.

Related literature

For related oxoisoaporphine alkaloids, see: Tang et al. (2011[Tang, H., Zhao, L.-Z., Zhao, H.-T., Huang, S.-L., Zhong, S.-M., Qin, J.-K., Chen, Z.-F., Huang, Z.-S. & Liang, H. (2011). Eur. J. Med. Chem. 46, 4970-4979.], 2012[Tang, H., Zhao, H.-T., Zhong, S.-M., Wang, Z.-Y. & Chen, Z.-F. (2012). Bioorg. Med. Chem. Lett. 22, 2257-2261.]). For background to the synthesis of 6-chloro-1-aza­benzanthrone, see: Iwashima et al. (1984[Iwashima, S., Ueda, T., Honda, H., Tsujioka, T., Ohno, M., Aoki, J. & Kan, T. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 2177-2187.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N2O2

  • Mr = 290.31

  • Monoclinic, P 21 /n

  • a = 9.8047 (16) Å

  • b = 12.865 (2) Å

  • c = 10.7623 (17) Å

  • β = 100.113 (2)°

  • V = 1336.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.37 × 0.23 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.985

  • 6462 measured reflections

  • 2359 independent reflections

  • 1918 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.124

  • S = 1.06

  • 2359 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 1.90 2.5990 (17) 138
O2—H2⋯N1i 0.82 2.24 3.0434 (18) 165
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Oxoisoaporphine alkaloids are known due to their pharmaceutical activities, such as antitumoral and antidemential activities. As a continuation of our study of novel oxoisoaporphine-based inhibitors (Tang et al., 2012), we present here the title compound (I), which is a new oxoisoaporphine synthesized by alkylation of 6-chloro-1-azabenzanthrone. It is structurally similar to the recently reported crystal structure of a new halogenated oxoisoaporphine by us, in which a chlorine atom replaced the 10- hydrogen atom but without substitution on the 6- position (Tang et al., 2012).

In (I) (Fig. 1), the conjugated aromatic fragments of the oxoisoaporphine, including the heterocyclic isoquinoline and the remote benzene ring, is not entirely co-planar. The dihedral angle between the heterocycle of isoquinolinol and the remote benzene ring is 5.1 (1)°. The 2-hydroxyethylamino group on the 6-position of oxoisoaporphine plane is nearly vertical to the plane, with N2—C17—C18 bond angle of 113.18 (13)°. There exists intramolecular hydrogen bonds of N—H···O from the 7-carbonyl oxygen atom to the 6-imino group (–NH). Furthermore, every two oxoisoaporphines form a centrosymmetric dimer (Fig. 2), linked by intermolecular O—H···N hydrogen bonds (Table 1), in which N atom is the heterocyclic nitrogen atom of one oxoisoaporphine and O atom is the hydroxyethyl oxygen atom of another oxoisoaporphine. Each dimer is also stablized by π-π interaction between the two approximately parallel oxoisoaporphine fragments with the shortest centroid-centroid distance of 3.649 (3) Å.

Related literature top

For related oxoisoaporphine alkaloids, see: Tang et al. (2011, 2012). For background to the synthesis of 6-chloro-1-azabenzanthrone, see: Iwashima et al. (1984).

Experimental top

6-Chloro-1-azabenzanthrone (3.0 mmol), ethanolamine (15 mmol), and NaI (0.1 g) were mixed in pentanol. The mixture was stirred and refluxed for 8 h, and then cooled at room temperature. The mixture was diluted with chloroform and made basic by 5% KOH solution. The organic layer was washed with water and brine and dried over anhydrous MgSO4. After concentration, the resulting residue was purified on silica gel chromatography (CHCl3:MeOH = 100:3) to give 6-(2-hydroxyethylamino)-7H-dibenzo[de,h]quinolin-7-one as reddish brown solid (yield 59%). Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a chloroform-ethanol solution (4:1 v/v). 1H NMR (CDCl3, 500 MHz)δ: 3.50 (br, 1H), 3.80 (dd, 2H, J1=6.4 Hz and J2=10.9 Hz), 4.11 (t, 2H,J=5.2 Hz), 7.38 (d, 1H,J=9.4 Hz,), 7.57 (d, 1H,J=5.2 Hz), 7.71 (t, 1H, J=7.6 Hz), 7.79 (d, 1H, J=9.4 H), 7.83 (t, 1H, J=7.6 Hz), 8.55 (d, 1H, J=8.0 Hz),8.70 (d, 1H, J=5.2 Hz), 9.01 (d, 1H, J=8.0 Hz), 12.02(s, 1H); ESI-MS m/z: 291 [M+H]+.

Refinement top

All H atoms were geometrically positioned (C—H 0.93–0.97 Å; O—H 0.82 Å; N—H 0.86 Å), and allowed to ride on their parent atoms, with Uiso(H) = 1.2 –1.5 Ueq(C, N, O).

Structure description top

Oxoisoaporphine alkaloids are known due to their pharmaceutical activities, such as antitumoral and antidemential activities. As a continuation of our study of novel oxoisoaporphine-based inhibitors (Tang et al., 2012), we present here the title compound (I), which is a new oxoisoaporphine synthesized by alkylation of 6-chloro-1-azabenzanthrone. It is structurally similar to the recently reported crystal structure of a new halogenated oxoisoaporphine by us, in which a chlorine atom replaced the 10- hydrogen atom but without substitution on the 6- position (Tang et al., 2012).

In (I) (Fig. 1), the conjugated aromatic fragments of the oxoisoaporphine, including the heterocyclic isoquinoline and the remote benzene ring, is not entirely co-planar. The dihedral angle between the heterocycle of isoquinolinol and the remote benzene ring is 5.1 (1)°. The 2-hydroxyethylamino group on the 6-position of oxoisoaporphine plane is nearly vertical to the plane, with N2—C17—C18 bond angle of 113.18 (13)°. There exists intramolecular hydrogen bonds of N—H···O from the 7-carbonyl oxygen atom to the 6-imino group (–NH). Furthermore, every two oxoisoaporphines form a centrosymmetric dimer (Fig. 2), linked by intermolecular O—H···N hydrogen bonds (Table 1), in which N atom is the heterocyclic nitrogen atom of one oxoisoaporphine and O atom is the hydroxyethyl oxygen atom of another oxoisoaporphine. Each dimer is also stablized by π-π interaction between the two approximately parallel oxoisoaporphine fragments with the shortest centroid-centroid distance of 3.649 (3) Å.

For related oxoisoaporphine alkaloids, see: Tang et al. (2011, 2012). For background to the synthesis of 6-chloro-1-azabenzanthrone, see: Iwashima et al. (1984).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A hydrogen-bonded (dashed lines) dimer in (I).
6-[(2-Hydroxyethyl)amino]-7H-dibenzo[de,h]quinolin-7-one top
Crystal data top
C18H14N2O2F(000) = 608
Mr = 290.31Dx = 1.443 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.8047 (16) ÅCell parameters from 2722 reflections
b = 12.865 (2) Åθ = 2.5–26.8°
c = 10.7623 (17) ŵ = 0.10 mm1
β = 100.113 (2)°T = 296 K
V = 1336.4 (4) Å3Rod, red
Z = 40.37 × 0.23 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
2359 independent reflections
Radiation source: fine-focus sealed tube1918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1011
Tmin = 0.966, Tmax = 0.985k = 1515
6462 measured reflectionsl = 129
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0673P)2 + 0.2157P]
where P = (Fo2 + 2Fc2)/3
2359 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C18H14N2O2V = 1336.4 (4) Å3
Mr = 290.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8047 (16) ŵ = 0.10 mm1
b = 12.865 (2) ÅT = 296 K
c = 10.7623 (17) Å0.37 × 0.23 × 0.16 mm
β = 100.113 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2359 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1918 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.985Rint = 0.023
6462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.06Δρmax = 0.16 e Å3
2359 reflectionsΔρmin = 0.18 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.21519 (14)0.40120 (11)0.17380 (12)0.0495 (4)
N20.12415 (13)0.52517 (10)0.35165 (12)0.0458 (3)
H2A0.06510.47630.35520.055*
O10.01188 (13)0.36243 (10)0.25513 (11)0.0577 (3)
O20.07301 (12)0.66500 (10)0.43621 (12)0.0619 (4)
H20.09690.64210.36460.093*
C10.16539 (15)0.39304 (11)0.06593 (14)0.0388 (3)
C20.07454 (15)0.30520 (11)0.05216 (14)0.0392 (4)
C30.04876 (17)0.22647 (12)0.14357 (15)0.0476 (4)
H30.09250.22840.21350.057*
C40.04056 (18)0.14653 (13)0.13055 (18)0.0561 (5)
H40.05730.09500.19200.067*
C50.10582 (19)0.14211 (14)0.02650 (18)0.0588 (5)
H50.16790.08870.01940.071*
C60.07916 (17)0.21610 (13)0.06584 (16)0.0510 (4)
H60.12170.21180.13640.061*
C70.01172 (15)0.29820 (11)0.05497 (14)0.0399 (4)
C80.04297 (15)0.37373 (11)0.15948 (14)0.0407 (4)
C90.13798 (14)0.45744 (10)0.14699 (13)0.0368 (3)
C100.17469 (14)0.53226 (11)0.24424 (14)0.0396 (4)
C110.26736 (16)0.61437 (12)0.22536 (16)0.0468 (4)
H110.29070.66410.28820.056*
C120.32171 (16)0.62173 (12)0.11914 (16)0.0494 (4)
H120.38200.67600.11060.059*
C130.28866 (15)0.54778 (12)0.01932 (15)0.0434 (4)
C140.34160 (18)0.55268 (13)0.09252 (16)0.0534 (4)
H140.40350.60500.10440.064*
C150.30213 (18)0.48015 (14)0.18484 (16)0.0562 (5)
H150.33740.48580.25930.067*
C160.19688 (14)0.46567 (11)0.03452 (13)0.0374 (3)
C170.15778 (18)0.59083 (13)0.46331 (15)0.0505 (4)
H17A0.25450.61100.47370.061*
H17B0.14560.55090.53700.061*
C180.06966 (18)0.68764 (13)0.45660 (17)0.0532 (4)
H18A0.09400.72610.53490.064*
H18B0.08940.73150.38860.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0556 (8)0.0503 (8)0.0433 (8)0.0023 (6)0.0104 (6)0.0005 (6)
N20.0481 (7)0.0442 (7)0.0446 (8)0.0034 (6)0.0072 (6)0.0084 (6)
O10.0682 (8)0.0605 (8)0.0478 (7)0.0192 (6)0.0193 (6)0.0059 (5)
O20.0572 (8)0.0731 (9)0.0567 (8)0.0077 (6)0.0140 (6)0.0070 (6)
C10.0393 (8)0.0374 (7)0.0381 (8)0.0030 (6)0.0019 (6)0.0012 (6)
C20.0402 (8)0.0349 (8)0.0394 (8)0.0036 (6)0.0015 (6)0.0008 (6)
C30.0525 (9)0.0430 (9)0.0449 (9)0.0018 (7)0.0019 (7)0.0049 (7)
C40.0608 (11)0.0433 (9)0.0598 (11)0.0049 (8)0.0016 (8)0.0127 (8)
C50.0591 (11)0.0458 (9)0.0690 (12)0.0170 (8)0.0046 (9)0.0057 (9)
C60.0518 (10)0.0472 (9)0.0530 (10)0.0097 (7)0.0064 (7)0.0011 (8)
C70.0400 (8)0.0354 (8)0.0418 (8)0.0003 (6)0.0002 (6)0.0015 (6)
C80.0407 (8)0.0400 (8)0.0399 (8)0.0004 (6)0.0031 (6)0.0011 (6)
C90.0355 (7)0.0348 (7)0.0384 (8)0.0027 (6)0.0013 (6)0.0004 (6)
C100.0361 (7)0.0381 (8)0.0424 (8)0.0052 (6)0.0005 (6)0.0011 (6)
C110.0471 (9)0.0406 (8)0.0501 (9)0.0036 (7)0.0012 (7)0.0089 (7)
C120.0468 (9)0.0411 (9)0.0585 (11)0.0104 (7)0.0047 (7)0.0018 (7)
C130.0413 (8)0.0399 (8)0.0474 (9)0.0015 (6)0.0037 (6)0.0032 (7)
C140.0543 (10)0.0533 (10)0.0535 (10)0.0118 (8)0.0121 (8)0.0049 (8)
C150.0627 (10)0.0601 (11)0.0485 (10)0.0084 (8)0.0171 (8)0.0032 (8)
C160.0355 (7)0.0340 (7)0.0403 (8)0.0041 (6)0.0002 (6)0.0038 (6)
C170.0547 (9)0.0513 (9)0.0430 (9)0.0012 (7)0.0016 (7)0.0062 (7)
C180.0599 (10)0.0487 (9)0.0503 (10)0.0018 (7)0.0081 (8)0.0074 (8)
Geometric parameters (Å, º) top
N1—C11.340 (2)C7—C81.477 (2)
N1—C151.345 (2)C8—C91.446 (2)
N2—C101.338 (2)C9—C101.421 (2)
N2—C171.458 (2)C9—C161.434 (2)
N2—H2A0.8600C10—C111.431 (2)
O1—C81.2508 (18)C11—C121.347 (2)
O2—C181.408 (2)C11—H110.9300
O2—H20.8200C12—C131.429 (2)
C1—C161.421 (2)C12—H120.9300
C1—C21.462 (2)C13—C141.393 (2)
C2—C71.402 (2)C13—C161.416 (2)
C2—C31.404 (2)C14—C151.368 (2)
C3—C41.374 (2)C14—H140.9300
C3—H30.9300C15—H150.9300
C4—C51.385 (3)C17—C181.510 (2)
C4—H40.9300C17—H17A0.9700
C5—C61.368 (2)C17—H17B0.9700
C5—H50.9300C18—H18A0.9700
C6—C71.400 (2)C18—H18B0.9700
C6—H60.9300
C1—N1—C15117.96 (14)N2—C10—C11120.90 (13)
C10—N2—C17127.43 (14)C9—C10—C11118.72 (14)
C10—N2—H2A116.3C12—C11—C10121.88 (14)
C17—N2—H2A116.3C12—C11—H11119.1
C18—O2—H2109.5C10—C11—H11119.1
N1—C1—C16122.94 (14)C11—C12—C13121.34 (14)
N1—C1—C2117.99 (13)C11—C12—H12119.3
C16—C1—C2119.06 (13)C13—C12—H12119.3
C7—C2—C3118.62 (14)C14—C13—C16118.32 (14)
C7—C2—C1119.75 (13)C14—C13—C12123.34 (14)
C3—C2—C1121.63 (14)C16—C13—C12118.34 (14)
C4—C3—C2120.55 (16)C15—C14—C13119.71 (15)
C4—C3—H3119.7C15—C14—H14120.1
C2—C3—H3119.7C13—C14—H14120.1
C3—C4—C5120.43 (15)N1—C15—C14123.62 (16)
C3—C4—H4119.8N1—C15—H15118.2
C5—C4—H4119.8C14—C15—H15118.2
C6—C5—C4120.16 (16)C13—C16—C1117.40 (14)
C6—C5—H5119.9C13—C16—C9120.74 (13)
C4—C5—H5119.9C1—C16—C9121.86 (13)
C5—C6—C7120.50 (16)N2—C17—C18113.18 (13)
C5—C6—H6119.8N2—C17—H17A108.9
C7—C6—H6119.8C18—C17—H17A108.9
C6—C7—C2119.68 (14)N2—C17—H17B108.9
C6—C7—C8118.86 (14)C18—C17—H17B108.9
C2—C7—C8121.43 (13)H17A—C17—H17B107.8
O1—C8—C9122.71 (14)O2—C18—C17112.42 (14)
O1—C8—C7119.24 (13)O2—C18—H18A109.1
C9—C8—C7118.04 (13)C17—C18—H18A109.1
C10—C9—C16118.97 (13)O2—C18—H18B109.1
C10—C9—C8121.34 (14)C17—C18—H18B109.1
C16—C9—C8119.69 (13)H18A—C18—H18B107.9
N2—C10—C9120.38 (13)
C15—N1—C1—C162.1 (2)C16—C9—C10—N2178.32 (12)
C15—N1—C1—C2177.97 (14)C8—C9—C10—N21.6 (2)
N1—C1—C2—C7175.08 (13)C16—C9—C10—C111.1 (2)
C16—C1—C2—C74.8 (2)C8—C9—C10—C11178.90 (13)
N1—C1—C2—C35.3 (2)N2—C10—C11—C12178.58 (14)
C16—C1—C2—C3174.74 (13)C9—C10—C11—C120.9 (2)
C7—C2—C3—C42.6 (2)C10—C11—C12—C130.4 (2)
C1—C2—C3—C4177.84 (14)C11—C12—C13—C14179.55 (16)
C2—C3—C4—C50.4 (3)C11—C12—C13—C160.1 (2)
C3—C4—C5—C61.6 (3)C16—C13—C14—C151.2 (2)
C4—C5—C6—C71.4 (3)C12—C13—C14—C15178.41 (15)
C5—C6—C7—C20.8 (2)C1—N1—C15—C140.4 (3)
C5—C6—C7—C8177.12 (14)C13—C14—C15—N11.2 (3)
C3—C2—C7—C62.7 (2)C14—C13—C16—C10.3 (2)
C1—C2—C7—C6177.68 (13)C12—C13—C16—C1179.97 (12)
C3—C2—C7—C8175.10 (13)C14—C13—C16—C9179.27 (13)
C1—C2—C7—C84.5 (2)C12—C13—C16—C90.4 (2)
C6—C7—C8—O10.3 (2)N1—C1—C16—C132.0 (2)
C2—C7—C8—O1177.57 (13)C2—C1—C16—C13178.04 (12)
C6—C7—C8—C9179.47 (13)N1—C1—C16—C9177.53 (13)
C2—C7—C8—C91.6 (2)C2—C1—C16—C92.4 (2)
O1—C8—C9—C100.1 (2)C10—C9—C16—C130.9 (2)
C7—C8—C9—C10179.09 (12)C8—C9—C16—C13179.11 (12)
O1—C8—C9—C16179.94 (13)C10—C9—C16—C1179.52 (12)
C7—C8—C9—C160.9 (2)C8—C9—C16—C10.4 (2)
C17—N2—C10—C9175.77 (13)C10—N2—C17—C1886.77 (19)
C17—N2—C10—C113.7 (2)N2—C17—C18—O256.18 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.902.5990 (17)138
O2—H2···N1i0.822.243.0434 (18)165
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H14N2O2
Mr290.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.8047 (16), 12.865 (2), 10.7623 (17)
β (°) 100.113 (2)
V3)1336.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.37 × 0.23 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.966, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
6462, 2359, 1918
Rint0.023
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.124, 1.06
No. of reflections2359
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.902.5990 (17)138
O2—H2···N1i0.822.243.0434 (18)165
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported financially by the Talent's Small Highland Project of Guangxi Medicinal Industry (No. 1108) and Key Project of Guangxi Normal University (No. 2010ZD007). We also thank Dr Fu-Ping Huang for assistance with the crystal structural refinement.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIwashima, S., Ueda, T., Honda, H., Tsujioka, T., Ohno, M., Aoki, J. & Kan, T. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 2177–2187.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, H., Zhao, L.-Z., Zhao, H.-T., Huang, S.-L., Zhong, S.-M., Qin, J.-K., Chen, Z.-F., Huang, Z.-S. & Liang, H. (2011). Eur. J. Med. Chem. 46, 4970–4979.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTang, H., Zhao, H.-T., Zhong, S.-M., Wang, Z.-Y. & Chen, Z.-F. (2012). Bioorg. Med. Chem. Lett. 22, 2257–2261.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds