organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzene-1,2-dicarb­­oxy­lic acid–pyridinium-2-olate (1/1)

aOrderd Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jxyuchunhua@163.com

(Received 17 May 2012; accepted 25 May 2012; online 2 June 2012)

The asymmetric unit of the title compound, C5H5NO·C8H6O4, contains one o-phthalate acid mol­ecule and one pyridin-2-ol mol­ecule, which exists in a zwitterionic form. In the o-phthalate acid mol­ecule, the carboxyl­ate groups are twisted from the benzene ring by dihedral angles of 13.6 (1)° and 73.1 (1)°; the hy­droxy H atom in the latter group is disordered over two positons in a 1:1 ratio. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into zigzag chains in [-101].

Related literature

For background to molecular ferroelectrics, see: Zhang et al. (2009[Zhang, W., Chen, L.-Z., Xiong, R.-G., Nakamura, T. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 12544-12545.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. D. (2010). J. Am. Chem. Soc. 132, 7300-7302.], 2012[Zhang, W. & Xiong, R.-G. (2012). Chem. Rev. 112, 1163-1195.]). For a related structure, see: Zhu & Yu (2011[Zhu, R.-Q. & Yu, C.-H. (2011). Acta Cryst. E67, o2746.]).

[Scheme 1]

Experimental

Crystal data
  • C5H5NO·C8H6O4

  • Mr = 261.23

  • Triclinic, [P \overline 1]

  • a = 7.4529 (15) Å

  • b = 7.7925 (16) Å

  • c = 11.489 (2) Å

  • α = 84.42 (3)°

  • β = 84.29 (3)°

  • γ = 70.30 (3)°

  • V = 623.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.34 × 0.30 × 0.28 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.964, Tmax = 0.970

  • 6555 measured reflections

  • 2864 independent reflections

  • 1687 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.174

  • S = 1.06

  • 2864 reflections

  • 184 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O4i 0.86 (2) 1.80 (2) 2.644 (3) 167 (7)
O4—H3A′⋯O3i 0.85 (3) 1.81 (3) 2.644 (3) 167 (4)
O1—H1B⋯O5ii 0.85 (2) 1.74 (2) 2.587 (2) 178 (3)
N1—H1A⋯O5iii 0.86 2.04 2.892 (3) 171
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+1, -z+2; (iii) -x+1, -y+1, -z+2.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound was synthesized to find potential ferroelectric phase change materials via dielectric constant measurements of compounds on the basis of temperature (Zhang, Chen et al., 2009; Zhang, Ye et al., 2010; Zhang & Xiong, 2012), with reference to the compound C5H9N2+.C8H5O4- (Zhu & Yu, 2011). Regrettably, no dielectric anomaly was observed ranging from 120 K to 353 K near its melting point. Herewith we report the crystal structure of the title compound, (I).

The asymmetric unit of (I) contains one molecule of the o-phthalate acid and one pyridin-2-ol molecule, which exists in a zwitterionic form (Fig. 1). In the o-phthalate acid molecule, atom H3A is disordered over two positions being attached either to O3 or to O4 in a ratio 1:1. Intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) link the molecules into zigzag chains in [-1 0 1] (Fig. 2).

Related literature top

For background to ferroelectric organic materials with framework structures, see: Zhang et al. (2009, 2010, 2012). For related structure, see: Zhu & Yu (2011).

Experimental top

0.83 g (5 mmol) of phthalic acid and 10 ml water which were heated, then added with a few ethanol dropst, and 0.476 g (5 mmol) 2-hydroxypyridine was added to the solution. After stirring the mixture for minutes for the sake of achieving the ambient temperature, the liquid was filtered to give a clear solution. Colourless block crystals suitable for X-ray structure analysis were obtained, by the slow evaporation of the above solution after sever days at the ambient temperature.

Refinement top

O-bound H atoms were located on a difference map and isotropically refined with restraint O—H = 0.85 (2) Å. The rest H atoms were placed in geometrically idealized positions (N—H = 0.86 Å; C—H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2 Uiso(C, N).

Structure description top

The title compound was synthesized to find potential ferroelectric phase change materials via dielectric constant measurements of compounds on the basis of temperature (Zhang, Chen et al., 2009; Zhang, Ye et al., 2010; Zhang & Xiong, 2012), with reference to the compound C5H9N2+.C8H5O4- (Zhu & Yu, 2011). Regrettably, no dielectric anomaly was observed ranging from 120 K to 353 K near its melting point. Herewith we report the crystal structure of the title compound, (I).

The asymmetric unit of (I) contains one molecule of the o-phthalate acid and one pyridin-2-ol molecule, which exists in a zwitterionic form (Fig. 1). In the o-phthalate acid molecule, atom H3A is disordered over two positions being attached either to O3 or to O4 in a ratio 1:1. Intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) link the molecules into zigzag chains in [-1 0 1] (Fig. 2).

For background to ferroelectric organic materials with framework structures, see: Zhang et al. (2009, 2010, 2012). For related structure, see: Zhu & Yu (2011).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A content of asymmetric unit, with displacement ellipsoids drawn at the 30% probability level. For the disordered atom H3A (attached either to O3 or to O4), only one position is shown. C-bound H atoms omitted for clarity.
[Figure 2] Fig. 2. A portion of the crystal packing showing hydrogen-bonded (dashed lines) chain of the molecules. For the disordered hydroxy H atom only one position is shown. C-bound H atoms omitted for clarity.
Benzene-1,2-dicarboxylic acid–pyridinium-2-olate (1/1) top
Crystal data top
C5H5NO·C8H6O4Z = 2
Mr = 261.23F(000) = 272
Triclinic, P1Dx = 1.391 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4529 (15) ÅCell parameters from 2864 reflections
b = 7.7925 (16) Åθ = 3.2–27.5°
c = 11.489 (2) ŵ = 0.11 mm1
α = 84.42 (3)°T = 293 K
β = 84.29 (3)°Block, colourless
γ = 70.30 (3)°0.34 × 0.30 × 0.28 mm
V = 623.6 (2) Å3
Data collection top
Rigaku, SCXmini
diffractometer
1687 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
ω scansh = 99
Absorption correction: multi-scan
CrystalClear (Rigaku, 2005)
k = 1010
Tmin = 0.964, Tmax = 0.970l = 1414
6555 measured reflections3 standard reflections every 180 reflections
2864 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0891P)2]
where P = (Fo2 + 2Fc2)/3
2864 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.20 e Å3
6 restraintsΔρmin = 0.21 e Å3
Crystal data top
C5H5NO·C8H6O4γ = 70.30 (3)°
Mr = 261.23V = 623.6 (2) Å3
Triclinic, P1Z = 2
a = 7.4529 (15) ÅMo Kα radiation
b = 7.7925 (16) ŵ = 0.11 mm1
c = 11.489 (2) ÅT = 293 K
α = 84.42 (3)°0.34 × 0.30 × 0.28 mm
β = 84.29 (3)°
Data collection top
Rigaku, SCXmini
diffractometer
1687 reflections with I > 2σ(I)
Absorption correction: multi-scan
CrystalClear (Rigaku, 2005)
Rint = 0.034
Tmin = 0.964, Tmax = 0.9703 standard reflections every 180 reflections
6555 measured reflections intensity decay: none
2864 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0546 restraints
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.20 e Å3
2864 reflectionsΔρmin = 0.21 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3559 (3)0.3156 (3)0.68465 (17)0.0443 (5)
C20.5446 (3)0.2808 (3)0.6408 (2)0.0567 (6)
H20.57130.31500.56290.068*
C30.6907 (3)0.1969 (3)0.7113 (2)0.0662 (7)
H30.81650.17380.68110.079*
C40.6532 (3)0.1465 (3)0.8262 (2)0.0633 (6)
H40.75370.08720.87320.076*
C50.4692 (3)0.1827 (3)0.87225 (18)0.0532 (6)
H50.44520.15000.95080.064*
C60.3168 (3)0.2685 (3)0.80241 (17)0.0433 (5)
C70.1172 (3)0.3228 (3)0.85256 (18)0.0508 (5)
C80.2024 (3)0.3968 (3)0.60303 (16)0.0456 (5)
C90.3260 (3)0.6814 (3)0.87731 (18)0.0491 (5)
C100.2091 (3)0.8029 (3)0.7956 (2)0.0623 (6)
H100.07700.83890.80930.075*
C110.2866 (4)0.8680 (3)0.6973 (2)0.0665 (7)
H110.20690.94800.64400.080*
C120.4816 (4)0.8177 (3)0.6746 (2)0.0632 (6)
H120.53420.86330.60680.076*
C130.5943 (3)0.7015 (3)0.7522 (2)0.0611 (6)
H130.72640.66590.73850.073*
H3A0.063 (5)0.612 (8)0.532 (5)0.11 (2)*0.50
H3A'0.038 (5)0.352 (5)0.521 (3)0.11 (2)*0.50
H1B0.026 (3)0.294 (4)0.983 (2)0.092 (10)*
N10.5161 (3)0.6359 (2)0.85064 (15)0.0547 (5)
H1A0.59170.56130.89870.066*
O10.0910 (3)0.2509 (2)0.95711 (14)0.0729 (5)
O20.0108 (2)0.4285 (3)0.79990 (16)0.0876 (6)
O30.1680 (3)0.5598 (2)0.56473 (16)0.0723 (5)
O40.1233 (3)0.2930 (2)0.56793 (15)0.0696 (5)
O50.2656 (2)0.6139 (2)0.97148 (13)0.0663 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0418 (11)0.0481 (11)0.0449 (11)0.0178 (9)0.0053 (9)0.0001 (9)
C20.0510 (13)0.0692 (15)0.0519 (12)0.0261 (11)0.0056 (11)0.0011 (11)
C30.0394 (12)0.0793 (17)0.0794 (17)0.0192 (12)0.0011 (12)0.0083 (13)
C40.0457 (14)0.0684 (15)0.0716 (16)0.0089 (11)0.0185 (12)0.0064 (12)
C50.0539 (13)0.0566 (13)0.0462 (12)0.0129 (10)0.0119 (10)0.0016 (10)
C60.0418 (11)0.0464 (11)0.0414 (11)0.0142 (9)0.0052 (9)0.0000 (8)
C70.0486 (13)0.0613 (13)0.0412 (11)0.0177 (11)0.0029 (10)0.0010 (10)
C80.0490 (12)0.0524 (13)0.0377 (10)0.0221 (10)0.0026 (9)0.0045 (9)
C90.0498 (12)0.0537 (12)0.0409 (11)0.0147 (10)0.0057 (9)0.0065 (9)
C100.0552 (14)0.0587 (14)0.0626 (14)0.0072 (11)0.0008 (11)0.0015 (11)
C110.0803 (18)0.0523 (14)0.0582 (15)0.0121 (12)0.0107 (13)0.0073 (11)
C120.0769 (17)0.0550 (13)0.0524 (13)0.0210 (12)0.0078 (12)0.0058 (11)
C130.0585 (14)0.0608 (14)0.0580 (14)0.0169 (11)0.0108 (11)0.0000 (11)
N10.0523 (11)0.0583 (11)0.0472 (10)0.0121 (9)0.0012 (9)0.0028 (8)
O10.0565 (11)0.0911 (13)0.0538 (10)0.0116 (9)0.0091 (8)0.0177 (9)
O20.0456 (10)0.1286 (16)0.0627 (11)0.0037 (10)0.0012 (8)0.0241 (10)
O30.0820 (13)0.0609 (11)0.0843 (12)0.0359 (9)0.0379 (10)0.0231 (9)
O40.0824 (12)0.0601 (10)0.0769 (12)0.0331 (9)0.0393 (10)0.0142 (9)
O50.0584 (10)0.0838 (11)0.0494 (9)0.0192 (8)0.0075 (8)0.0033 (8)
Geometric parameters (Å, º) top
C1—C21.391 (3)C9—O51.266 (2)
C1—C61.396 (3)C9—N11.351 (3)
C1—C81.483 (3)C9—C101.404 (3)
C2—C31.365 (3)C10—C111.350 (3)
C2—H20.9300C10—H100.9300
C3—C41.370 (4)C11—C121.377 (3)
C3—H30.9300C11—H110.9300
C4—C51.365 (3)C12—C131.342 (3)
C4—H40.9300C12—H120.9300
C5—C61.395 (3)C13—N11.355 (3)
C5—H50.9300C13—H130.9300
C6—C71.475 (3)N1—H1A0.8600
C7—O21.201 (3)O1—H1B0.85 (2)
C7—O11.300 (2)O3—H3A0.855 (15)
C8—O31.252 (2)O4—H3A'0.85 (3)
C8—O41.263 (2)
C2—C1—C6119.45 (19)O4—C8—C1117.90 (18)
C2—C1—C8118.47 (18)O5—C9—N1119.3 (2)
C6—C1—C8122.05 (17)O5—C9—C10124.9 (2)
C3—C2—C1120.4 (2)N1—C9—C10115.89 (19)
C3—C2—H2119.8C11—C10—C9120.7 (2)
C1—C2—H2119.8C11—C10—H10119.7
C2—C3—C4120.4 (2)C9—C10—H10119.7
C2—C3—H3119.8C10—C11—C12121.1 (2)
C4—C3—H3119.8C10—C11—H11119.5
C5—C4—C3120.4 (2)C12—C11—H11119.5
C5—C4—H4119.8C13—C12—C11118.6 (2)
C3—C4—H4119.8C13—C12—H12120.7
C4—C5—C6120.5 (2)C11—C12—H12120.7
C4—C5—H5119.7C12—C13—N1120.2 (2)
C6—C5—H5119.7C12—C13—H13119.9
C5—C6—C1118.79 (19)N1—C13—H13119.9
C5—C6—C7121.36 (18)C9—N1—C13123.6 (2)
C1—C6—C7119.67 (18)C9—N1—H1A118.2
O2—C7—O1122.9 (2)C13—N1—H1A118.2
O2—C7—C6121.49 (18)C7—O1—H1B110 (2)
O1—C7—C6115.58 (19)C8—O3—H3A117 (4)
O3—C8—O4122.96 (19)C8—O4—H3A'111 (3)
O3—C8—C1118.87 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O4i0.86 (2)1.80 (2)2.644 (3)167 (7)
O4—H3A···O3i0.85 (3)1.81 (3)2.644 (3)167 (4)
O1—H1B···O5ii0.85 (2)1.74 (2)2.587 (2)178 (3)
N1—H1A···O5iii0.862.042.892 (3)171
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+2; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC5H5NO·C8H6O4
Mr261.23
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4529 (15), 7.7925 (16), 11.489 (2)
α, β, γ (°)84.42 (3), 84.29 (3), 70.30 (3)
V3)623.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.34 × 0.30 × 0.28
Data collection
DiffractometerRigaku, SCXmini
Absorption correctionMulti-scan
CrystalClear (Rigaku, 2005)
Tmin, Tmax0.964, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
6555, 2864, 1687
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.174, 1.06
No. of reflections2864
No. of parameters184
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O4i0.855 (15)1.80 (2)2.644 (3)167 (7)
O4—H3A'···O3i0.85 (3)1.81 (3)2.644 (3)167 (4)
O1—H1B···O5ii0.85 (2)1.74 (2)2.587 (2)178 (3)
N1—H1A···O5iii0.862.042.892 (3)171.3
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+2; (iii) x+1, y+1, z+2.
 

Acknowledgements

The author thanks the Ordered Matter Science Research Center, Southeast University, for support.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Chen, L.-Z., Xiong, R.-G., Nakamura, T. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W. & Xiong, R.-G. (2012). Chem. Rev. 112, 1163–1195.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. D. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhu, R.-Q. & Yu, C.-H. (2011). Acta Cryst. E67, o2746.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds