organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-5-[(1,5-Di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)imino­meth­yl]-2-meth­­oxy­phenyl 4-chloro­benzene­sulfonate

aDepartment Of Electrical Engineering, North China Electric Power University, Baoding City, Hebei Province 071003, People's Republic of China
*Correspondence e-mail: lei_tianxiang@163.com

(Received 6 June 2012; accepted 10 June 2012; online 16 June 2012)

In the title compound, C25H22ClN3O5S, the two N atoms in the pyrazole ring have a pyramidal environment, with the sums of the valence angles around them being 349.3 (2) and 357.5 (2)°. The phenyl ring is twisted by 50.97 (12)° from the pyrazole mean plane. In the crystal, pairs of weak C—H⋯O hydrogen bonds link the mol­ecules into inversion dimers.

Related literature

For general background to the use of Schiff base derivatives in the development of protein and enzyme mimics, see: Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]). For related structures, see: Zhang et al. (2006[Zhang, Q.-Z., Zhao, Y.-L., Chen, X. & Yu, M. (2006). Acta Cryst. E62, o5252-o5254.]); Han et al. (2008[Han, J.-R., Tian, X., Zhen, X.-L., Li, Z.-C. & Liu, S.-X. (2008). Acta Cryst. E64, o2244.]); Guo et al. (2010[Guo, M.-J., Chen, X. & Yao, J.-X. (2010). Acta Cryst. E66, o1360.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C25H22ClN3O5S

  • Mr = 511.98

  • Monoclinic, P 21 /c

  • a = 11.063 (2) Å

  • b = 10.153 (2) Å

  • c = 22.159 (4) Å

  • β = 98.73 (3)°

  • V = 2460.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 294 K

  • 0.30 × 0.26 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.907, Tmax = 0.951

  • 19683 measured reflections

  • 4315 independent reflections

  • 3016 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.154

  • S = 1.00

  • 4315 reflections

  • 319 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O5i 0.93 2.43 3.199 (3) 140
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have extensively been studied because of their potentially biological activities such as protein and enzyme mimics (Santos et al., 2001). Among the large number of compounds, 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one forms a variety of Schiff bases with aldehydes, and the synthesis and crystal structures of some of them, such as (E)-5-((1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylimino)methyl) -2-methoxyphenyl 4-bromobenzenesulfonate (Guo et al., 2010), (E)-4-((1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylimino)methyl) phenyl 4-bromobenzenesulfonate (Han et al., 2008) and (E)-4-(2-(4-Chlorobenzyloxy)benzylideneamino) -2,3-dimethyl-1-phenyl-1,2-dihydropyrazol-5-one (Zhang et al., 2006) have been reported. Herewith we report the synthesis and crystal structure of the title Schiff base compound.

In the title molecule (Fig. 1), bond lengths and angles are within normal ranges (Allen et al., 1987). Two N atoms in the pyrazole ring have a pyramidal environment with the sums of the valence angles around them of 349.3 (2) and 357.5 (2)°, respectively. The phenyl ring is twisted at 50.97 (12)° from the pyrazole mean plane. The central benzene ring (C7—C12) with three attached atoms (C14/O3/O4) is nearly planar, with an r.m.s. deviation for fitted atoms of 0.0392 Å. The mean plane of this fragment formss dihedral angles of 32.89 (8)°, 38.18 (10)° and 82.42 (7)°, respectively, with the the pyrazolone ring (C15—C17/N1—N3/O5), the chlorobenzene ring (C1—C6) and the terminal phenyl ring (C20—C25). Similar values of 32.02 (14)°, 37.49 (18)° and 80.52 (13)°, respectively, were observed in isostructural (E)-5-((1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol -4-ylimino)methyl)-2-methoxyphenyl 4-bromobenzenesulfonate (Guo et al., 2010).

In the crystal, non-classical intermolecular C11—H11···O5 C16 hydrogen bonds (Table 1) form inversion-related dimers (Fig. 2).

Related literature top

For general background to the use of Schiff base derivatives in the development of protein and enzyme mimics, see: Santos et al. (2001). For related structures, see: Zhang et al. (2006); Han et al. (2008); Guo et al. (2010). For reference bond-length data, see: Allen et al. (1987).

Experimental top

An anhydrous ethanol solution (100 ml) of 5-formyl-2-methoxyphenyl 4-chlorobenzenesulfonate (3.27 g, 10 mmol) was added to an anhydrous ethanol solution (100 ml) of 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one (2.03 g, 10 mmol) and the mixture refluxed for 3 h under N2, giving a yellow precipitate. The product was isolated, recrystallized from acetonitrile, and then dried in a vacuum to give pure compound (I) in 76% yield. Yellow single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution.

Refinement top

The H atoms were included in calculated positions and refined using a riding model approximation. Constrained C—H bond lengths and isotropic U parameters: 0.93 Å and Uiso(H) = 1.2Ueq(C) for Csp2—H; 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl C—H.

Structure description top

Schiff bases have extensively been studied because of their potentially biological activities such as protein and enzyme mimics (Santos et al., 2001). Among the large number of compounds, 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one forms a variety of Schiff bases with aldehydes, and the synthesis and crystal structures of some of them, such as (E)-5-((1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylimino)methyl) -2-methoxyphenyl 4-bromobenzenesulfonate (Guo et al., 2010), (E)-4-((1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylimino)methyl) phenyl 4-bromobenzenesulfonate (Han et al., 2008) and (E)-4-(2-(4-Chlorobenzyloxy)benzylideneamino) -2,3-dimethyl-1-phenyl-1,2-dihydropyrazol-5-one (Zhang et al., 2006) have been reported. Herewith we report the synthesis and crystal structure of the title Schiff base compound.

In the title molecule (Fig. 1), bond lengths and angles are within normal ranges (Allen et al., 1987). Two N atoms in the pyrazole ring have a pyramidal environment with the sums of the valence angles around them of 349.3 (2) and 357.5 (2)°, respectively. The phenyl ring is twisted at 50.97 (12)° from the pyrazole mean plane. The central benzene ring (C7—C12) with three attached atoms (C14/O3/O4) is nearly planar, with an r.m.s. deviation for fitted atoms of 0.0392 Å. The mean plane of this fragment formss dihedral angles of 32.89 (8)°, 38.18 (10)° and 82.42 (7)°, respectively, with the the pyrazolone ring (C15—C17/N1—N3/O5), the chlorobenzene ring (C1—C6) and the terminal phenyl ring (C20—C25). Similar values of 32.02 (14)°, 37.49 (18)° and 80.52 (13)°, respectively, were observed in isostructural (E)-5-((1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol -4-ylimino)methyl)-2-methoxyphenyl 4-bromobenzenesulfonate (Guo et al., 2010).

In the crystal, non-classical intermolecular C11—H11···O5 C16 hydrogen bonds (Table 1) form inversion-related dimers (Fig. 2).

For general background to the use of Schiff base derivatives in the development of protein and enzyme mimics, see: Santos et al. (2001). For related structures, see: Zhang et al. (2006); Han et al. (2008); Guo et al. (2010). For reference bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title molecule, with displacement ellipsoids for non-H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. A portion of the crystal packing showing weak C—H···O interactions as dashed lines.
(E)-5-[(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4- yl)iminomethyl]-2-methoxyphenyl 4-chlorobenzenesulfonate top
Crystal data top
C25H22ClN3O5SF(000) = 1064
Mr = 511.98Dx = 1.382 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5316 reflections
a = 11.063 (2) Åθ = 2.7–27.9°
b = 10.153 (2) ŵ = 0.28 mm1
c = 22.159 (4) ÅT = 294 K
β = 98.73 (3)°Block, yellow
V = 2460.1 (8) Å30.30 × 0.26 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4315 independent reflections
Radiation source: fine-focus sealed tube3016 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
φ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1113
Tmin = 0.907, Tmax = 0.951k = 1211
19683 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0919P)2]
where P = (Fo2 + 2Fc2)/3
4315 reflections(Δ/σ)max < 0.001
319 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C25H22ClN3O5SV = 2460.1 (8) Å3
Mr = 511.98Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.063 (2) ŵ = 0.28 mm1
b = 10.153 (2) ÅT = 294 K
c = 22.159 (4) Å0.30 × 0.26 × 0.18 mm
β = 98.73 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4315 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3016 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.951Rint = 0.052
19683 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.00Δρmax = 0.34 e Å3
4315 reflectionsΔρmin = 0.45 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.47353 (11)1.05947 (9)0.12284 (7)0.1381 (5)
S10.44039 (6)0.44761 (7)0.13133 (3)0.0563 (3)
N10.80799 (17)0.1811 (2)0.00538 (9)0.0454 (5)
N20.91575 (19)0.0090 (2)0.11867 (10)0.0515 (6)
N30.88868 (18)0.09430 (19)0.08078 (9)0.0477 (5)
O10.36954 (18)0.4061 (2)0.17629 (10)0.0786 (7)
O20.41778 (17)0.3950 (2)0.07100 (9)0.0729 (6)
O30.57713 (14)0.40946 (15)0.16147 (7)0.0497 (5)
O40.70559 (15)0.62701 (17)0.19204 (8)0.0548 (5)
O50.92591 (17)0.23713 (16)0.11241 (9)0.0617 (5)
C10.4426 (2)0.6207 (3)0.12761 (12)0.0516 (7)
C20.4230 (3)0.6931 (3)0.17786 (15)0.0699 (8)
H20.40460.65100.21260.084*
C30.4310 (3)0.8292 (3)0.17608 (19)0.0835 (10)
H30.41710.87970.20940.100*
C40.4600 (3)0.8884 (3)0.1241 (2)0.0829 (10)
C50.4784 (3)0.8173 (4)0.07370 (18)0.0809 (10)
H50.49660.85960.03890.097*
C60.4693 (2)0.6812 (3)0.07553 (14)0.0651 (8)
H60.48120.63110.04180.078*
C70.67271 (19)0.4424 (2)0.12844 (10)0.0406 (6)
C80.7020 (2)0.3589 (2)0.08434 (11)0.0440 (6)
H80.65930.28040.07610.053*
C90.7967 (2)0.3923 (2)0.05159 (11)0.0426 (6)
C100.8574 (2)0.5106 (2)0.06549 (11)0.0480 (6)
H100.91760.53620.04280.058*
C110.8311 (2)0.5919 (2)0.11203 (11)0.0462 (6)
H110.87540.66900.12130.055*
C120.7384 (2)0.5579 (2)0.14468 (11)0.0425 (6)
C130.7683 (3)0.7483 (3)0.20859 (15)0.0705 (9)
H13A0.85340.73070.22220.106*
H13B0.73340.78980.24090.106*
H13C0.76020.80580.17380.106*
C140.8334 (2)0.3028 (3)0.00548 (11)0.0479 (6)
H140.87620.33610.02420.057*
C150.8452 (2)0.0964 (2)0.03798 (11)0.0426 (6)
C160.8973 (2)0.1298 (2)0.09185 (11)0.0464 (6)
C170.8386 (2)0.0375 (2)0.03448 (11)0.0454 (6)
C180.7882 (3)0.1191 (3)0.01137 (13)0.0641 (8)
H18A0.76360.06310.04220.096*
H18B0.84970.17940.02990.096*
H18C0.71880.16760.00830.096*
C190.8505 (3)0.2198 (3)0.10901 (15)0.0740 (9)
H19A0.83210.28010.07830.111*
H19B0.91520.25510.12850.111*
H19C0.77900.20700.13890.111*
C200.9860 (2)0.0126 (2)0.16676 (11)0.0464 (6)
C211.0877 (2)0.0934 (3)0.15858 (13)0.0590 (7)
H211.11280.13390.12120.071*
C221.1517 (3)0.1131 (3)0.20709 (15)0.0713 (9)
H221.21970.16810.20220.086*
C231.1156 (3)0.0521 (3)0.26230 (15)0.0746 (10)
H231.15780.06760.29490.090*
C241.0169 (3)0.0320 (3)0.26911 (13)0.0698 (9)
H240.99480.07640.30580.084*
C250.9499 (2)0.0510 (3)0.22172 (12)0.0581 (7)
H250.88170.10570.22680.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1248 (9)0.0543 (6)0.2232 (15)0.0018 (5)0.0119 (9)0.0116 (7)
S10.0484 (4)0.0558 (5)0.0687 (5)0.0162 (3)0.0215 (3)0.0118 (3)
N10.0461 (11)0.0448 (13)0.0460 (12)0.0022 (10)0.0092 (9)0.0025 (9)
N20.0614 (13)0.0431 (12)0.0546 (14)0.0067 (10)0.0239 (11)0.0020 (10)
N30.0568 (12)0.0386 (12)0.0500 (12)0.0078 (10)0.0156 (10)0.0030 (9)
O10.0710 (13)0.0767 (14)0.0990 (16)0.0271 (11)0.0480 (12)0.0073 (12)
O20.0650 (12)0.0821 (15)0.0712 (14)0.0193 (10)0.0095 (10)0.0306 (11)
O30.0537 (10)0.0459 (10)0.0535 (11)0.0081 (8)0.0208 (8)0.0004 (8)
O40.0549 (11)0.0530 (11)0.0576 (11)0.0096 (8)0.0124 (9)0.0172 (8)
O50.0811 (13)0.0442 (11)0.0669 (13)0.0084 (9)0.0345 (11)0.0020 (9)
C10.0391 (14)0.0532 (16)0.0631 (17)0.0016 (11)0.0102 (12)0.0045 (13)
C20.0656 (18)0.065 (2)0.083 (2)0.0015 (16)0.0242 (16)0.0099 (17)
C30.073 (2)0.066 (2)0.111 (3)0.0068 (17)0.010 (2)0.026 (2)
C40.0586 (19)0.058 (2)0.126 (3)0.0053 (16)0.006 (2)0.009 (2)
C50.067 (2)0.073 (2)0.099 (3)0.0016 (17)0.0010 (19)0.026 (2)
C60.0547 (17)0.069 (2)0.069 (2)0.0006 (14)0.0002 (14)0.0035 (15)
C70.0411 (13)0.0379 (13)0.0448 (14)0.0021 (10)0.0125 (11)0.0016 (10)
C80.0463 (13)0.0356 (13)0.0512 (15)0.0052 (11)0.0111 (11)0.0004 (11)
C90.0453 (13)0.0372 (13)0.0469 (14)0.0023 (11)0.0122 (11)0.0010 (10)
C100.0462 (14)0.0453 (15)0.0558 (16)0.0061 (11)0.0184 (12)0.0029 (12)
C110.0426 (13)0.0395 (14)0.0560 (16)0.0081 (11)0.0061 (11)0.0025 (11)
C120.0423 (14)0.0383 (13)0.0458 (14)0.0016 (11)0.0034 (11)0.0020 (11)
C130.0780 (19)0.0533 (18)0.081 (2)0.0145 (15)0.0125 (16)0.0280 (15)
C140.0472 (14)0.0502 (16)0.0491 (15)0.0022 (12)0.0163 (12)0.0024 (12)
C150.0400 (13)0.0410 (14)0.0476 (14)0.0054 (11)0.0095 (11)0.0009 (11)
C160.0429 (13)0.0451 (15)0.0530 (15)0.0036 (11)0.0131 (11)0.0041 (12)
C170.0429 (14)0.0480 (15)0.0462 (15)0.0034 (11)0.0098 (11)0.0003 (11)
C180.080 (2)0.0533 (17)0.0636 (19)0.0114 (14)0.0245 (16)0.0040 (14)
C190.094 (2)0.0513 (18)0.083 (2)0.0229 (16)0.0352 (19)0.0200 (16)
C200.0508 (15)0.0472 (15)0.0439 (14)0.0112 (12)0.0153 (11)0.0061 (11)
C210.0636 (17)0.0621 (18)0.0544 (17)0.0006 (14)0.0187 (14)0.0044 (13)
C220.072 (2)0.071 (2)0.078 (2)0.0013 (16)0.0342 (17)0.0096 (17)
C230.090 (2)0.080 (2)0.063 (2)0.0271 (19)0.0385 (18)0.0237 (17)
C240.089 (2)0.078 (2)0.0429 (16)0.0328 (19)0.0130 (15)0.0034 (14)
C250.0553 (16)0.0638 (19)0.0547 (17)0.0154 (13)0.0066 (13)0.0030 (14)
Geometric parameters (Å, º) top
Cl1—C41.743 (3)C9—C101.388 (3)
S1—O11.4218 (18)C9—C141.470 (3)
S1—O21.4263 (19)C10—C111.386 (3)
S1—O31.6055 (18)C10—H100.9300
S1—C11.760 (3)C11—C121.385 (3)
N1—C141.267 (3)C11—H110.9300
N1—C151.397 (3)C13—H13A0.9600
N2—C161.391 (3)C13—H13B0.9600
N2—N31.404 (3)C13—H13C0.9600
N2—C201.428 (3)C14—H140.9300
N3—C171.365 (3)C15—C171.365 (3)
N3—C191.453 (3)C15—C161.443 (3)
O3—C71.414 (2)C17—C181.484 (3)
O4—C121.357 (3)C18—H18A0.9600
O4—C131.434 (3)C18—H18B0.9600
O5—C161.241 (3)C18—H18C0.9600
C1—C21.379 (4)C19—H19A0.9600
C1—C61.379 (4)C19—H19B0.9600
C2—C31.386 (4)C19—H19C0.9600
C2—H20.9300C20—C211.381 (4)
C3—C41.379 (5)C20—C251.383 (3)
C3—H30.9300C21—C221.389 (3)
C4—C51.371 (5)C21—H210.9300
C5—C61.386 (5)C22—C231.375 (4)
C5—H50.9300C22—H220.9300
C6—H60.9300C23—C241.377 (4)
C7—C81.370 (3)C23—H230.9300
C7—C121.397 (3)C24—C251.388 (4)
C8—C91.404 (3)C24—H240.9300
C8—H80.9300C25—H250.9300
O1—S1—O2120.58 (13)C11—C12—C7118.2 (2)
O1—S1—O3102.82 (12)O4—C13—H13A109.5
O2—S1—O3108.64 (11)O4—C13—H13B109.5
O1—S1—C1110.01 (12)H13A—C13—H13B109.5
O2—S1—C1109.40 (14)O4—C13—H13C109.5
O3—S1—C1103.96 (10)H13A—C13—H13C109.5
C14—N1—C15120.9 (2)H13B—C13—H13C109.5
C16—N2—N3110.16 (19)N1—C14—C9121.3 (2)
C16—N2—C20125.9 (2)N1—C14—H14119.4
N3—N2—C20121.39 (19)C9—C14—H14119.4
C17—N3—N2106.35 (19)C17—C15—N1123.4 (2)
C17—N3—C19124.7 (2)C17—C15—C16108.2 (2)
N2—N3—C19118.2 (2)N1—C15—C16128.3 (2)
C7—O3—S1117.31 (14)O5—C16—N2123.7 (2)
C12—O4—C13117.80 (19)O5—C16—C15131.8 (2)
C2—C1—C6121.2 (3)N2—C16—C15104.4 (2)
C2—C1—S1119.3 (2)C15—C17—N3110.3 (2)
C6—C1—S1119.4 (2)C15—C17—C18128.6 (2)
C1—C2—C3119.4 (3)N3—C17—C18121.1 (2)
C1—C2—H2120.3C17—C18—H18A109.5
C3—C2—H2120.3C17—C18—H18B109.5
C4—C3—C2118.9 (3)H18A—C18—H18B109.5
C4—C3—H3120.6C17—C18—H18C109.5
C2—C3—H3120.6H18A—C18—H18C109.5
C5—C4—C3122.2 (3)H18B—C18—H18C109.5
C5—C4—Cl1119.1 (3)N3—C19—H19A109.5
C3—C4—Cl1118.7 (3)N3—C19—H19B109.5
C4—C5—C6118.7 (3)H19A—C19—H19B109.5
C4—C5—H5120.6N3—C19—H19C109.5
C6—C5—H5120.6H19A—C19—H19C109.5
C1—C6—C5119.6 (3)H19B—C19—H19C109.5
C1—C6—H6120.2C21—C20—C25120.9 (2)
C5—C6—H6120.2C21—C20—N2121.2 (2)
C8—C7—C12122.3 (2)C25—C20—N2117.9 (2)
C8—C7—O3119.9 (2)C20—C21—C22119.0 (3)
C12—C7—O3117.74 (19)C20—C21—H21120.5
C7—C8—C9119.7 (2)C22—C21—H21120.5
C7—C8—H8120.2C23—C22—C21120.7 (3)
C9—C8—H8120.2C23—C22—H22119.7
C10—C9—C8117.9 (2)C21—C22—H22119.7
C10—C9—C14121.0 (2)C22—C23—C24119.7 (3)
C8—C9—C14121.1 (2)C22—C23—H23120.2
C11—C10—C9122.1 (2)C24—C23—H23120.2
C11—C10—H10118.9C23—C24—C25120.6 (3)
C9—C10—H10118.9C23—C24—H24119.7
C12—C11—C10119.7 (2)C25—C24—H24119.7
C12—C11—H11120.1C20—C25—C24119.0 (3)
C10—C11—H11120.1C20—C25—H25120.5
O4—C12—C11125.5 (2)C24—C25—H25120.5
O4—C12—C7116.35 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O5i0.932.433.199 (3)140
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC25H22ClN3O5S
Mr511.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)11.063 (2), 10.153 (2), 22.159 (4)
β (°) 98.73 (3)
V3)2460.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.30 × 0.26 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.907, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
19683, 4315, 3016
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.154, 1.00
No. of reflections4315
No. of parameters319
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.45

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O5i0.932.433.199 (3)140
Symmetry code: (i) x+2, y+1, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, M.-J., Chen, X. & Yao, J.-X. (2010). Acta Cryst. E66, o1360.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHan, J.-R., Tian, X., Zhen, X.-L., Li, Z.-C. & Liu, S.-X. (2008). Acta Cryst. E64, o2244.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Q.-Z., Zhao, Y.-L., Chen, X. & Yu, M. (2006). Acta Cryst. E62, o5252–o5254.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds