organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(2-Chloro­phen­­oxy)-1,3-di­methyl-1H-pyrazole-4-carbaldehyde oxime

aCollege of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
*Correspondence e-mail: fz8566@yahoo.com.cn

(Received 6 June 2012; accepted 12 June 2012; online 16 June 2012)

In the title mol­ecule, C12H12ClN3O2, the benzene and pyrazole rings are inclined to each other at a dihedral angle of 83.3 (3)°. In the crystal, mol­ecules are linked into [010] chains via O—H⋯N hydrogen bonds with the unsubstituted pyrazole N atom acting as the acceptor.

Related literature

For a related structure, see: Dai et al. (2011[Dai, H., Miao, W.-K., Wu, S.-S., Qin, X. & Fang, J.-X. (2011). Acta Cryst. E67, o775.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12ClN3O2

  • Mr = 265.70

  • Monoclinic, P 21 /c

  • a = 11.108 (2) Å

  • b = 14.998 (3) Å

  • c = 8.0839 (16) Å

  • β = 104.94 (3)°

  • V = 1301.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 113 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.]) Tmin = 0.918, Tmax = 0.944

  • 10731 measured reflections

  • 2288 independent reflections

  • 1638 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.159

  • S = 0.99

  • 2288 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2i 0.82 1.97 2.787 (3) 171
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In a continuation of our search for new pyrazole oxime derivatives (Dai et al., 2011), we present here the title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are normal and comparable with those observed in the related compound (Dai et al., 2011). The plane of substituted phenyl ring makes a dihedral angle of 83.3 (3)° with the pyrazole ring. In the crystal, intermolecular O—H···N hydrogen bonds (Table1) link molecules into chains in [010].

Related literature top

For a related structure, see: Dai et al. (2011).

Experimental top

To a stirred solution of hydroxylamine hydrochloride (6 mmol) and potassium hydroxide (8 mmol) in methanol (30 ml) was added 5-(2-chlorophenoxy)-1,3-dimethyl-1H-pyrazole-4-carbaldehyde (4 mmol). The resulting mixture was heated to reflux for 6 h. The reaction mixture was cooled and poured into cold water (80 ml). The resulting colourless solid was collected and then recrystallized from ethyl acetate to give colourless crystals.

Refinement top

All H atoms were placed in calculated positions, with C–H = 0.93 and 0.96 ° A, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2–1.5 Ueq(C).

Structure description top

In a continuation of our search for new pyrazole oxime derivatives (Dai et al., 2011), we present here the title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are normal and comparable with those observed in the related compound (Dai et al., 2011). The plane of substituted phenyl ring makes a dihedral angle of 83.3 (3)° with the pyrazole ring. In the crystal, intermolecular O—H···N hydrogen bonds (Table1) link molecules into chains in [010].

For a related structure, see: Dai et al. (2011).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.
5-(2-Chlorophenoxy)-1,3-dimethyl-1H-pyrazole-4-carbaldehyde oxime top
Crystal data top
C12H12ClN3O2F(000) = 552
Mr = 265.70Dx = 1.356 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10109 reflections
a = 11.108 (2) Åθ = 3.1–27.7°
b = 14.998 (3) ŵ = 0.29 mm1
c = 8.0839 (16) ÅT = 113 K
β = 104.94 (3)°Prism, colourless
V = 1301.2 (4) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2288 independent reflections
Radiation source: fine-focus sealed tube1638 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ω and φ scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
h = 1313
Tmin = 0.918, Tmax = 0.944k = 1717
10731 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0775P)2 + 0.5684P]
where P = (Fo2 + 2Fc2)/3
2288 reflections(Δ/σ)max = 0.096
166 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C12H12ClN3O2V = 1301.2 (4) Å3
Mr = 265.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.108 (2) ŵ = 0.29 mm1
b = 14.998 (3) ÅT = 113 K
c = 8.0839 (16) Å0.30 × 0.25 × 0.20 mm
β = 104.94 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2288 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
1638 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.944Rint = 0.064
10731 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 0.99Δρmax = 0.21 e Å3
2288 reflectionsΔρmin = 0.25 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.95727 (9)0.11946 (8)0.10002 (12)0.0797 (4)
O10.78065 (18)0.08065 (15)0.0915 (3)0.0555 (6)
N20.5175 (2)0.13782 (17)0.2347 (3)0.0504 (7)
N30.5840 (2)0.14771 (16)0.2182 (4)0.0526 (7)
N10.6218 (2)0.15655 (17)0.1805 (3)0.0502 (7)
C70.6784 (3)0.0805 (2)0.1570 (4)0.0459 (8)
C100.6468 (3)0.0833 (2)0.1825 (4)0.0489 (8)
H100.71800.09600.14660.059*
O20.6382 (2)0.22945 (15)0.1961 (4)0.0742 (8)
H20.59900.27000.22620.111*
C60.8951 (3)0.10481 (19)0.2006 (4)0.0437 (7)
C10.9878 (3)0.1260 (2)0.1212 (4)0.0488 (8)
C80.6126 (2)0.0091 (2)0.1949 (4)0.0418 (7)
C90.5111 (3)0.0494 (2)0.2418 (4)0.0421 (7)
C50.9187 (3)0.1079 (2)0.3747 (4)0.0585 (9)
H50.85650.09360.42810.070*
C21.1039 (3)0.1516 (2)0.2186 (5)0.0618 (10)
H2A1.16600.16630.16510.074*
C41.0363 (3)0.1327 (3)0.4714 (5)0.0685 (10)
H41.05330.13370.59030.082*
C110.4042 (3)0.0054 (2)0.2915 (4)0.0527 (8)
H11A0.36530.04750.35080.079*
H11B0.43440.04440.36500.079*
H11C0.34440.01500.19040.079*
C31.1281 (3)0.1556 (2)0.3924 (5)0.0649 (10)
H31.20600.17370.45740.078*
C120.6535 (4)0.2479 (2)0.1475 (5)0.0698 (11)
H12A0.70020.27470.25230.105*
H12B0.57850.28130.10260.105*
H12C0.70270.24790.06580.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0725 (7)0.1143 (9)0.0598 (6)0.0115 (6)0.0303 (5)0.0005 (5)
O10.0435 (12)0.0732 (15)0.0515 (13)0.0175 (11)0.0154 (10)0.0114 (12)
N20.0440 (15)0.0478 (17)0.0599 (17)0.0044 (12)0.0146 (13)0.0034 (12)
N30.0401 (14)0.0422 (15)0.076 (2)0.0033 (12)0.0152 (13)0.0009 (13)
N10.0462 (15)0.0455 (16)0.0596 (18)0.0065 (13)0.0151 (13)0.0003 (13)
C70.0357 (15)0.054 (2)0.0471 (18)0.0056 (15)0.0090 (13)0.0038 (15)
C100.0344 (15)0.052 (2)0.062 (2)0.0015 (15)0.0148 (14)0.0025 (16)
O20.0556 (14)0.0429 (14)0.133 (2)0.0071 (11)0.0413 (15)0.0007 (15)
C60.0377 (16)0.0433 (18)0.0497 (19)0.0055 (13)0.0106 (14)0.0037 (14)
C10.0454 (18)0.0468 (18)0.056 (2)0.0005 (14)0.0155 (15)0.0048 (15)
C80.0326 (14)0.0462 (18)0.0449 (18)0.0034 (13)0.0070 (13)0.0017 (14)
C90.0363 (15)0.0460 (18)0.0424 (17)0.0036 (13)0.0072 (13)0.0028 (14)
C50.0478 (19)0.076 (2)0.056 (2)0.0112 (17)0.0200 (16)0.0001 (18)
C20.0400 (18)0.074 (2)0.074 (3)0.0041 (17)0.0190 (17)0.009 (2)
C40.057 (2)0.092 (3)0.050 (2)0.005 (2)0.0039 (17)0.0002 (19)
C110.0390 (16)0.063 (2)0.057 (2)0.0041 (15)0.0141 (14)0.0010 (17)
C30.0366 (18)0.081 (3)0.073 (3)0.0074 (17)0.0067 (17)0.002 (2)
C120.073 (2)0.052 (2)0.087 (3)0.0079 (18)0.026 (2)0.0095 (19)
Geometric parameters (Å, º) top
Cl1—C11.735 (3)C8—C91.415 (4)
O1—C71.371 (3)C9—C111.501 (4)
O1—C61.396 (3)C5—C41.389 (5)
N2—C91.330 (4)C5—H50.9300
N2—N11.369 (3)C2—C31.362 (5)
N3—C101.267 (4)C2—H2A0.9300
N3—O21.397 (3)C4—C31.379 (5)
N1—C71.339 (4)C4—H40.9300
N1—C121.456 (4)C11—H11A0.9600
C7—C81.376 (4)C11—H11B0.9600
C10—C81.446 (4)C11—H11C0.9600
C10—H100.9300C3—H30.9300
O2—H20.8200C12—H12A0.9600
C6—C51.364 (4)C12—H12B0.9600
C6—C11.383 (4)C12—H12C0.9600
C1—C21.381 (5)
C7—O1—C6117.8 (2)C6—C5—C4119.5 (3)
C9—N2—N1106.1 (2)C6—C5—H5120.2
C10—N3—O2111.1 (3)C4—C5—H5120.2
C7—N1—N2109.8 (2)C3—C2—C1120.5 (3)
C7—N1—C12129.1 (3)C3—C2—H2A119.8
N2—N1—C12121.1 (3)C1—C2—H2A119.8
N1—C7—O1121.3 (3)C3—C4—C5120.4 (3)
N1—C7—C8109.6 (3)C3—C4—H4119.8
O1—C7—C8128.9 (3)C5—C4—H4119.8
N3—C10—C8123.0 (3)C9—C11—H11A109.5
N3—C10—H10118.5C9—C11—H11B109.5
C8—C10—H10118.5H11A—C11—H11B109.5
N3—O2—H2109.5C9—C11—H11C109.5
C5—C6—C1120.2 (3)H11A—C11—H11C109.5
C5—C6—O1124.2 (3)H11B—C11—H11C109.5
C1—C6—O1115.6 (3)C2—C3—C4119.7 (3)
C6—C1—C2119.8 (3)C2—C3—H3120.2
C6—C1—Cl1119.7 (2)C4—C3—H3120.2
C2—C1—Cl1120.6 (3)N1—C12—H12A109.5
C7—C8—C9103.5 (3)N1—C12—H12B109.5
C7—C8—C10124.5 (3)H12A—C12—H12B109.5
C9—C8—C10132.0 (3)N1—C12—H12C109.5
N2—C9—C8111.0 (3)H12A—C12—H12C109.5
N2—C9—C11120.3 (3)H12B—C12—H12C109.5
C8—C9—C11128.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.821.972.787 (3)171
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H12ClN3O2
Mr265.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)11.108 (2), 14.998 (3), 8.0839 (16)
β (°) 104.94 (3)
V3)1301.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.918, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
10731, 2288, 1638
Rint0.064
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.159, 0.99
No. of reflections2288
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.25

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.821.972.787 (3)171
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Science Foundation of Nantong University (grant No. 11Z046).

References

First citationDai, H., Miao, W.-K., Wu, S.-S., Qin, X. & Fang, J.-X. (2011). Acta Cryst. E67, o775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds