organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phenazin-5-ium bromide

aFaculty of Chemistry and Chemical Engineering, TaiShan Medical University, Tai'an 271016, People's Republic of China
*Correspondence e-mail: Binboll@126.com

(Received 10 June 2012; accepted 19 June 2012; online 23 June 2012)

In the title compound, C12H9N2+·Br, the protonated tricyclic ring system is slightly twisted, with a dihedral angle of 3.9 (1)° between the two outer benzene rings. In the crystal, N—H⋯Br and C—H⋯Br hydrogen bonds link two cations and two bromide anions into centrosymmetric assemblies, which are further packed into stacks along [010] via ππ inter­actions between the aromatic rings [centroid–centroid distance = 3.725 (4) Å].

Related literature

For applications of phenazines, see: Laursen & Nielsen (2004[Laursen, J. B. & Nielsen, J. (2004). Chem. Rev. 104, 1663-1685.]); Uchida & Kimura (1984[Uchida, T. & Kimura, K. (1984). Acta Cryst. C40, 139-140.]). For related structures, see: Braga et al. (2010[Braga, D., Grepioni, F., Maini, L., Mazzeo, P. P. & Rubini, K. (2010). Thermochim. Acta, 507, 1-8.]); Zhang et al. (2012[Zhang, N.-Q., Li, P., Dong, J. & Chen, H.-Y. (2012). Acta Cryst. E68, o2101.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9N2+·Br

  • Mr = 261.12

  • Triclinic, [P \overline 1]

  • a = 5.639 (5) Å

  • b = 7.958 (5) Å

  • c = 12.149 (5) Å

  • α = 73.284 (5)°

  • β = 86.896 (5)°

  • γ = 88.360 (5)°

  • V = 521.3 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.91 mm−1

  • T = 293 K

  • 0.18 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.541, Tmax = 0.556

  • 3029 measured reflections

  • 2085 independent reflections

  • 1840 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 1.08

  • 2085 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯Br1 0.86 2.31 3.155 (4) 167
C3—H3A⋯Br1i 0.93 2.82 3.750 (5) 176
Symmetry code: (i) -x-1, -y, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the past decade, much interest has been focused on the phenazine as a template in crystal engineering. The electron rich aromatic system in phenazine enables it to be a good π-donor. Accordingly, phenazine has been employed in the design of charge-transfer complexes (Laursen et al., 2004; Uchida et al., 1984). In a continuation of our study of the compounds with phenazinium cation (Zhang et al., 2012), we present here the title compound, (I).

In (I) (Fig. 1), the bond lengths and angles are normal and correspond to those observed in the related phenazinium chloride (Braga et al., 2010). The asymmetric unit of (I) contains a phenazinium cation and a bromide anion. The phenazinium cations show planar configuration with the largest deviation from the least-square-plane of 0.053 (4) Å for C7. The protonated tricycle is twisted with a dihedral angle of 3.9 (1)° between the two utmost benzene rings.

The cations are packed along the b axis and the tilted angle between the phenazinium plane and b axis of 50.40 (5)°. In the crystal, N—H···Br and C—H···Br hydrogen bonds (Table 1) link two cations and two bromide anions into centrosymmetric clusters, which are further packed into stacks along [010] via ππ interactions between the aromatic rings [centroid-centroid distance = 3.725 (4) Å].

Related literature top

For applications of phenazines, see: Laursen & Nielsen (2004); Uchida & Kimura (1984). For related structures, see: Braga et al. (2010); Zhang et al. (2012).

Experimental top

Phenazine(10.0 g) and 2-bromopropane (4.2 mL) was placed in the teflon liner of an autoclave, which was sealed and heated to 433 K for 48 h, cooled at speed of 10 K/min, whereupon a few of black block of title crystal were obtained.

Refinement top

All H atoms were geometrically positioned (C—H = 0.93 Å, N—H = 0.86 Å), and allowed to ride on their parent atoms, with Uiso(H)= 1.2Ueq(C, N).

Structure description top

In the past decade, much interest has been focused on the phenazine as a template in crystal engineering. The electron rich aromatic system in phenazine enables it to be a good π-donor. Accordingly, phenazine has been employed in the design of charge-transfer complexes (Laursen et al., 2004; Uchida et al., 1984). In a continuation of our study of the compounds with phenazinium cation (Zhang et al., 2012), we present here the title compound, (I).

In (I) (Fig. 1), the bond lengths and angles are normal and correspond to those observed in the related phenazinium chloride (Braga et al., 2010). The asymmetric unit of (I) contains a phenazinium cation and a bromide anion. The phenazinium cations show planar configuration with the largest deviation from the least-square-plane of 0.053 (4) Å for C7. The protonated tricycle is twisted with a dihedral angle of 3.9 (1)° between the two utmost benzene rings.

The cations are packed along the b axis and the tilted angle between the phenazinium plane and b axis of 50.40 (5)°. In the crystal, N—H···Br and C—H···Br hydrogen bonds (Table 1) link two cations and two bromide anions into centrosymmetric clusters, which are further packed into stacks along [010] via ππ interactions between the aromatic rings [centroid-centroid distance = 3.725 (4) Å].

For applications of phenazines, see: Laursen & Nielsen (2004); Uchida & Kimura (1984). For related structures, see: Braga et al. (2010); Zhang et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 50% probability displacement ellipsoids. Dashed line denotes hydrogen bond.
Phenazin-5-ium bromide top
Crystal data top
C12H9N2+·BrZ = 2
Mr = 261.12F(000) = 260
Triclinic, P1Dx = 1.663 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 5.639 (5) ÅCell parameters from 1973 reflections
b = 7.958 (5) Åθ = 2.7–28.3°
c = 12.149 (5) ŵ = 3.91 mm1
α = 73.284 (5)°T = 293 K
β = 86.896 (5)°Prism, black
γ = 88.360 (5)°0.18 × 0.16 × 0.15 mm
V = 521.3 (6) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2085 independent reflections
Radiation source: fine-focus sealed tube1840 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
phi and ω scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 47
Tmin = 0.541, Tmax = 0.556k = 99
3029 measured reflectionsl = 1514
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.062P)2 + 0.0297P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2085 reflectionsΔρmax = 0.81 e Å3
137 parametersΔρmin = 0.65 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (5)
Crystal data top
C12H9N2+·Brγ = 88.360 (5)°
Mr = 261.12V = 521.3 (6) Å3
Triclinic, P1Z = 2
a = 5.639 (5) ÅMo Kα radiation
b = 7.958 (5) ŵ = 3.91 mm1
c = 12.149 (5) ÅT = 293 K
α = 73.284 (5)°0.18 × 0.16 × 0.15 mm
β = 86.896 (5)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2085 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1840 reflections with I > 2σ(I)
Tmin = 0.541, Tmax = 0.556Rint = 0.028
3029 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.08Δρmax = 0.81 e Å3
2085 reflectionsΔρmin = 0.65 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.54425 (5)0.08849 (4)0.30612 (2)0.04706 (19)
C10.2320 (6)0.3452 (4)0.0468 (3)0.0430 (7)
H1A0.37400.40320.07320.052*
C20.1020 (6)0.2915 (5)0.1191 (3)0.0494 (8)
H2A0.15590.31230.19550.059*
C30.1152 (6)0.2040 (5)0.0819 (3)0.0492 (8)
H3A0.20330.17060.13450.059*
C40.1977 (6)0.1679 (4)0.0300 (3)0.0435 (7)
H4A0.34010.10950.05430.052*
C50.0634 (5)0.2204 (4)0.1074 (2)0.0354 (6)
C60.1524 (5)0.3133 (4)0.0701 (2)0.0353 (6)
C70.3209 (6)0.4035 (5)0.3284 (3)0.0481 (8)
H7A0.45640.47030.30290.058*
C80.2429 (7)0.3683 (5)0.4392 (3)0.0544 (9)
H8A0.32570.41050.48970.065*
C90.0368 (7)0.2680 (5)0.4799 (3)0.0525 (9)
H9A0.01180.24420.55710.063*
C100.0911 (5)0.2059 (4)0.4102 (3)0.0433 (7)
H10A0.22700.14080.43820.052*
C110.0137 (5)0.2419 (4)0.2938 (2)0.0351 (6)
C120.1979 (5)0.3395 (4)0.2505 (2)0.0363 (6)
N10.2781 (4)0.3709 (3)0.1416 (2)0.0384 (6)
N20.1337 (4)0.1862 (3)0.2191 (2)0.0364 (5)
H2B0.26030.12640.24350.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0445 (3)0.0526 (3)0.0440 (2)0.01652 (15)0.00696 (14)0.01376 (15)
C10.0355 (16)0.0472 (18)0.0418 (16)0.0064 (13)0.0064 (13)0.0076 (13)
C20.055 (2)0.051 (2)0.0394 (17)0.0125 (16)0.0031 (15)0.0116 (14)
C30.055 (2)0.050 (2)0.0484 (18)0.0097 (16)0.0095 (15)0.0221 (15)
C40.0348 (16)0.0428 (17)0.0528 (18)0.0010 (13)0.0036 (13)0.0136 (14)
C50.0311 (14)0.0353 (15)0.0385 (15)0.0048 (12)0.0017 (11)0.0096 (11)
C60.0279 (14)0.0345 (15)0.0401 (15)0.0040 (12)0.0015 (11)0.0062 (12)
C70.0362 (18)0.0523 (19)0.0532 (19)0.0104 (15)0.0010 (14)0.0106 (15)
C80.058 (2)0.062 (2)0.0476 (19)0.0110 (18)0.0046 (15)0.0205 (16)
C90.057 (2)0.060 (2)0.0393 (17)0.0022 (17)0.0052 (15)0.0127 (15)
C100.0381 (17)0.0447 (18)0.0437 (17)0.0050 (14)0.0076 (13)0.0087 (13)
C110.0306 (14)0.0340 (15)0.0383 (15)0.0006 (11)0.0024 (11)0.0072 (11)
C120.0295 (15)0.0368 (15)0.0389 (15)0.0003 (12)0.0014 (11)0.0056 (12)
N10.0283 (12)0.0398 (14)0.0426 (13)0.0009 (10)0.0043 (10)0.0056 (10)
N20.0263 (12)0.0381 (13)0.0430 (13)0.0042 (10)0.0053 (10)0.0096 (10)
Geometric parameters (Å, º) top
C1—C21.339 (5)C7—C121.417 (5)
C1—C61.418 (4)C7—H7A0.9300
C1—H1A0.9300C8—C91.413 (5)
C2—C31.413 (5)C8—H8A0.9300
C2—H2A0.9300C9—C101.344 (5)
C3—C41.364 (4)C9—H9A0.9300
C3—H3A0.9300C10—C111.407 (4)
C4—C51.397 (5)C10—H10A0.9300
C4—H4A0.9300C11—N21.339 (4)
C5—N21.345 (4)C11—C121.433 (4)
C5—C61.426 (4)C12—N11.329 (4)
C6—N11.336 (4)N2—H2B0.8600
C7—C81.345 (5)
C2—C1—C6119.8 (3)C12—C7—H7A119.8
C2—C1—H1A120.1C7—C8—C9120.8 (3)
C6—C1—H1A120.1C7—C8—H8A119.6
C1—C2—C3121.5 (3)C9—C8—H8A119.6
C1—C2—H2A119.2C10—C9—C8122.0 (3)
C3—C2—H2A119.2C10—C9—H9A119.0
C4—C3—C2121.0 (3)C8—C9—H9A119.0
C4—C3—H3A119.5C9—C10—C11118.2 (3)
C2—C3—H3A119.5C9—C10—H10A120.9
C3—C4—C5118.6 (3)C11—C10—H10A120.9
C3—C4—H4A120.7N2—C11—C10121.6 (3)
C5—C4—H4A120.7N2—C11—C12117.3 (3)
N2—C5—C4121.3 (3)C10—C11—C12121.2 (3)
N2—C5—C6117.8 (3)N1—C12—C7120.4 (3)
C4—C5—C6120.9 (3)N1—C12—C11122.3 (3)
N1—C6—C1120.0 (3)C7—C12—C11117.4 (3)
N1—C6—C5121.8 (3)C12—N1—C6118.4 (2)
C1—C6—C5118.2 (3)C11—N2—C5122.4 (2)
C8—C7—C12120.4 (3)C11—N2—H2B118.8
C8—C7—H7A119.8C5—N2—H2B118.8
C6—C1—C2—C30.4 (5)C9—C10—C11—C121.1 (5)
C1—C2—C3—C41.4 (5)C8—C7—C12—N1178.4 (3)
C2—C3—C4—C50.5 (5)C8—C7—C12—C111.9 (5)
C3—C4—C5—N2179.0 (3)N2—C11—C12—N11.7 (4)
C3—C4—C5—C61.4 (5)C10—C11—C12—N1178.0 (3)
C2—C1—C6—N1178.1 (3)N2—C11—C12—C7178.0 (3)
C2—C1—C6—C51.4 (5)C10—C11—C12—C72.3 (4)
N2—C5—C6—N12.4 (4)C7—C12—N1—C6177.8 (3)
C4—C5—C6—N1177.2 (3)C11—C12—N1—C61.9 (4)
N2—C5—C6—C1178.1 (3)C1—C6—N1—C12179.7 (3)
C4—C5—C6—C12.3 (4)C5—C6—N1—C120.1 (4)
C12—C7—C8—C90.4 (6)C10—C11—N2—C5179.5 (3)
C7—C8—C9—C100.9 (6)C12—C11—N2—C50.7 (4)
C8—C9—C10—C110.5 (6)C4—C5—N2—C11177.0 (3)
C9—C10—C11—N2179.2 (3)C6—C5—N2—C112.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···Br10.862.313.155 (4)167
C3—H3A···Br1i0.932.823.750 (5)176
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC12H9N2+·Br
Mr261.12
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.639 (5), 7.958 (5), 12.149 (5)
α, β, γ (°)73.284 (5), 86.896 (5), 88.360 (5)
V3)521.3 (6)
Z2
Radiation typeMo Kα
µ (mm1)3.91
Crystal size (mm)0.18 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.541, 0.556
No. of measured, independent and
observed [I > 2σ(I)] reflections
3029, 2085, 1840
Rint0.028
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.08
No. of reflections2085
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.65

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···Br10.862.31163.155 (4)166.67
C3—H3A···Br1i0.932.82123.750 (5)176.02
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by the Shandong College research program (grant No. J11LB15) and the Young and Middle-aged Scientist Research Awards Foundation of Shandong Province (grant No. BS2010CL045).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBraga, D., Grepioni, F., Maini, L., Mazzeo, P. P. & Rubini, K. (2010). Thermochim. Acta, 507, 1–8.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLaursen, J. B. & Nielsen, J. (2004). Chem. Rev. 104, 1663–1685.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUchida, T. & Kimura, K. (1984). Acta Cryst. C40, 139–140.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZhang, N.-Q., Li, P., Dong, J. & Chen, H.-Y. (2012). Acta Cryst. E68, o2101.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds