metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tri­aqua­(μ3-pyridine-2,4,6-tri­carboxyl­ato)terbium(III)] monohydrate]

aCrystal Engineering Division, Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: Zhuhonglin1@nbu.edu.cn

(Received 16 June 2012; accepted 26 June 2012; online 30 June 2012)

The asymmetric unit of the title compound, {[Tb(C8H2NO6)(H2O)3]·H2O}n, contains one TbIII ion, one pyridine-2,4,6-tricarboxyl­ate (ptc) anion, three aqua ligands and one lattice water mol­ecule. The TbIII ion is nine coordinated by one N and five O atoms from three ptc ligands and by three O atoms from the three aqua ligands in a distorted bicapped trigonal–prismatic geometry. The ptc ligands bridge the TbIII ions into a two-dimensional polymeric framework parallel to (100). An extensive O—H⋯O hydrogen-bonding network consolidates the crystal packing.

Related literature

For the crystal structures of related complexes, see: Das et al. (2009[Das, M. C., Ghosh, S. K., Sañudo, E. C. & Bharadwaj, P. K. (2009). Dalton Trans. pp. 1644-1658.]); Wang & Zhang (2009[Wang, H.-S. & Zhang, W.-Q. (2009). Acta Cryst. E65, m1271.]); Wang et al. (2010[Wang, H.-S., Li, G.-C., Chen, Y., Zhang, Z.-J. & Liu, M.-L. (2010). J. Coord. Chem. 63, 4068-4076.]); Lin et al. (2011[Lin, J.-L., Xu, W., Zhao, L. & Zheng, Y.-Q. (2011). Z. Naturforsch. Teil B, 66, 570-576.]); Jin et al. (2012[Jin, Y.-W., Zhu, H.-L., Wang, J.-F. & Zheng, Y.-Q. (2012). Solid State Sci. 14, 682-688.]).

[Scheme 1]

Experimental

Crystal data
  • [Tb(C8H2NO6)(H2O)3]·H2O

  • Mr = 439.09

  • Monoclinic, P 21 /c

  • a = 11.936 (2) Å

  • b = 7.3343 (15) Å

  • c = 13.516 (3) Å

  • β = 96.43 (3)°

  • V = 1175.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.07 mm−1

  • T = 293 K

  • 0.32 × 0.30 × 0.28 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.164, Tmax = 0.183

  • 10998 measured reflections

  • 2664 independent reflections

  • 2528 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.067

  • S = 1.06

  • 2664 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 2.18 e Å−3

  • Δρmin = −1.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O5i 0.83 1.98 2.642 (4) 136
O7—H7B⋯O4ii 0.84 2.45 2.966 (4) 120
O8—H8A⋯O5i 0.85 2.04 2.822 (4) 152
O8—H8B⋯O10iii 0.81 1.95 2.760 (5) 174
O9—H9A⋯O1iv 0.81 2.00 2.808 (4) 179
O9—H9B⋯O3v 0.81 2.00 2.805 (4) 179
O10—H10A⋯O6vi 0.84 2.33 2.977 (5) 134
O10—H10B⋯O7vi 0.85 2.55 3.169 (5) 130
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{5\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) x, y+1, z; (vi) x, y-1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As an ongoing part of our investigations of the lanthanide complexes with pyridine-2,4,6-tricarboxylate (Jin et al., 2012; Lin et al., 2011), we report here the title compound with Tb (I).

In (I) (Fig.1), all bond lengths and angles are normal and correspond to those observed in isostructural polymeric compounds with Gd (Wang & Zhang, 2009), Sm (Wang et al., 2010) and Dy (Wang et al., 2010; Das et al., 2009). Each Tb center is coordinated by three aqua ligands and three ptc ligands (H3ptc = pyridine-2,4,6-tricarboxylate) to form 4,4'-bicapped trigonal prismatic TbNO8 chromophore with a 4,4'-bicapped trigonal prismatic environment. The pyridyl N atom, 2-position and 6-position carboxylate group coordinated two Tb atoms, and the 4-position carboxylate group chelated one Tb atom.

The TbNO8 chromophores are bridged by the ptc anions to form two-dimensional corrugated herringbone-like layers, which extend infinitely parallel to (100) (Fig. 2). The aqua ligands (O7, O8 and O9) donate hydrogen atom to carboxylate oxygen atoms (O4, O3 and O1) to form intralayer hydrogen bonds, and simultaneously O8 and O9 donate hydrogen atom to the carboxylate O5 to form interlayer hydrogen bonds (Table 1). Obviously, the former intralayer hydrogen bonding interactions contribute to stabilization of the two-dimensional layer, and the latter are found to be responsible for supramolecular assembly of the two-dimensional layers into a three-dimensional supramolecular architecture.

Related literature top

For the crystal structures of related complexes, see: Das et al. (2009); Wang & Zhang (2009); Wang et al. (2010); Lin et al. (2011); Jin et al. (2012).

Experimental top

A mixture of Tb4O7 (0.0556 g, 0.075 mmol), pyridine-2,4,6-tricarboxylic acid (0.0649 g, 0.3 mmol) and H2O (10 ml) was sealed into a 23 ml Teflon-lined stainless autoclave, which was heated up to 180°C for 4 days, and then cooled to room temperature. A small amount of colourless needle-shaped crystals were obtained.

Refinement top

H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O–H distances fixed as initially found and with Uiso(H) values set at 1.2-1.5 Ueq(O).

Structure description top

As an ongoing part of our investigations of the lanthanide complexes with pyridine-2,4,6-tricarboxylate (Jin et al., 2012; Lin et al., 2011), we report here the title compound with Tb (I).

In (I) (Fig.1), all bond lengths and angles are normal and correspond to those observed in isostructural polymeric compounds with Gd (Wang & Zhang, 2009), Sm (Wang et al., 2010) and Dy (Wang et al., 2010; Das et al., 2009). Each Tb center is coordinated by three aqua ligands and three ptc ligands (H3ptc = pyridine-2,4,6-tricarboxylate) to form 4,4'-bicapped trigonal prismatic TbNO8 chromophore with a 4,4'-bicapped trigonal prismatic environment. The pyridyl N atom, 2-position and 6-position carboxylate group coordinated two Tb atoms, and the 4-position carboxylate group chelated one Tb atom.

The TbNO8 chromophores are bridged by the ptc anions to form two-dimensional corrugated herringbone-like layers, which extend infinitely parallel to (100) (Fig. 2). The aqua ligands (O7, O8 and O9) donate hydrogen atom to carboxylate oxygen atoms (O4, O3 and O1) to form intralayer hydrogen bonds, and simultaneously O8 and O9 donate hydrogen atom to the carboxylate O5 to form interlayer hydrogen bonds (Table 1). Obviously, the former intralayer hydrogen bonding interactions contribute to stabilization of the two-dimensional layer, and the latter are found to be responsible for supramolecular assembly of the two-dimensional layers into a three-dimensional supramolecular architecture.

For the crystal structures of related complexes, see: Das et al. (2009); Wang & Zhang (2009); Wang et al. (2010); Lin et al. (2011); Jin et al. (2012).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the crystal structure of (I) showing the atomic numbering and 45% probability dispalcement ellipsoids [symmetry codes: (#1) -x + 1, y + 1/2, -z + 3/2; (#2) x, -y + 3/2, z - 1/2; (#3) -x + 1, y - 1/2, -z + 3/2; (#4) x, -y + 3/2, z + 1/2]. H atoms omitted for clarity.
[Figure 2] Fig. 2. A portion of the two-dimensional polymeric framework in (I) viewed down the a axis. H atoms omitted for clarity
Poly[[triaqua(µ3-pyridine-2,4,6-tricarboxylato)terbium(III)] monohydrate] top
Crystal data top
[Tb(C8H2NO6)(H2O)3]·H2OF(000) = 840
Mr = 439.09Dx = 2.480 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9883 reflections
a = 11.936 (2) Åθ = 3.0–27.4°
b = 7.3343 (15) ŵ = 6.07 mm1
c = 13.516 (3) ÅT = 293 K
β = 96.43 (3)°Block, colorless
V = 1175.8 (4) Å30.32 × 0.30 × 0.28 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2664 independent reflections
Radiation source: fine-focus sealed tube2528 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 0 pixels mm-1θmax = 27.4°, θmin = 3.0°
ω scanh = 1515
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 99
Tmin = 0.164, Tmax = 0.183l = 1715
10998 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0172P)2 + 1.9544P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2664 reflectionsΔρmax = 2.18 e Å3
182 parametersΔρmin = 1.11 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (4)
Crystal data top
[Tb(C8H2NO6)(H2O)3]·H2OV = 1175.8 (4) Å3
Mr = 439.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.936 (2) ŵ = 6.07 mm1
b = 7.3343 (15) ÅT = 293 K
c = 13.516 (3) Å0.32 × 0.30 × 0.28 mm
β = 96.43 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2664 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2528 reflections with I > 2σ(I)
Tmin = 0.164, Tmax = 0.183Rint = 0.066
10998 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.06Δρmax = 2.18 e Å3
2664 reflectionsΔρmin = 1.11 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb0.285028 (12)1.21386 (2)0.704284 (11)0.01088 (9)
N0.2959 (2)1.0044 (4)0.8499 (2)0.0132 (5)
C10.3926 (3)0.9190 (5)0.8812 (2)0.0140 (6)
C20.3992 (3)0.7853 (5)0.9547 (3)0.0165 (7)
H2A0.46690.72660.97500.020*
C30.3023 (3)0.7424 (5)0.9978 (3)0.0167 (7)
C40.2025 (3)0.8380 (5)0.9689 (3)0.0160 (7)
H4A0.13820.81831.00000.019*
C50.2033 (3)0.9641 (5)0.8917 (2)0.0141 (7)
C60.4904 (3)0.9703 (4)0.8255 (2)0.0137 (6)
O10.4681 (2)1.0675 (4)0.74843 (18)0.0186 (5)
O20.58643 (19)0.9109 (3)0.85646 (18)0.0168 (5)
C70.2986 (3)0.5894 (5)1.0710 (2)0.0162 (7)
O30.3445 (2)0.4402 (4)1.05122 (18)0.0209 (5)
O40.2479 (2)0.6092 (4)1.14653 (19)0.0238 (6)
C80.0984 (3)1.0619 (5)0.8451 (3)0.0163 (7)
O50.0075 (2)1.0267 (4)0.8774 (2)0.0250 (6)
O60.1127 (2)1.1688 (4)0.7744 (2)0.0228 (6)
O70.1990 (2)1.5188 (4)0.7163 (2)0.0262 (6)
H7A0.13171.54760.71660.031*
H7B0.25631.58720.72310.031*
O80.1356 (3)1.2471 (4)0.5676 (2)0.0296 (7)
H8A0.08441.32750.56320.050*
H8B0.11671.17460.52370.050*
O90.3781 (2)1.3706 (4)0.85261 (19)0.0243 (6)
H9A0.42251.42720.82400.029*
H9B0.36901.39090.90950.029*
O100.0703 (4)0.4780 (5)0.9079 (3)0.0481 (9)
H10A0.04130.40220.86620.058*
H10B0.13580.47360.88910.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb0.00838 (12)0.01147 (13)0.01279 (13)0.00008 (5)0.00110 (8)0.00033 (5)
N0.0100 (13)0.0133 (13)0.0162 (13)0.0010 (11)0.0007 (11)0.0008 (11)
C10.0118 (15)0.0129 (16)0.0164 (15)0.0003 (12)0.0022 (13)0.0011 (12)
C20.0119 (17)0.0182 (19)0.0188 (18)0.0026 (12)0.0008 (15)0.0034 (12)
C30.0205 (18)0.0126 (15)0.0168 (18)0.0009 (14)0.0015 (16)0.0023 (13)
C40.0133 (16)0.0159 (17)0.0200 (17)0.0012 (13)0.0073 (14)0.0029 (14)
C50.0141 (15)0.0150 (17)0.0127 (15)0.0000 (12)0.0000 (13)0.0005 (12)
C60.0140 (15)0.0084 (15)0.0185 (16)0.0013 (12)0.0015 (13)0.0025 (12)
O10.0135 (11)0.0220 (13)0.0209 (12)0.0040 (10)0.0048 (10)0.0084 (10)
O20.0109 (11)0.0172 (13)0.0215 (12)0.0043 (9)0.0015 (10)0.0011 (10)
C70.0151 (16)0.0159 (17)0.0173 (16)0.0001 (13)0.0001 (14)0.0042 (13)
O30.0251 (13)0.0172 (13)0.0209 (12)0.0047 (10)0.0049 (11)0.0059 (10)
O40.0320 (15)0.0197 (14)0.0214 (13)0.0071 (11)0.0108 (12)0.0069 (10)
C80.0132 (15)0.0160 (16)0.0200 (16)0.0008 (13)0.0027 (14)0.0017 (13)
O50.0092 (11)0.0335 (16)0.0321 (14)0.0009 (10)0.0022 (11)0.0106 (12)
O60.0162 (12)0.0288 (15)0.0242 (14)0.0063 (11)0.0052 (11)0.0133 (11)
O70.0150 (12)0.0184 (14)0.0441 (17)0.0012 (10)0.0016 (12)0.0001 (12)
O80.0257 (16)0.0348 (16)0.0257 (16)0.0121 (12)0.0084 (14)0.0057 (12)
O90.0280 (14)0.0269 (15)0.0180 (12)0.0104 (12)0.0029 (11)0.0044 (11)
O100.067 (2)0.041 (2)0.0368 (17)0.0117 (18)0.0046 (18)0.0032 (15)
Geometric parameters (Å, º) top
Tb—O2i2.324 (2)C5—C81.518 (4)
Tb—O62.382 (3)C6—O21.253 (4)
Tb—O82.432 (3)C6—O11.266 (4)
Tb—O12.448 (2)O2—Tbiii2.324 (2)
Tb—O92.465 (3)C7—O41.253 (4)
Tb—O72.474 (3)C7—O31.266 (4)
Tb—N2.488 (3)C7—Tbiv2.878 (3)
Tb—O4ii2.518 (3)O3—Tbiv2.528 (3)
Tb—O3ii2.528 (3)O4—Tbiv2.518 (3)
Tb—C7ii2.878 (3)C8—O51.241 (4)
N—C51.329 (4)C8—O61.263 (4)
N—C11.340 (4)O7—H7A0.8302
C1—C21.392 (5)O7—H7B0.8454
C1—C61.506 (5)O8—H8A0.8470
C2—C31.387 (6)O8—H8B0.8095
C2—H2A0.9293O9—H9A0.8057
C3—C41.400 (5)O9—H9B0.8018
C3—C71.500 (5)O10—H10A0.8390
C4—C51.396 (5)O10—H10B0.8498
C4—H4A0.9271
O2i—Tb—O6149.38 (9)C5—N—C1119.3 (3)
O2i—Tb—O897.26 (11)C5—N—Tb120.1 (2)
O6—Tb—O873.97 (11)C1—N—Tb120.3 (2)
O2i—Tb—O175.64 (9)N—C1—C2122.2 (3)
O6—Tb—O1128.99 (8)N—C1—C6114.5 (3)
O8—Tb—O1141.98 (10)C2—C1—C6123.2 (3)
O2i—Tb—O975.06 (9)C3—C2—C1118.5 (3)
O6—Tb—O994.10 (10)C3—C2—H2A120.6
O8—Tb—O9142.78 (10)C1—C2—H2A120.9
O1—Tb—O972.40 (10)C2—C3—C4119.5 (3)
O2i—Tb—O775.90 (9)C2—C3—C7122.3 (3)
O6—Tb—O773.49 (10)C4—C3—C7118.2 (3)
O8—Tb—O771.63 (10)C5—C4—C3117.6 (3)
O1—Tb—O7138.26 (9)C5—C4—H4A121.2
O9—Tb—O771.18 (9)C3—C4—H4A121.2
O2i—Tb—N133.27 (9)N—C5—C4122.7 (3)
O6—Tb—N64.57 (9)N—C5—C8113.9 (3)
O8—Tb—N129.16 (11)C4—C5—C8123.3 (3)
O1—Tb—N64.56 (9)O2—C6—O1124.9 (3)
O9—Tb—N70.47 (9)O2—C6—C1118.5 (3)
O7—Tb—N119.42 (10)O1—C6—C1116.6 (3)
O2i—Tb—O4ii125.16 (9)C6—O1—Tb123.2 (2)
O6—Tb—O4ii82.13 (10)C6—O2—Tbiii135.5 (2)
O8—Tb—O4ii76.72 (10)O4—C7—O3122.2 (3)
O1—Tb—O4ii77.54 (9)O4—C7—C3120.2 (3)
O9—Tb—O4ii137.60 (9)O3—C7—C3117.6 (3)
O7—Tb—O4ii144.19 (9)O4—C7—Tbiv60.86 (18)
N—Tb—O4ii69.89 (9)O3—C7—Tbiv61.32 (18)
O2i—Tb—O3ii74.43 (9)C3—C7—Tbiv177.3 (2)
O6—Tb—O3ii126.72 (10)C7—O3—Tbiv92.6 (2)
O8—Tb—O3ii70.88 (10)C7—O4—Tbiv93.4 (2)
O1—Tb—O3ii71.25 (9)O5—C8—O6126.4 (3)
O9—Tb—O3ii137.04 (9)O5—C8—C5118.0 (3)
O7—Tb—O3ii127.92 (9)O6—C8—C5115.6 (3)
N—Tb—O3ii112.14 (9)C8—O6—Tb125.7 (2)
O4ii—Tb—O3ii51.80 (9)Tb—O7—H7A129.7
O2i—Tb—C7ii100.00 (10)Tb—O7—H7B101.9
O6—Tb—C7ii104.70 (10)H7A—O7—H7B128.4
O8—Tb—C7ii71.93 (10)Tb—O8—H8A125.8
O1—Tb—C7ii72.68 (9)Tb—O8—H8B127.7
O9—Tb—C7ii144.85 (10)H8A—O8—H8B105.4
O7—Tb—C7ii142.43 (9)Tb—O9—H9A96.4
N—Tb—C7ii90.95 (10)Tb—O9—H9B140.3
O4ii—Tb—C7ii25.75 (10)H9A—O9—H9B122.1
O3ii—Tb—C7ii26.05 (9)H10A—O10—H10B95.6
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+3/2, z1/2; (iii) x+1, y1/2, z+3/2; (iv) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O5v0.831.982.642 (4)136
O7—H7B···O4vi0.842.452.966 (4)120
O8—H8A···O5v0.852.042.822 (4)152
O8—H8B···O10ii0.811.952.760 (5)174
O9—H9A···O1i0.812.002.808 (4)179
O9—H9B···O3vii0.812.002.805 (4)179
O10—H10A···O6viii0.842.332.977 (5)134
O10—H10B···O7viii0.852.553.169 (5)130
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+3/2, z1/2; (v) x, y+1/2, z+3/2; (vi) x, y+5/2, z1/2; (vii) x, y+1, z; (viii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Tb(C8H2NO6)(H2O)3]·H2O
Mr439.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.936 (2), 7.3343 (15), 13.516 (3)
β (°) 96.43 (3)
V3)1175.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)6.07
Crystal size (mm)0.32 × 0.30 × 0.28
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.164, 0.183
No. of measured, independent and
observed [I > 2σ(I)] reflections
10998, 2664, 2528
Rint0.066
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.06
No. of reflections2664
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.18, 1.11

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O5i0.831.982.642 (4)136
O7—H7B···O4ii0.842.452.966 (4)120
O8—H8A···O5i0.852.042.822 (4)152
O8—H8B···O10iii0.811.952.760 (5)174
O9—H9A···O1iv0.812.002.808 (4)179
O9—H9B···O3v0.812.002.805 (4)179
O10—H10A···O6vi0.842.332.977 (5)134
O10—H10B···O7vi0.852.553.169 (5)130
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+5/2, z1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1/2, z+3/2; (v) x, y+1, z; (vi) x, y1, z.
 

Acknowledgements

This project was supported by the K. C. Wong Magna Fund of Ningbo University.

References

First citationDas, M. C., Ghosh, S. K., Sañudo, E. C. & Bharadwaj, P. K. (2009). Dalton Trans. pp. 1644–1658.  Web of Science CSD CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJin, Y.-W., Zhu, H.-L., Wang, J.-F. & Zheng, Y.-Q. (2012). Solid State Sci. 14, 682–688.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, J.-L., Xu, W., Zhao, L. & Zheng, Y.-Q. (2011). Z. Naturforsch. Teil B, 66, 570–576.  CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H.-S., Li, G.-C., Chen, Y., Zhang, Z.-J. & Liu, M.-L. (2010). J. Coord. Chem. 63, 4068–4076.  Web of Science CrossRef CAS Google Scholar
First citationWang, H.-S. & Zhang, W.-Q. (2009). Acta Cryst. E65, m1271.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds