organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Di­phenyl-2-[(1-phenyl­eth­yl)amino]­ethanol

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: literabc@hotmail.com

(Received 3 May 2012; accepted 17 June 2012; online 27 June 2012)

In the mol­ecule of the title compound, C22H23NO, there are two chiral atoms (R* for the C atom attached to the OH group and S* for the C atom attached to the phenyl ring). In the crystal, neighbouring mol­ecules are connected into a chain along the b axis by N—H⋯O hydrogen bonds.

Related literature

For background to the synthesis of chiral organic compounds, see: Alcaide et al. (1981[B. Alcaide, R. Ferndndez de la Pradilla, C. L6pez-Mardomingo, R. Pbrez-Ossorio, & J. Plumet, (1981). J. Org. Chem. 46, 3234-3238.])

[Scheme 1]

Experimental

Crystal data
  • C22H23NO

  • Mr = 317.41

  • Orthorhombic, P 21 21 21

  • a = 6.307 (4) Å

  • b = 12.801 (7) Å

  • c = 22.490 (12) Å

  • V = 1815.7 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.50 × 0.29 × 0.21 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.985

  • 11619 measured reflections

  • 4471 independent reflections

  • 2660 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.160

  • S = 1.00

  • 4471 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.90 2.04 2.908 (2) 160
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the molecule of chiral title compound 1,2-dipheny1-2-((1-phenylethyl)amino)ethanol,which derived from (Rp) phenylamine,accroding to the Cram rules and the molecular structure, two chiral atoms: C1(R*) and C8(S*) are observed. In the crystal structure, intermolecular N—H···O hydrogen bonds connect the same neighbour molecules into a one-dimensional chain,giving rise along b axis. The angle of C1-O1-H1,O1-N1-H1A, C8-N1-H1A and C15-N1-H1A are 109.47°, 160.4°, 108.11° and 108.19°. The torsion angle of O1-C1-C8-N1 is 56.46 (0.22)°. The arrangement between two neighbour molecules are same.

Related literature top

For background to the synthesis of chiral organic compounds, see: Alcaide et al. (1981)

Experimental top

Benzil (0.75 g, 3.6 mmol) was added to a stirred ethanol solution of R-phenylethylamine (0.87 g, 3.96 mmol) in a round-bottomed flask under a nitrogen atmosphere and heated until ethanol refluxed. This reaction took about 31 h. In the ice bath environment, sodium borohydride (0.27 g, 7.92 mmol) was added to the mixture in batches. Then drained ethanol, white solid was obtained. The crude product was extracted with dichloromethane three times. The organic phase was dried over anhydrous magnesium sulfate and then evaporated. The pure product was obtained after recrystallized with petroleum ether. Single crystal of the title compound suitable for X–ray diffraction were obtained by slow evaporation of petroleum ether solution of the title compound.

Refinement top

All H atoms attached to C N O atoms were fixed geometrically and treated as riding with C—H = 0.93 - 0.98 Å, N—H = 0.90 Å, O—H = 0.820 Å with Uiso(H) = 1.5 Ueq(methyl) and Uiso(H) = 1.2 Ueq(C) for all other H atoms.In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute structure was assigned arbitrarily.

Structure description top

In the molecule of chiral title compound 1,2-dipheny1-2-((1-phenylethyl)amino)ethanol,which derived from (Rp) phenylamine,accroding to the Cram rules and the molecular structure, two chiral atoms: C1(R*) and C8(S*) are observed. In the crystal structure, intermolecular N—H···O hydrogen bonds connect the same neighbour molecules into a one-dimensional chain,giving rise along b axis. The angle of C1-O1-H1,O1-N1-H1A, C8-N1-H1A and C15-N1-H1A are 109.47°, 160.4°, 108.11° and 108.19°. The torsion angle of O1-C1-C8-N1 is 56.46 (0.22)°. The arrangement between two neighbour molecules are same.

For background to the synthesis of chiral organic compounds, see: Alcaide et al. (1981)

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The one–dimensional chain, linked by N—H···O hydrogen bonds.
1,2-Diphenyl-2-[(1-phenylethyl)amino]ethanol top
Crystal data top
C22H23NOF(000) = 680
Mr = 317.41Dx = 1.161 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3097 reflections
a = 6.307 (4) Åθ = 2.4–21.5°
b = 12.801 (7) ŵ = 0.07 mm1
c = 22.490 (12) ÅT = 298 K
V = 1815.7 (17) Å3Needle, colourless
Z = 40.50 × 0.29 × 0.21 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
4471 independent reflections
Radiation source: fine-focus sealed tube2660 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
phi and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.966, Tmax = 0.985k = 1617
11619 measured reflectionsl = 2922
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0777P)2]
where P = (Fo2 + 2Fc2)/3
4471 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C22H23NOV = 1815.7 (17) Å3
Mr = 317.41Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.307 (4) ŵ = 0.07 mm1
b = 12.801 (7) ÅT = 298 K
c = 22.490 (12) Å0.50 × 0.29 × 0.21 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
4471 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2660 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.985Rint = 0.071
11619 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.00Δρmax = 0.32 e Å3
4471 reflectionsΔρmin = 0.30 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1361 (3)0.17083 (12)0.92509 (8)0.0483 (5)
H1A0.21150.22780.93530.058*
O10.1676 (3)0.15306 (12)1.01455 (7)0.0583 (5)
H10.17790.16340.97870.087*
C10.0499 (4)0.13193 (16)1.02933 (10)0.0485 (5)
H1C0.11730.19761.04140.058*
C20.0702 (4)0.05485 (16)1.07981 (10)0.0470 (5)
C30.0921 (5)0.01341 (18)1.09504 (11)0.0610 (7)
H30.22060.00991.07490.073*
C40.0662 (6)0.0858 (2)1.13920 (12)0.0772 (8)
H40.17700.13071.14870.093*
C50.1249 (6)0.0928 (2)1.17002 (12)0.0811 (9)
H50.14270.14241.19980.097*
C60.2869 (5)0.0255 (2)1.15575 (12)0.0775 (9)
H60.41530.02951.17600.093*
C70.2594 (5)0.04835 (19)1.11128 (11)0.0621 (7)
H70.36930.09421.10240.075*
C80.1619 (4)0.09159 (15)0.97284 (9)0.0455 (5)
H80.31360.08810.98200.055*
C90.0926 (4)0.01903 (16)0.95574 (9)0.0478 (5)
C100.1051 (4)0.03981 (18)0.93349 (11)0.0580 (6)
H100.20150.01450.92850.070*
C110.1636 (5)0.1413 (2)0.91822 (12)0.0695 (7)
H110.29840.15460.90320.083*
C120.0218 (6)0.2215 (2)0.92537 (13)0.0787 (9)
H120.06010.28910.91480.094*
C130.1766 (6)0.2023 (2)0.94810 (11)0.0790 (9)
H130.27210.25690.95350.095*
C140.2331 (5)0.10146 (18)0.96280 (10)0.0621 (7)
H140.36800.08850.97770.075*
C150.2056 (4)0.13711 (19)0.86494 (10)0.0557 (6)
H150.13060.07200.85580.067*
C160.4411 (5)0.1131 (3)0.86352 (13)0.0943 (11)
H16A0.51940.17380.87570.141*
H16B0.48180.09390.82390.141*
H16C0.47110.05630.89010.141*
C170.1383 (4)0.21679 (17)0.81918 (9)0.0529 (6)
C180.0514 (5)0.2047 (2)0.78936 (12)0.0708 (7)
H180.13640.14730.79820.085*
C190.1189 (7)0.2751 (3)0.74684 (14)0.1008 (12)
H190.24900.26650.72800.121*
C200.0119 (11)0.3595 (3)0.73269 (16)0.1194 (17)
H200.02800.40640.70310.143*
C210.1949 (9)0.3727 (3)0.76188 (19)0.1124 (15)
H210.27940.43020.75300.135*
C220.2613 (6)0.3028 (2)0.80495 (12)0.0826 (9)
H220.38940.31360.82450.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0643 (13)0.0404 (8)0.0402 (9)0.0054 (8)0.0012 (9)0.0029 (8)
O10.0641 (12)0.0634 (9)0.0473 (8)0.0145 (8)0.0044 (8)0.0033 (7)
C10.0546 (14)0.0432 (11)0.0478 (12)0.0012 (10)0.0004 (11)0.0010 (10)
C20.0614 (14)0.0433 (10)0.0363 (10)0.0026 (10)0.0002 (11)0.0068 (9)
C30.0647 (16)0.0626 (14)0.0556 (14)0.0012 (13)0.0005 (13)0.0061 (12)
C40.106 (2)0.0668 (16)0.0587 (16)0.0146 (16)0.0050 (18)0.0115 (14)
C50.125 (3)0.0666 (16)0.0515 (15)0.0088 (19)0.0084 (19)0.0114 (13)
C60.094 (2)0.0794 (17)0.0587 (16)0.0127 (18)0.0215 (17)0.0033 (15)
C70.0732 (18)0.0578 (13)0.0552 (14)0.0007 (13)0.0096 (14)0.0035 (12)
C80.0490 (12)0.0431 (10)0.0446 (11)0.0008 (10)0.0004 (10)0.0011 (9)
C90.0598 (15)0.0451 (11)0.0385 (11)0.0054 (10)0.0038 (11)0.0021 (9)
C100.0578 (16)0.0548 (13)0.0613 (14)0.0041 (11)0.0007 (13)0.0060 (11)
C110.0788 (19)0.0655 (15)0.0643 (15)0.0126 (14)0.0010 (15)0.0126 (13)
C120.128 (3)0.0460 (13)0.0621 (16)0.0081 (16)0.0044 (18)0.0076 (13)
C130.120 (3)0.0516 (14)0.0654 (16)0.0206 (17)0.0123 (18)0.0053 (13)
C140.0788 (18)0.0537 (12)0.0540 (13)0.0154 (12)0.0063 (14)0.0070 (11)
C150.0649 (16)0.0579 (12)0.0443 (12)0.0038 (12)0.0067 (11)0.0047 (11)
C160.077 (2)0.144 (3)0.0618 (18)0.038 (2)0.0151 (16)0.011 (2)
C170.0719 (17)0.0502 (11)0.0368 (11)0.0049 (12)0.0050 (12)0.0075 (10)
C180.079 (2)0.0720 (16)0.0615 (15)0.0004 (15)0.0066 (15)0.0065 (15)
C190.130 (3)0.107 (3)0.0654 (19)0.032 (2)0.031 (2)0.016 (2)
C200.214 (6)0.091 (3)0.053 (2)0.040 (3)0.006 (3)0.0041 (19)
C210.183 (5)0.0677 (19)0.086 (2)0.012 (3)0.035 (3)0.0164 (19)
C220.116 (3)0.0656 (15)0.0658 (15)0.0227 (17)0.0110 (17)0.0010 (14)
Geometric parameters (Å, º) top
N1—C81.486 (3)C11—C121.371 (4)
N1—C151.486 (3)C11—H110.9300
N1—H1A0.9000C12—C131.374 (4)
O1—C11.437 (3)C12—H120.9300
O1—H10.8200C13—C141.380 (4)
C1—C21.510 (3)C13—H130.9300
C1—C81.543 (3)C14—H140.9300
C1—H1C0.9800C15—C171.510 (3)
C2—C31.389 (4)C15—C161.517 (4)
C2—C71.390 (4)C15—H150.9800
C3—C41.368 (3)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—C51.393 (5)C16—H16C0.9600
C4—H40.9300C17—C181.380 (4)
C5—C61.375 (4)C17—C221.384 (4)
C5—H50.9300C18—C191.382 (4)
C6—C71.387 (4)C18—H180.9300
C6—H60.9300C19—C201.396 (6)
C7—H70.9300C19—H190.9300
C8—C91.531 (3)C20—C211.339 (6)
C8—H80.9800C20—H200.9300
C9—C101.370 (4)C21—C221.384 (5)
C9—C141.387 (3)C21—H210.9300
C10—C111.394 (4)C22—H220.9300
C10—H100.9300
C8—N1—C15115.29 (17)C12—C11—H11120.1
C8—N1—H1A108.1C10—C11—H11120.1
C15—N1—H1A108.1C11—C12—C13120.3 (3)
C1—O1—H1109.5C11—C12—H12119.9
O1—C1—C2112.21 (19)C13—C12—H12119.9
O1—C1—C8108.02 (18)C12—C13—C14119.4 (3)
C2—C1—C8111.21 (17)C12—C13—H13120.3
O1—C1—H1C108.4C14—C13—H13120.3
C2—C1—H1C108.4C13—C14—C9121.3 (3)
C8—C1—H1C108.4C13—C14—H14119.3
C3—C2—C7118.0 (2)C9—C14—H14119.3
C3—C2—C1122.3 (2)N1—C15—C17109.95 (18)
C7—C2—C1119.7 (2)N1—C15—C16111.5 (2)
C4—C3—C2121.1 (3)C17—C15—C16113.5 (2)
C4—C3—H3119.4N1—C15—H15107.2
C2—C3—H3119.4C17—C15—H15107.2
C3—C4—C5120.5 (3)C16—C15—H15107.2
C3—C4—H4119.7C15—C16—H16A109.5
C5—C4—H4119.7C15—C16—H16B109.5
C6—C5—C4119.1 (3)H16A—C16—H16B109.5
C6—C5—H5120.5C15—C16—H16C109.5
C4—C5—H5120.5H16A—C16—H16C109.5
C5—C6—C7120.2 (3)H16B—C16—H16C109.5
C5—C6—H6119.9C18—C17—C22117.6 (3)
C7—C6—H6119.9C18—C17—C15119.9 (2)
C6—C7—C2121.0 (3)C22—C17—C15122.5 (3)
C6—C7—H7119.5C17—C18—C19122.0 (3)
C2—C7—H7119.5C17—C18—H18119.0
N1—C8—C9114.75 (17)C19—C18—H18119.0
N1—C8—C1108.46 (16)C18—C19—C20118.8 (4)
C9—C8—C1112.69 (18)C18—C19—H19120.6
N1—C8—H8106.8C20—C19—H19120.6
C9—C8—H8106.8C21—C20—C19119.7 (4)
C1—C8—H8106.8C21—C20—H20120.2
C10—C9—C14118.4 (2)C19—C20—H20120.2
C10—C9—C8122.1 (2)C20—C21—C22121.5 (4)
C14—C9—C8119.5 (2)C20—C21—H21119.2
C9—C10—C11120.8 (2)C22—C21—H21119.2
C9—C10—H10119.6C21—C22—C17120.4 (4)
C11—C10—H10119.6C21—C22—H22119.8
C12—C11—C10119.8 (3)C17—C22—H22119.8
O1—C1—C2—C321.1 (3)C14—C9—C10—C110.1 (4)
C8—C1—C2—C3100.0 (3)C8—C9—C10—C11179.9 (2)
O1—C1—C2—C7161.18 (19)C9—C10—C11—C120.1 (4)
C8—C1—C2—C777.7 (3)C10—C11—C12—C130.7 (4)
C7—C2—C3—C40.8 (3)C11—C12—C13—C141.0 (4)
C1—C2—C3—C4177.0 (2)C12—C13—C14—C90.8 (4)
C2—C3—C4—C50.1 (4)C10—C9—C14—C130.2 (4)
C3—C4—C5—C60.4 (4)C8—C9—C14—C13179.8 (2)
C4—C5—C6—C70.1 (4)C8—N1—C15—C17170.64 (18)
C5—C6—C7—C21.0 (4)C8—N1—C15—C1662.6 (3)
C3—C2—C7—C61.3 (3)N1—C15—C17—C1893.4 (2)
C1—C2—C7—C6176.5 (2)C16—C15—C17—C18140.9 (3)
C15—N1—C8—C943.9 (3)N1—C15—C17—C2287.2 (3)
C15—N1—C8—C1170.87 (19)C16—C15—C17—C2238.4 (3)
O1—C1—C8—N156.5 (2)C22—C17—C18—C190.2 (4)
C2—C1—C8—N1179.96 (17)C15—C17—C18—C19179.5 (2)
O1—C1—C8—C971.7 (2)C17—C18—C19—C201.7 (5)
C2—C1—C8—C951.9 (3)C18—C19—C20—C212.5 (5)
N1—C8—C9—C1053.9 (3)C19—C20—C21—C221.8 (6)
C1—C8—C9—C1070.9 (3)C20—C21—C22—C170.2 (5)
N1—C8—C9—C14126.1 (2)C18—C17—C22—C210.6 (4)
C1—C8—C9—C14109.1 (2)C15—C17—C22—C21178.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.902.042.908 (2)160
Symmetry code: (i) x+1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC22H23NO
Mr317.41
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)6.307 (4), 12.801 (7), 22.490 (12)
V3)1815.7 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.50 × 0.29 × 0.21
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.966, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
11619, 4471, 2660
Rint0.071
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.160, 1.00
No. of reflections4471
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.30

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.902.042.908 (2)160.4
Symmetry code: (i) x+1/2, y+1/2, z+2.
 

Acknowledgements

We thank the National Natural Science Foundation of China (grant No. 20772055) for the financial support of this study.

References

First citationB. Alcaide, R. Ferndndez de la Pradilla, C. L6pez-Mardomingo, R. Pbrez-Ossorio, & J. Plumet, (1981). J. Org. Chem. 46, 3234–3238.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds