organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Bromo­phenyl­sulfin­yl)-5-chloro-2-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 15 May 2012; accepted 7 June 2012; online 13 June 2012)

In the title compound, C15H10BrClO2S, the 4-bromo­phenyl ring makes a dihedral angle of 86.85 (6)° with the mean plane [mean deviation = 0.009 (2) Å] of the benzofuran fragment. In the crystal, mol­ecules are linked by slipped ππ inter­actions between the benzene and the furan rings of adjacent mol­ecules [centroid–centroid distance = 3.884 (2), inter­planar distance = 3.369 (2) and slippage = 1.945 (2) Å], and between the 4-bromo­phenyl rings of adjacent mol­ecules [centroid–centroid distance = 3.882 (2), inter­planar distance = 3.552 (2) and slippage = 1.566 (2) Å]. A Br⋯Br [3.6446 (4) Å] halogen inter­action is also observed.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2008[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1190.], 2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o2350.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10BrClO2S

  • Mr = 369.65

  • Triclinic, [P \overline 1]

  • a = 6.4192 (1) Å

  • b = 9.9185 (2) Å

  • c = 11.7755 (2) Å

  • α = 100.681 (1)°

  • β = 92.113 (1)°

  • γ = 104.168 (1)°

  • V = 711.67 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.22 mm−1

  • T = 173 K

  • 0.38 × 0.31 × 0.27 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.374, Tmax = 0.475

  • 13131 measured reflections

  • 3529 independent reflections

  • 3236 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.081

  • S = 1.12

  • 3529 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.76 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing study of 5-chloro-2-methyl-1-benzofuran derivatives containing 3-phenylsulfonyl (Choi et al., 2008) and 3-(4-fluorophenylsulfonyl) (Choi et al., 2010) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.009 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 4-bromophenyl ring and the mean plane of the benzofuran fragment is 86.85 (6)°. In the crystal structure (Fig. 2), molecules are connected by slipped π···π interactions; the first one between the benzene and the furan rings of adjacent molecules, with a Cg1···Cg2i distance of 3.884 (2) Å and an interplanar distance of 3.369 (2) Å resulting in a slippage of 1.945 (2) Å (Cg1 and Cg2 are the centroids of the C2–C7 benzene ring and the C1/C2/C7/O1/C8 furan ring, respectively), and the second one between the 4-bromophenyl rings of adjacent molecules, with a Cg3···Cg3ii distance of 3.882 (2) Å and an interplanar distance of 3.552 (2) Å resulting in a slippage of 1.566 (2) Å (Cg3 is the centroid of the C10–C15 benzene ring). The crystal packing (Fig. 2) also exhibits a Br···Br contact at [3.6446 (4) Å].

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2008, 2010).

Experimental top

3-Chloroperoxybenzoic acid (77%, 202 mg, 0.9 mmol) was added in small portions to a stirred solution of 3-(4-bromophenylsulfanyl)-5-chloro-2-methyl-1-benzofuran (283 mg, 0.8 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 5h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane/ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 73%, m.p. 395–396 K; Rf = 0.44 (hexane/ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Structure description top

As a part of our ongoing study of 5-chloro-2-methyl-1-benzofuran derivatives containing 3-phenylsulfonyl (Choi et al., 2008) and 3-(4-fluorophenylsulfonyl) (Choi et al., 2010) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.009 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 4-bromophenyl ring and the mean plane of the benzofuran fragment is 86.85 (6)°. In the crystal structure (Fig. 2), molecules are connected by slipped π···π interactions; the first one between the benzene and the furan rings of adjacent molecules, with a Cg1···Cg2i distance of 3.884 (2) Å and an interplanar distance of 3.369 (2) Å resulting in a slippage of 1.945 (2) Å (Cg1 and Cg2 are the centroids of the C2–C7 benzene ring and the C1/C2/C7/O1/C8 furan ring, respectively), and the second one between the 4-bromophenyl rings of adjacent molecules, with a Cg3···Cg3ii distance of 3.882 (2) Å and an interplanar distance of 3.552 (2) Å resulting in a slippage of 1.566 (2) Å (Cg3 is the centroid of the C10–C15 benzene ring). The crystal packing (Fig. 2) also exhibits a Br···Br contact at [3.6446 (4) Å].

For background information and the crystal structures of related compounds, see: Choi et al. (2008, 2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the π···π and Br···Br interactions (dotted lines) in the crystal structure of the title compound. H atoms were omitted for clarity. [Symmetry codes: (i) - x, - y, - z + 1; (ii) - x + 1, - y + 1, - z + 2; (iii) - x + 2, - y + 2, - z + 2.]
3-(4-Bromophenylsulfinyl)-5-chloro-2-methyl-1-benzofuran top
Crystal data top
C15H10BrClO2SZ = 2
Mr = 369.65F(000) = 368
Triclinic, P1Dx = 1.725 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4192 (1) ÅCell parameters from 7922 reflections
b = 9.9185 (2) Åθ = 2.5–28.3°
c = 11.7755 (2) ŵ = 3.22 mm1
α = 100.681 (1)°T = 173 K
β = 92.113 (1)°Block, colourless
γ = 104.168 (1)°0.38 × 0.31 × 0.27 mm
V = 711.67 (2) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3529 independent reflections
Radiation source: rotating anode3236 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.034
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 1.8°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1313
Tmin = 0.374, Tmax = 0.475l = 1515
13131 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: difference Fourier map
wR(F2) = 0.081H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.3308P]
where P = (Fo2 + 2Fc2)/3
3529 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
C15H10BrClO2Sγ = 104.168 (1)°
Mr = 369.65V = 711.67 (2) Å3
Triclinic, P1Z = 2
a = 6.4192 (1) ÅMo Kα radiation
b = 9.9185 (2) ŵ = 3.22 mm1
c = 11.7755 (2) ÅT = 173 K
α = 100.681 (1)°0.38 × 0.31 × 0.27 mm
β = 92.113 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3529 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3236 reflections with I > 2σ(I)
Tmin = 0.374, Tmax = 0.475Rint = 0.034
13131 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.12Δρmax = 0.55 e Å3
3529 reflectionsΔρmin = 0.76 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.73945 (4)0.92053 (2)0.917091 (18)0.03412 (8)
Cl10.34796 (9)0.39254 (7)0.44410 (7)0.05267 (19)
S10.18432 (8)0.27154 (5)0.84285 (4)0.02666 (11)
O10.3068 (2)0.10245 (15)0.53223 (12)0.0280 (3)
O20.0436 (3)0.27377 (19)0.86385 (15)0.0408 (4)
C10.1970 (3)0.21347 (19)0.69398 (16)0.0221 (3)
C20.0811 (3)0.23994 (19)0.59651 (16)0.0218 (3)
C30.0758 (3)0.3123 (2)0.58146 (19)0.0273 (4)
H30.13070.36160.64560.033*
C40.1474 (3)0.3084 (2)0.4682 (2)0.0329 (5)
C50.0676 (4)0.2384 (3)0.3725 (2)0.0381 (5)
H50.12030.24020.29650.046*
C60.0869 (4)0.1664 (3)0.38686 (19)0.0353 (5)
H60.14270.11790.32250.042*
C70.1560 (3)0.1686 (2)0.49963 (17)0.0254 (4)
C80.3276 (3)0.1306 (2)0.65100 (18)0.0253 (4)
C90.4833 (4)0.0697 (2)0.7071 (2)0.0357 (5)
H9A0.63040.12550.70260.054*
H9B0.46680.02870.66720.054*
H9C0.45550.07200.78860.054*
C100.3331 (3)0.4532 (2)0.85442 (15)0.0222 (3)
C110.2396 (3)0.5607 (2)0.89910 (18)0.0283 (4)
H110.09360.53870.91720.034*
C120.3588 (3)0.7010 (2)0.91761 (18)0.0296 (4)
H120.29610.77580.94860.036*
C130.5709 (3)0.7301 (2)0.89001 (16)0.0247 (4)
C140.6662 (3)0.6227 (2)0.84636 (19)0.0294 (4)
H140.81190.64480.82790.035*
C150.5474 (3)0.4829 (2)0.82977 (19)0.0292 (4)
H150.61190.40800.80180.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04322 (14)0.02544 (12)0.02911 (12)0.00304 (9)0.00126 (9)0.00208 (8)
Cl10.0273 (3)0.0545 (4)0.0839 (5)0.0083 (2)0.0072 (3)0.0384 (4)
S10.0281 (2)0.0293 (2)0.0188 (2)0.00123 (18)0.00349 (17)0.00343 (18)
O10.0258 (7)0.0302 (7)0.0268 (7)0.0092 (6)0.0044 (5)0.0010 (6)
O20.0277 (8)0.0484 (9)0.0358 (8)0.0032 (7)0.0136 (6)0.0022 (7)
C10.0210 (8)0.0223 (8)0.0210 (8)0.0032 (7)0.0012 (7)0.0024 (7)
C20.0194 (8)0.0224 (8)0.0214 (8)0.0020 (7)0.0022 (7)0.0032 (7)
C30.0207 (9)0.0270 (9)0.0344 (10)0.0038 (7)0.0034 (7)0.0090 (8)
C40.0203 (9)0.0330 (10)0.0460 (12)0.0002 (8)0.0024 (8)0.0195 (9)
C50.0302 (11)0.0500 (13)0.0286 (10)0.0052 (9)0.0063 (8)0.0165 (10)
C60.0338 (11)0.0448 (12)0.0215 (9)0.0014 (9)0.0033 (8)0.0035 (9)
C70.0208 (8)0.0290 (9)0.0233 (9)0.0024 (7)0.0026 (7)0.0025 (7)
C80.0220 (9)0.0233 (8)0.0283 (9)0.0030 (7)0.0014 (7)0.0032 (7)
C90.0286 (10)0.0325 (11)0.0471 (13)0.0110 (8)0.0020 (9)0.0075 (10)
C100.0216 (8)0.0264 (9)0.0160 (8)0.0043 (7)0.0001 (6)0.0002 (7)
C110.0218 (9)0.0363 (10)0.0279 (10)0.0105 (8)0.0053 (7)0.0042 (8)
C120.0308 (10)0.0311 (10)0.0290 (10)0.0150 (8)0.0053 (8)0.0014 (8)
C130.0287 (9)0.0246 (9)0.0189 (8)0.0057 (7)0.0013 (7)0.0022 (7)
C140.0215 (9)0.0316 (10)0.0337 (10)0.0067 (8)0.0054 (8)0.0026 (8)
C150.0251 (9)0.0290 (10)0.0323 (10)0.0090 (8)0.0087 (8)0.0005 (8)
Geometric parameters (Å, º) top
Br1—C131.895 (2)C5—H50.9500
Br1—Br1i3.6446 (4)C6—C71.379 (3)
Cl1—C41.738 (2)C6—H60.9500
Cl1—Cl1ii3.3576 (15)C8—C91.482 (3)
S1—O21.4973 (16)C9—H9A0.9800
S1—C11.7522 (19)C9—H9B0.9800
S1—C101.798 (2)C9—H9C0.9800
O1—C81.369 (2)C10—C111.380 (3)
O1—C71.375 (2)C10—C151.388 (3)
C1—C81.360 (3)C11—C121.387 (3)
C1—C21.444 (3)C11—H110.9500
C2—C71.393 (3)C12—C131.385 (3)
C2—C31.396 (3)C12—H120.9500
C3—C41.386 (3)C13—C141.383 (3)
C3—H30.9500C14—C151.383 (3)
C4—C51.392 (3)C14—H140.9500
C5—C61.378 (4)C15—H150.9500
C13—Br1—Br1i129.17 (6)C1—C8—O1110.68 (17)
C4—Cl1—Cl1ii147.84 (10)C1—C8—C9132.7 (2)
O2—S1—C1108.52 (9)O1—C8—C9116.58 (17)
O2—S1—C10106.57 (9)C8—C9—H9A109.5
C1—S1—C1098.01 (9)C8—C9—H9B109.5
C8—O1—C7106.55 (14)H9A—C9—H9B109.5
C8—C1—C2107.50 (16)C8—C9—H9C109.5
C8—C1—S1123.01 (15)H9A—C9—H9C109.5
C2—C1—S1129.49 (14)H9B—C9—H9C109.5
C7—C2—C3119.56 (18)C11—C10—C15120.93 (18)
C7—C2—C1104.41 (16)C11—C10—S1119.38 (15)
C3—C2—C1136.02 (18)C15—C10—S1119.34 (15)
C4—C3—C2116.62 (19)C10—C11—C12119.95 (18)
C4—C3—H3121.7C10—C11—H11120.0
C2—C3—H3121.7C12—C11—H11120.0
C3—C4—C5122.8 (2)C13—C12—C11118.80 (18)
C3—C4—Cl1118.67 (18)C13—C12—H12120.6
C5—C4—Cl1118.47 (17)C11—C12—H12120.6
C6—C5—C4120.8 (2)C14—C13—C12121.50 (19)
C6—C5—H5119.6C14—C13—Br1118.71 (15)
C4—C5—H5119.6C12—C13—Br1119.75 (15)
C5—C6—C7116.4 (2)C13—C14—C15119.41 (18)
C5—C6—H6121.8C13—C14—H14120.3
C7—C6—H6121.8C15—C14—H14120.3
O1—C7—C6125.35 (18)C14—C15—C10119.37 (18)
O1—C7—C2110.85 (17)C14—C15—H15120.3
C6—C7—C2123.8 (2)C10—C15—H15120.3
O2—S1—C1—C8144.10 (17)C1—C2—C7—C6179.82 (19)
C10—S1—C1—C8105.36 (17)C2—C1—C8—O10.7 (2)
O2—S1—C1—C235.8 (2)S1—C1—C8—O1179.37 (13)
C10—S1—C1—C274.70 (18)C2—C1—C8—C9179.8 (2)
C8—C1—C2—C70.4 (2)S1—C1—C8—C90.3 (3)
S1—C1—C2—C7179.69 (15)C7—O1—C8—C10.7 (2)
C8—C1—C2—C3178.4 (2)C7—O1—C8—C9179.98 (17)
S1—C1—C2—C31.6 (3)O2—S1—C10—C1111.79 (19)
C7—C2—C3—C40.2 (3)C1—S1—C10—C11123.91 (16)
C1—C2—C3—C4178.8 (2)O2—S1—C10—C15174.93 (16)
C2—C3—C4—C50.9 (3)C1—S1—C10—C1562.81 (18)
C2—C3—C4—Cl1178.31 (14)C15—C10—C11—C121.4 (3)
Cl1ii—Cl1—C4—C38.9 (3)S1—C10—C11—C12174.58 (16)
Cl1ii—Cl1—C4—C5171.87 (13)C10—C11—C12—C130.3 (3)
C3—C4—C5—C61.1 (3)C11—C12—C13—C141.0 (3)
Cl1—C4—C5—C6178.09 (17)C11—C12—C13—Br1178.79 (15)
C4—C5—C6—C70.2 (3)Br1i—Br1—C13—C1452.56 (18)
C8—O1—C7—C6179.8 (2)Br1i—Br1—C13—C12125.32 (15)
C8—O1—C7—C20.5 (2)C12—C13—C14—C150.0 (3)
C5—C6—C7—O1179.31 (19)Br1—C13—C14—C15177.84 (16)
C5—C6—C7—C21.0 (3)C13—C14—C15—C101.7 (3)
C3—C2—C7—O1179.05 (16)C11—C10—C15—C142.4 (3)
C1—C2—C7—O10.1 (2)S1—C10—C15—C14175.55 (16)
C3—C2—C7—C61.2 (3)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H10BrClO2S
Mr369.65
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.4192 (1), 9.9185 (2), 11.7755 (2)
α, β, γ (°)100.681 (1), 92.113 (1), 104.168 (1)
V3)711.67 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.22
Crystal size (mm)0.38 × 0.31 × 0.27
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.374, 0.475
No. of measured, independent and
observed [I > 2σ(I)] reflections
13131, 3529, 3236
Rint0.034
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.12
No. of reflections3529
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.76

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o2350.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds