organic compounds
[(3R*,4R*,5R*)-2,3-Diphenylisoxazolidine-4,5-diyl]dimethanol
aKocaeli University, Faculty of Art and Science, Department of Chemistry, 41380, Kocaeli, Turkey
*Correspondence e-mail: seguner@kocaeli.edu.tr
In the title compound, C17H19NO3, the isoxazolidine ring adopts an with the O atom as the flap. In the crystal, O—H⋯O hydrogen bonds form C23(14) R22(14) motifs.
Related literature
For general background to the preparation and use of compounds containing isoxazolidine rings, see: Agirbas et al. (2007); Kelly et al. (2009); Kumar et al. (2003); Kwon et al. (1995); Simonsen et al. (1999). For graph-set analysis of hydrogen-bonded networks, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975). For an alternative synthesis of the title compound, see: Tyukhteneva & Badovskaya (1992).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2002); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536812025032/ez2294sup1.cif
contains datablocks I, global. DOI:Supporting information file. DOI: https://doi.org/10.1107/S1600536812025032/ez2294Isup2.mol
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812025032/ez2294Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812025032/ez2294Isup4.cml
For the preparation of the title compound, C,N-diphenylnitrone (1 eq.) and cis-2-butene-1,4-diol (1.2 eq.) in 1-butanol:xylene (50:50) solvent mixture. This solution was heated and refluxed and monitored by TLC until all nitrone reacted. The solvent mixture was evaporated under vacuum. Residue was separated by using
using a mixture of hexane-ethyl acetate (1:1) as the The product was a mixture of Recrystallization of the diastereomeric mixture in diethyl ether yielded only the trans-isomer single-crystal (m.p. 128.8 °C).H atoms bonded to C atoms were positioned geometrically, with C—H = 0.93–0.98 Å and constrained to ride on their parent atoms [Uiso(H) = 1.2Ueq(C)]. Coordinates of O-bonded H atoms and O—H distances (0.86 Å) were refined freely [Uiso(H)=1.5Ueq(O)].
1,3-Dipolar
reaction of are the best templates for the construction of isoxazolidine rings (Simonsen et al., 1999). In recent years, useful anti-inflammatory (Kwon et al., 1995), immunosuppressive and antibacterial (Kumar et al., 2003) properties have been ascribed to molecules possessing such heterocyclic functionalities. In our previous work isoxazolidines obtained by 1,3-dipolar reactions have been found to have bioactivities to Enterococcus faecalis (ATCC 29212) and Staphylococcus aureus (ATCC 25923) (Agirbas et al., 2007). A hydroxymethyl substituted isoxazolidine ring derivative was used as inhibitor for Human Purine Nucleoside Phosphorylase (PNP) (Kelly et al., 2009). Furthermore, cis-2-butene-1,4-diol is used in the production of pharmaceuticals, plant-protection agents and pesticides. A previous report describes the preparation of the title compound (Tyukhteneva & Badovskaya, 1992), however, to the best of our knowledge there has been no study on the reaction of C,N-diphenylnitrone to cis-2-butene-1,4-diol. Therefore, we report herein the of the title compound.A perspective view of compound (I) with the atom-labelling scheme is shown in Fig. 1. The oxazolidine ring (O1/N1/C7/C14/C15) adopts an
with atom O1 displaced by 0.296 (1) Å from the other ring atoms (Cremer & Pople, 1975).The crystal packing is stabilized by intermolecular O —H···O hydrogen bonds (Table 1). Fig. 2 shows that hydrogen bonds form R22(14) motifs.
For general background to the preparation and use of compounds containing isoxazolidine rings, see: Agirbas et al. (2007); Kelly et al. (2009); Kumar et al. (2003); Kwon et al. (1995); Simonsen et al. (1999). For graph-set analysis of hydrogen-bonded networks, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975). For an alternative synthesis of the title compound, see: Tyukhteneva & Badovskaya (1992).
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C17H19NO3 | F(000) = 1216 |
Mr = 285.33 | Dx = 1.299 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 25949 reflections |
a = 8.1254 (2) Å | θ = 1.3–26.2° |
b = 11.0602 (2) Å | µ = 0.09 mm−1 |
c = 32.4813 (10) Å | T = 296 K |
V = 2919.05 (13) Å3 | Plate, colourless |
Z = 8 | 0.68 × 0.28 × 0.03 mm |
Stoe IPDS 2 diffractometer | 2687 independent reflections |
Radiation source: fine-focus sealed tube | 1915 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.070 |
rotation method scans | θmax = 25.6°, θmin = 1.3° |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −9→9 |
Tmin = 0.985, Tmax = 0.997 | k = −12→12 |
35240 measured reflections | l = −39→39 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0399P)2 + 0.523P] where P = (Fo2 + 2Fc2)/3 |
2687 reflections | (Δ/σ)max < 0.001 |
198 parameters | Δρmax = 0.12 e Å−3 |
0 restraints | Δρmin = −0.14 e Å−3 |
C17H19NO3 | V = 2919.05 (13) Å3 |
Mr = 285.33 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 8.1254 (2) Å | µ = 0.09 mm−1 |
b = 11.0602 (2) Å | T = 296 K |
c = 32.4813 (10) Å | 0.68 × 0.28 × 0.03 mm |
Stoe IPDS 2 diffractometer | 2687 independent reflections |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | 1915 reflections with I > 2σ(I) |
Tmin = 0.985, Tmax = 0.997 | Rint = 0.070 |
35240 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | 0 restraints |
wR(F2) = 0.108 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | Δρmax = 0.12 e Å−3 |
2687 reflections | Δρmin = −0.14 e Å−3 |
198 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4711 (2) | 0.6940 (2) | 0.11533 (6) | 0.0398 (5) | |
C2 | 0.3582 (3) | 0.7318 (2) | 0.08617 (7) | 0.0503 (6) | |
H2 | 0.3525 | 0.6929 | 0.0608 | 0.060* | |
C3 | 0.2538 (3) | 0.8275 (2) | 0.09473 (8) | 0.0592 (7) | |
H3 | 0.1788 | 0.8526 | 0.0749 | 0.071* | |
C4 | 0.2587 (3) | 0.8860 (2) | 0.13183 (8) | 0.0616 (7) | |
H4 | 0.1872 | 0.9496 | 0.1374 | 0.074* | |
C5 | 0.3716 (3) | 0.8488 (3) | 0.16085 (8) | 0.0610 (7) | |
H5 | 0.3774 | 0.8885 | 0.1860 | 0.073* | |
C6 | 0.4761 (3) | 0.7535 (2) | 0.15292 (7) | 0.0540 (6) | |
H6 | 0.5507 | 0.7288 | 0.1730 | 0.065* | |
C7 | 0.7547 (2) | 0.6067 (2) | 0.11543 (6) | 0.0409 (5) | |
H7 | 0.7889 | 0.6870 | 0.1060 | 0.049* | |
C8 | 0.8016 (3) | 0.5906 (2) | 0.16002 (7) | 0.0511 (6) | |
C9 | 0.7355 (3) | 0.4976 (3) | 0.18331 (7) | 0.0678 (8) | |
H9 | 0.6590 | 0.4456 | 0.1715 | 0.081* | |
C10 | 0.7812 (4) | 0.4808 (4) | 0.22366 (9) | 0.1015 (13) | |
H10 | 0.7354 | 0.4182 | 0.2390 | 0.122* | |
C11 | 0.8926 (6) | 0.5553 (6) | 0.24095 (12) | 0.129 (2) | |
H11 | 0.9216 | 0.5439 | 0.2684 | 0.154* | |
C12 | 0.9637 (5) | 0.6469 (5) | 0.21928 (15) | 0.1221 (17) | |
H12 | 1.0413 | 0.6969 | 0.2316 | 0.147* | |
C13 | 0.9181 (4) | 0.6648 (3) | 0.17780 (10) | 0.0838 (10) | |
H13 | 0.9664 | 0.7264 | 0.1625 | 0.101* | |
C14 | 0.8311 (2) | 0.50842 (19) | 0.08718 (6) | 0.0397 (5) | |
H14 | 0.8735 | 0.4437 | 0.1049 | 0.048* | |
C15 | 0.6801 (2) | 0.4591 (2) | 0.06423 (6) | 0.0401 (5) | |
H15 | 0.6370 | 0.3897 | 0.0796 | 0.048* | |
C16 | 0.9726 (2) | 0.5551 (2) | 0.06155 (7) | 0.0461 (6) | |
H16A | 1.0594 | 0.5836 | 0.0796 | 0.055* | |
H16B | 1.0168 | 0.4896 | 0.0450 | 0.055* | |
C17 | 0.6998 (3) | 0.4225 (2) | 0.01966 (6) | 0.0458 (5) | |
H17A | 0.5934 | 0.4004 | 0.0084 | 0.055* | |
H17B | 0.7420 | 0.4903 | 0.0039 | 0.055* | |
N1 | 0.5745 (2) | 0.59162 (16) | 0.10899 (5) | 0.0400 (4) | |
O1 | 0.56191 (16) | 0.55449 (14) | 0.06604 (4) | 0.0442 (4) | |
O2 | 0.9219 (2) | 0.65171 (15) | 0.03502 (5) | 0.0548 (5) | |
O3 | 0.80978 (19) | 0.32278 (16) | 0.01616 (5) | 0.0491 (4) | |
H2A | 1.003 (4) | 0.667 (3) | 0.0184 (9) | 0.097 (11)* | |
H3A | 0.757 (4) | 0.260 (3) | 0.0243 (9) | 0.085 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0352 (10) | 0.0386 (14) | 0.0455 (11) | −0.0017 (9) | 0.0046 (9) | 0.0017 (10) |
C2 | 0.0427 (11) | 0.0530 (17) | 0.0551 (13) | 0.0039 (11) | −0.0043 (10) | −0.0042 (11) |
C3 | 0.0432 (12) | 0.0589 (18) | 0.0756 (16) | 0.0089 (12) | −0.0054 (12) | 0.0019 (14) |
C4 | 0.0475 (13) | 0.0519 (17) | 0.0855 (18) | 0.0102 (12) | 0.0134 (14) | −0.0037 (14) |
C5 | 0.0607 (15) | 0.0613 (19) | 0.0610 (15) | 0.0087 (13) | 0.0095 (12) | −0.0122 (13) |
C6 | 0.0541 (13) | 0.0589 (18) | 0.0489 (13) | 0.0113 (12) | 0.0017 (10) | −0.0040 (11) |
C7 | 0.0357 (10) | 0.0413 (13) | 0.0457 (11) | −0.0019 (10) | 0.0012 (9) | 0.0007 (9) |
C8 | 0.0432 (12) | 0.0625 (18) | 0.0477 (13) | 0.0136 (12) | −0.0061 (10) | −0.0121 (11) |
C9 | 0.0616 (15) | 0.095 (2) | 0.0466 (13) | 0.0191 (15) | 0.0036 (12) | 0.0123 (14) |
C10 | 0.082 (2) | 0.170 (4) | 0.0530 (17) | 0.049 (2) | 0.0043 (16) | 0.020 (2) |
C11 | 0.107 (3) | 0.215 (6) | 0.064 (2) | 0.074 (4) | −0.028 (2) | −0.031 (3) |
C12 | 0.098 (3) | 0.153 (5) | 0.114 (3) | 0.033 (3) | −0.057 (3) | −0.064 (3) |
C13 | 0.0696 (18) | 0.091 (3) | 0.091 (2) | 0.0083 (17) | −0.0275 (16) | −0.0294 (18) |
C14 | 0.0380 (10) | 0.0374 (14) | 0.0437 (11) | 0.0024 (9) | 0.0006 (9) | 0.0026 (9) |
C15 | 0.0410 (11) | 0.0359 (13) | 0.0433 (11) | 0.0013 (10) | 0.0031 (9) | 0.0018 (9) |
C16 | 0.0386 (11) | 0.0431 (15) | 0.0565 (13) | 0.0047 (10) | 0.0041 (10) | 0.0040 (11) |
C17 | 0.0473 (12) | 0.0415 (15) | 0.0485 (12) | 0.0009 (10) | −0.0002 (9) | −0.0008 (10) |
N1 | 0.0380 (9) | 0.0433 (12) | 0.0387 (9) | 0.0015 (8) | −0.0003 (7) | −0.0041 (8) |
O1 | 0.0426 (8) | 0.0473 (10) | 0.0427 (8) | 0.0069 (7) | −0.0046 (6) | −0.0064 (7) |
O2 | 0.0480 (9) | 0.0482 (11) | 0.0681 (10) | 0.0066 (8) | 0.0145 (8) | 0.0167 (8) |
O3 | 0.0481 (9) | 0.0402 (11) | 0.0590 (10) | 0.0006 (8) | 0.0111 (7) | −0.0021 (8) |
C1—C2 | 1.383 (3) | C10—H10 | 0.9300 |
C1—C6 | 1.388 (3) | C11—C12 | 1.362 (6) |
C1—N1 | 1.425 (3) | C11—H11 | 0.9300 |
C2—C3 | 1.385 (3) | C12—C13 | 1.411 (5) |
C2—H2 | 0.9300 | C12—H12 | 0.9300 |
C3—C4 | 1.368 (3) | C13—H13 | 0.9300 |
C3—H3 | 0.9300 | C14—C16 | 1.511 (3) |
C4—C5 | 1.378 (3) | C14—C15 | 1.536 (3) |
C4—H4 | 0.9300 | C14—H14 | 0.9800 |
C5—C6 | 1.378 (3) | C15—O1 | 1.428 (2) |
C5—H5 | 0.9300 | C15—C17 | 1.512 (3) |
C6—H6 | 0.9300 | C15—H15 | 0.9800 |
C7—N1 | 1.488 (3) | C16—O2 | 1.433 (3) |
C7—C8 | 1.508 (3) | C16—H16A | 0.9700 |
C7—C14 | 1.552 (3) | C16—H16B | 0.9700 |
C7—H7 | 0.9800 | C17—O3 | 1.424 (3) |
C8—C13 | 1.380 (4) | C17—H17A | 0.9700 |
C8—C9 | 1.385 (4) | C17—H17B | 0.9700 |
C9—C10 | 1.375 (4) | N1—O1 | 1.458 (2) |
C9—H9 | 0.9300 | O2—H2A | 0.86 (3) |
C10—C11 | 1.347 (6) | O3—H3A | 0.86 (3) |
C2—C1—C6 | 118.6 (2) | C11—C12—C13 | 119.1 (4) |
C2—C1—N1 | 122.14 (19) | C11—C12—H12 | 120.5 |
C6—C1—N1 | 119.14 (19) | C13—C12—H12 | 120.5 |
C1—C2—C3 | 120.0 (2) | C8—C13—C12 | 119.8 (4) |
C1—C2—H2 | 120.0 | C8—C13—H13 | 120.1 |
C3—C2—H2 | 120.0 | C12—C13—H13 | 120.1 |
C4—C3—C2 | 121.4 (2) | C16—C14—C15 | 117.50 (17) |
C4—C3—H3 | 119.3 | C16—C14—C7 | 113.01 (18) |
C2—C3—H3 | 119.3 | C15—C14—C7 | 102.49 (15) |
C3—C4—C5 | 118.7 (2) | C16—C14—H14 | 107.8 |
C3—C4—H4 | 120.6 | C15—C14—H14 | 107.8 |
C5—C4—H4 | 120.6 | C7—C14—H14 | 107.8 |
C6—C5—C4 | 120.7 (2) | O1—C15—C17 | 107.96 (16) |
C6—C5—H5 | 119.6 | O1—C15—C14 | 104.74 (16) |
C4—C5—H5 | 119.6 | C17—C15—C14 | 118.40 (17) |
C5—C6—C1 | 120.6 (2) | O1—C15—H15 | 108.5 |
C5—C6—H6 | 119.7 | C17—C15—H15 | 108.5 |
C1—C6—H6 | 119.7 | C14—C15—H15 | 108.5 |
N1—C7—C8 | 111.72 (17) | O2—C16—C14 | 111.57 (17) |
N1—C7—C14 | 103.43 (16) | O2—C16—H16A | 109.3 |
C8—C7—C14 | 112.57 (18) | C14—C16—H16A | 109.3 |
N1—C7—H7 | 109.7 | O2—C16—H16B | 109.3 |
C8—C7—H7 | 109.7 | C14—C16—H16B | 109.3 |
C14—C7—H7 | 109.7 | H16A—C16—H16B | 108.0 |
C13—C8—C9 | 118.6 (2) | O3—C17—C15 | 110.49 (17) |
C13—C8—C7 | 120.3 (3) | O3—C17—H17A | 109.6 |
C9—C8—C7 | 120.9 (2) | C15—C17—H17A | 109.6 |
C10—C9—C8 | 121.1 (3) | O3—C17—H17B | 109.6 |
C10—C9—H9 | 119.5 | C15—C17—H17B | 109.6 |
C8—C9—H9 | 119.5 | H17A—C17—H17B | 108.1 |
C11—C10—C9 | 119.8 (4) | C1—N1—O1 | 108.72 (15) |
C11—C10—H10 | 120.1 | C1—N1—C7 | 118.06 (17) |
C9—C10—H10 | 120.1 | O1—N1—C7 | 103.59 (13) |
C10—C11—C12 | 121.7 (4) | C15—O1—N1 | 101.56 (13) |
C10—C11—H11 | 119.2 | C16—O2—H2A | 107 (2) |
C12—C11—H11 | 119.2 | C17—O3—H3A | 107 (2) |
C6—C1—C2—C3 | 0.3 (3) | N1—C7—C14—C15 | 6.3 (2) |
N1—C1—C2—C3 | 176.2 (2) | C8—C7—C14—C15 | 127.02 (19) |
C1—C2—C3—C4 | −0.4 (4) | C16—C14—C15—O1 | −101.0 (2) |
C2—C3—C4—C5 | 0.7 (4) | C7—C14—C15—O1 | 23.48 (19) |
C3—C4—C5—C6 | −0.9 (4) | C16—C14—C15—C17 | 19.3 (3) |
C4—C5—C6—C1 | 0.9 (4) | C7—C14—C15—C17 | 143.79 (19) |
C2—C1—C6—C5 | −0.5 (4) | C15—C14—C16—O2 | 58.9 (3) |
N1—C1—C6—C5 | −176.6 (2) | C7—C14—C16—O2 | −60.2 (2) |
N1—C7—C8—C13 | −139.9 (2) | O1—C15—C17—O3 | −176.79 (16) |
C14—C7—C8—C13 | 104.2 (3) | C14—C15—C17—O3 | 64.6 (3) |
N1—C7—C8—C9 | 43.5 (3) | C2—C1—N1—O1 | 10.9 (3) |
C14—C7—C8—C9 | −72.4 (3) | C6—C1—N1—O1 | −173.18 (19) |
C13—C8—C9—C10 | 1.7 (4) | C2—C1—N1—C7 | 128.4 (2) |
C7—C8—C9—C10 | 178.3 (2) | C6—C1—N1—C7 | −55.7 (3) |
C8—C9—C10—C11 | −0.3 (5) | C8—C7—N1—C1 | 85.1 (2) |
C9—C10—C11—C12 | −0.9 (6) | C14—C7—N1—C1 | −153.59 (17) |
C10—C11—C12—C13 | 0.7 (7) | C8—C7—N1—O1 | −154.71 (17) |
C9—C8—C13—C12 | −1.8 (4) | C14—C7—N1—O1 | −33.39 (19) |
C7—C8—C13—C12 | −178.5 (3) | C17—C15—O1—N1 | −171.89 (16) |
C11—C12—C13—C8 | 0.7 (6) | C14—C15—O1—N1 | −44.85 (17) |
N1—C7—C14—C16 | 133.72 (17) | C1—N1—O1—C15 | 175.74 (15) |
C8—C7—C14—C16 | −105.5 (2) | C7—N1—O1—C15 | 49.38 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O3i | 0.86 (3) | 1.90 (3) | 2.756 (2) | 172 (3) |
O3—H3A···O2ii | 0.86 (3) | 1.91 (3) | 2.738 (2) | 160 (3) |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+3/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C17H19NO3 |
Mr | 285.33 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 296 |
a, b, c (Å) | 8.1254 (2), 11.0602 (2), 32.4813 (10) |
V (Å3) | 2919.05 (13) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.68 × 0.28 × 0.03 |
Data collection | |
Diffractometer | Stoe IPDS 2 |
Absorption correction | Integration (X-RED32; Stoe & Cie, 2002) |
Tmin, Tmax | 0.985, 0.997 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 35240, 2687, 1915 |
Rint | 0.070 |
(sin θ/λ)max (Å−1) | 0.609 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.108, 1.12 |
No. of reflections | 2687 |
No. of parameters | 198 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.12, −0.14 |
Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O3i | 0.86 (3) | 1.90 (3) | 2.756 (2) | 172 (3) |
O3—H3A···O2ii | 0.86 (3) | 1.91 (3) | 2.738 (2) | 160 (3) |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+3/2, y−1/2, z. |
Acknowledgements
This study was supported by the Research Fund of Kocaeli University (project No 2010/53). The authors also thank the Department of Physics, Faculty of Arts & Science, Ondokuz Mayıs University.
References
Agirbas, H., Guner, S., Budak, F., Keceli, S., Kandemirli, F., Shvets, N., Kovalishyn, V. & Dimoglo, A. (2007). Bioorg. Med. Chem. 15, 2322–2333. Web of Science CrossRef PubMed CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Kelly, P. M., Legentil, L., Murkin, A. S., Li, L., Schramm, V. L., Tyler, P. C. & Woolhouse, A. D. (2009). J. Med. Chem. 52, 1126–1143. Web of Science PubMed Google Scholar
Kumar, K. R. R., Mallesha, H. & Rangappa, K. S. (2003). Arch. Pharm. Pharm. Med. Chem, 336, 159–164. Web of Science CrossRef CAS Google Scholar
Kwon, T., Heimann, A. S., Oriaku, E. T., Yoon, K. & Lee, H. J. (1995). J. Med. Chem. 38, 1048–1051. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Simonsen, K. B., Hazell, R. G., Gothelf, K. V. & Jørgensen, K. A. (1999). J. Am. Chem. Soc. 121, 3845–3853. Web of Science CSD CrossRef CAS Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Tyukhteneva, Z. I. & Badovskaya, L. A. (1992). Zh. Org. Khim. 28, 568–572. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,3-Dipolar cycloaddition reaction of nitrones are the best templates for the construction of isoxazolidine rings (Simonsen et al., 1999). In recent years, useful anti-inflammatory (Kwon et al., 1995), immunosuppressive and antibacterial (Kumar et al., 2003) properties have been ascribed to molecules possessing such heterocyclic functionalities. In our previous work isoxazolidines obtained by 1,3-dipolar cycloaddition reactions have been found to have bioactivities to Enterococcus faecalis (ATCC 29212) and Staphylococcus aureus (ATCC 25923) (Agirbas et al., 2007). A hydroxymethyl substituted isoxazolidine ring derivative was used as inhibitor for Human Purine Nucleoside Phosphorylase (PNP) (Kelly et al., 2009). Furthermore, cis-2-butene-1,4-diol is used in the production of pharmaceuticals, plant-protection agents and pesticides. A previous report describes the preparation of the title compound (Tyukhteneva & Badovskaya, 1992), however, to the best of our knowledge there has been no study on the cycloaddition reaction of C,N-diphenylnitrone to cis-2-butene-1,4-diol. Therefore, we report herein the crystal structure of the title compound.
A perspective view of compound (I) with the atom-labelling scheme is shown in Fig. 1. The oxazolidine ring (O1/N1/C7/C14/C15) adopts an envelope conformation, with atom O1 displaced by 0.296 (1) Å from the other ring atoms (Cremer & Pople, 1975).
The crystal packing is stabilized by intermolecular O —H···O hydrogen bonds (Table 1). Fig. 2 shows that hydrogen bonds form R22(14) motifs.