organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(3R*,4R*,5R*)-2,3-Di­phenyl­isoxazolidine-4,5-di­yl]di­methanol

aKocaeli University, Faculty of Art and Science, Department of Chemistry, 41380, Kocaeli, Turkey
*Correspondence e-mail: seguner@kocaeli.edu.tr

(Received 11 April 2012; accepted 1 June 2012; online 13 June 2012)

In the title compound, C17H19NO3, the isoxazolidine ring adopts an envelope conformation with the O atom as the flap. In the crystal, O—H⋯O hydrogen bonds form C23(14) R22(14) motifs.

Related literature

For general background to the preparation and use of compounds containing isoxazolidine rings, see: Agirbas et al. (2007[Agirbas, H., Guner, S., Budak, F., Keceli, S., Kandemirli, F., Shvets, N., Kovalishyn, V. & Dimoglo, A. (2007). Bioorg. Med. Chem. 15, 2322-2333.]); Kelly et al. (2009[Kelly, P. M., Legentil, L., Murkin, A. S., Li, L., Schramm, V. L., Tyler, P. C. & Woolhouse, A. D. (2009). J. Med. Chem. 52, 1126-1143.]); Kumar et al. (2003[Kumar, K. R. R., Mallesha, H. & Rangappa, K. S. (2003). Arch. Pharm. Pharm. Med. Chem, 336, 159-164.]); Kwon et al. (1995[Kwon, T., Heimann, A. S., Oriaku, E. T., Yoon, K. & Lee, H. J. (1995). J. Med. Chem. 38, 1048-1051.]); Simonsen et al. (1999[Simonsen, K. B., Hazell, R. G., Gothelf, K. V. & Jørgensen, K. A. (1999). J. Am. Chem. Soc. 121, 3845-3853.]). For graph-set analysis of hydrogen-bonded networks, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For an alternative synthesis of the title compound, see: Tyukhteneva & Badovskaya (1992[Tyukhteneva, Z. I. & Badovskaya, L. A. (1992). Zh. Org. Khim. 28, 568-572.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19NO3

  • Mr = 285.33

  • Orthorhombic, P b c a

  • a = 8.1254 (2) Å

  • b = 11.0602 (2) Å

  • c = 32.4813 (10) Å

  • V = 2919.05 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.68 × 0.28 × 0.03 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.985, Tmax = 0.997

  • 35240 measured reflections

  • 2687 independent reflections

  • 1915 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.108

  • S = 1.12

  • 2687 reflections

  • 198 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.86 (3) 1.90 (3) 2.756 (2) 172 (3)
O3—H3A⋯O2ii 0.86 (3) 1.91 (3) 2.738 (2) 160 (3)
Symmetry codes: (i) -x+2, -y+1, -z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

1,3-Dipolar cycloaddition reaction of nitrones are the best templates for the construction of isoxazolidine rings (Simonsen et al., 1999). In recent years, useful anti-inflammatory (Kwon et al., 1995), immunosuppressive and antibacterial (Kumar et al., 2003) properties have been ascribed to molecules possessing such heterocyclic functionalities. In our previous work isoxazolidines obtained by 1,3-dipolar cycloaddition reactions have been found to have bioactivities to Enterococcus faecalis (ATCC 29212) and Staphylococcus aureus (ATCC 25923) (Agirbas et al., 2007). A hydroxymethyl substituted isoxazolidine ring derivative was used as inhibitor for Human Purine Nucleoside Phosphorylase (PNP) (Kelly et al., 2009). Furthermore, cis-2-butene-1,4-diol is used in the production of pharmaceuticals, plant-protection agents and pesticides. A previous report describes the preparation of the title compound (Tyukhteneva & Badovskaya, 1992), however, to the best of our knowledge there has been no study on the cycloaddition reaction of C,N-diphenylnitrone to cis-2-butene-1,4-diol. Therefore, we report herein the crystal structure of the title compound.

A perspective view of compound (I) with the atom-labelling scheme is shown in Fig. 1. The oxazolidine ring (O1/N1/C7/C14/C15) adopts an envelope conformation, with atom O1 displaced by 0.296 (1) Å from the other ring atoms (Cremer & Pople, 1975).

The crystal packing is stabilized by intermolecular O —H···O hydrogen bonds (Table 1). Fig. 2 shows that hydrogen bonds form R22(14) motifs.

Related literature top

For general background to the preparation and use of compounds containing isoxazolidine rings, see: Agirbas et al. (2007); Kelly et al. (2009); Kumar et al. (2003); Kwon et al. (1995); Simonsen et al. (1999). For graph-set analysis of hydrogen-bonded networks, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975). For an alternative synthesis of the title compound, see: Tyukhteneva & Badovskaya (1992).

Experimental top

For the preparation of the title compound, C,N-diphenylnitrone (1 eq.) and cis-2-butene-1,4-diol (1.2 eq.) in 1-butanol:xylene (50:50) solvent mixture. This solution was heated and refluxed and monitored by TLC until all nitrone reacted. The solvent mixture was evaporated under vacuum. Residue was separated by using column chromatography, using a mixture of hexane-ethyl acetate (1:1) as the eluent. The product was a mixture of diastereomers. Recrystallization of the diastereomeric mixture in diethyl ether yielded only the trans-isomer single-crystal (m.p. 128.8 °C).

Refinement top

H atoms bonded to C atoms were positioned geometrically, with C—H = 0.93–0.98 Å and constrained to ride on their parent atoms [Uiso(H) = 1.2Ueq(C)]. Coordinates of O-bonded H atoms and O—H distances (0.86 Å) were refined freely [Uiso(H)=1.5Ueq(O)].

Structure description top

1,3-Dipolar cycloaddition reaction of nitrones are the best templates for the construction of isoxazolidine rings (Simonsen et al., 1999). In recent years, useful anti-inflammatory (Kwon et al., 1995), immunosuppressive and antibacterial (Kumar et al., 2003) properties have been ascribed to molecules possessing such heterocyclic functionalities. In our previous work isoxazolidines obtained by 1,3-dipolar cycloaddition reactions have been found to have bioactivities to Enterococcus faecalis (ATCC 29212) and Staphylococcus aureus (ATCC 25923) (Agirbas et al., 2007). A hydroxymethyl substituted isoxazolidine ring derivative was used as inhibitor for Human Purine Nucleoside Phosphorylase (PNP) (Kelly et al., 2009). Furthermore, cis-2-butene-1,4-diol is used in the production of pharmaceuticals, plant-protection agents and pesticides. A previous report describes the preparation of the title compound (Tyukhteneva & Badovskaya, 1992), however, to the best of our knowledge there has been no study on the cycloaddition reaction of C,N-diphenylnitrone to cis-2-butene-1,4-diol. Therefore, we report herein the crystal structure of the title compound.

A perspective view of compound (I) with the atom-labelling scheme is shown in Fig. 1. The oxazolidine ring (O1/N1/C7/C14/C15) adopts an envelope conformation, with atom O1 displaced by 0.296 (1) Å from the other ring atoms (Cremer & Pople, 1975).

The crystal packing is stabilized by intermolecular O —H···O hydrogen bonds (Table 1). Fig. 2 shows that hydrogen bonds form R22(14) motifs.

For general background to the preparation and use of compounds containing isoxazolidine rings, see: Agirbas et al. (2007); Kelly et al. (2009); Kumar et al. (2003); Kwon et al. (1995); Simonsen et al. (1999). For graph-set analysis of hydrogen-bonded networks, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975). For an alternative synthesis of the title compound, see: Tyukhteneva & Badovskaya (1992).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title structure with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of hydrogen-bonded C23(14) R22(14) motifs. H atoms not involved in hydrogen bonds have been omitted for clarity. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+3/2, y-1/2, z].
[(3R*,4R*,5R*)-2,3-Diphenylisoxazolidine-4,5- diyl]dimethanol top
Crystal data top
C17H19NO3F(000) = 1216
Mr = 285.33Dx = 1.299 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25949 reflections
a = 8.1254 (2) Åθ = 1.3–26.2°
b = 11.0602 (2) ŵ = 0.09 mm1
c = 32.4813 (10) ÅT = 296 K
V = 2919.05 (13) Å3Plate, colourless
Z = 80.68 × 0.28 × 0.03 mm
Data collection top
Stoe IPDS 2
diffractometer
2687 independent reflections
Radiation source: fine-focus sealed tube1915 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
rotation method scansθmax = 25.6°, θmin = 1.3°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 99
Tmin = 0.985, Tmax = 0.997k = 1212
35240 measured reflectionsl = 3939
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.523P]
where P = (Fo2 + 2Fc2)/3
2687 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C17H19NO3V = 2919.05 (13) Å3
Mr = 285.33Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.1254 (2) ŵ = 0.09 mm1
b = 11.0602 (2) ÅT = 296 K
c = 32.4813 (10) Å0.68 × 0.28 × 0.03 mm
Data collection top
Stoe IPDS 2
diffractometer
2687 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1915 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.997Rint = 0.070
35240 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.12 e Å3
2687 reflectionsΔρmin = 0.14 e Å3
198 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4711 (2)0.6940 (2)0.11533 (6)0.0398 (5)
C20.3582 (3)0.7318 (2)0.08617 (7)0.0503 (6)
H20.35250.69290.06080.060*
C30.2538 (3)0.8275 (2)0.09473 (8)0.0592 (7)
H30.17880.85260.07490.071*
C40.2587 (3)0.8860 (2)0.13183 (8)0.0616 (7)
H40.18720.94960.13740.074*
C50.3716 (3)0.8488 (3)0.16085 (8)0.0610 (7)
H50.37740.88850.18600.073*
C60.4761 (3)0.7535 (2)0.15292 (7)0.0540 (6)
H60.55070.72880.17300.065*
C70.7547 (2)0.6067 (2)0.11543 (6)0.0409 (5)
H70.78890.68700.10600.049*
C80.8016 (3)0.5906 (2)0.16002 (7)0.0511 (6)
C90.7355 (3)0.4976 (3)0.18331 (7)0.0678 (8)
H90.65900.44560.17150.081*
C100.7812 (4)0.4808 (4)0.22366 (9)0.1015 (13)
H100.73540.41820.23900.122*
C110.8926 (6)0.5553 (6)0.24095 (12)0.129 (2)
H110.92160.54390.26840.154*
C120.9637 (5)0.6469 (5)0.21928 (15)0.1221 (17)
H121.04130.69690.23160.147*
C130.9181 (4)0.6648 (3)0.17780 (10)0.0838 (10)
H130.96640.72640.16250.101*
C140.8311 (2)0.50842 (19)0.08718 (6)0.0397 (5)
H140.87350.44370.10490.048*
C150.6801 (2)0.4591 (2)0.06423 (6)0.0401 (5)
H150.63700.38970.07960.048*
C160.9726 (2)0.5551 (2)0.06155 (7)0.0461 (6)
H16A1.05940.58360.07960.055*
H16B1.01680.48960.04500.055*
C170.6998 (3)0.4225 (2)0.01966 (6)0.0458 (5)
H17A0.59340.40040.00840.055*
H17B0.74200.49030.00390.055*
N10.5745 (2)0.59162 (16)0.10899 (5)0.0400 (4)
O10.56191 (16)0.55449 (14)0.06604 (4)0.0442 (4)
O20.9219 (2)0.65171 (15)0.03502 (5)0.0548 (5)
O30.80978 (19)0.32278 (16)0.01616 (5)0.0491 (4)
H2A1.003 (4)0.667 (3)0.0184 (9)0.097 (11)*
H3A0.757 (4)0.260 (3)0.0243 (9)0.085 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0352 (10)0.0386 (14)0.0455 (11)0.0017 (9)0.0046 (9)0.0017 (10)
C20.0427 (11)0.0530 (17)0.0551 (13)0.0039 (11)0.0043 (10)0.0042 (11)
C30.0432 (12)0.0589 (18)0.0756 (16)0.0089 (12)0.0054 (12)0.0019 (14)
C40.0475 (13)0.0519 (17)0.0855 (18)0.0102 (12)0.0134 (14)0.0037 (14)
C50.0607 (15)0.0613 (19)0.0610 (15)0.0087 (13)0.0095 (12)0.0122 (13)
C60.0541 (13)0.0589 (18)0.0489 (13)0.0113 (12)0.0017 (10)0.0040 (11)
C70.0357 (10)0.0413 (13)0.0457 (11)0.0019 (10)0.0012 (9)0.0007 (9)
C80.0432 (12)0.0625 (18)0.0477 (13)0.0136 (12)0.0061 (10)0.0121 (11)
C90.0616 (15)0.095 (2)0.0466 (13)0.0191 (15)0.0036 (12)0.0123 (14)
C100.082 (2)0.170 (4)0.0530 (17)0.049 (2)0.0043 (16)0.020 (2)
C110.107 (3)0.215 (6)0.064 (2)0.074 (4)0.028 (2)0.031 (3)
C120.098 (3)0.153 (5)0.114 (3)0.033 (3)0.057 (3)0.064 (3)
C130.0696 (18)0.091 (3)0.091 (2)0.0083 (17)0.0275 (16)0.0294 (18)
C140.0380 (10)0.0374 (14)0.0437 (11)0.0024 (9)0.0006 (9)0.0026 (9)
C150.0410 (11)0.0359 (13)0.0433 (11)0.0013 (10)0.0031 (9)0.0018 (9)
C160.0386 (11)0.0431 (15)0.0565 (13)0.0047 (10)0.0041 (10)0.0040 (11)
C170.0473 (12)0.0415 (15)0.0485 (12)0.0009 (10)0.0002 (9)0.0008 (10)
N10.0380 (9)0.0433 (12)0.0387 (9)0.0015 (8)0.0003 (7)0.0041 (8)
O10.0426 (8)0.0473 (10)0.0427 (8)0.0069 (7)0.0046 (6)0.0064 (7)
O20.0480 (9)0.0482 (11)0.0681 (10)0.0066 (8)0.0145 (8)0.0167 (8)
O30.0481 (9)0.0402 (11)0.0590 (10)0.0006 (8)0.0111 (7)0.0021 (8)
Geometric parameters (Å, º) top
C1—C21.383 (3)C10—H100.9300
C1—C61.388 (3)C11—C121.362 (6)
C1—N11.425 (3)C11—H110.9300
C2—C31.385 (3)C12—C131.411 (5)
C2—H20.9300C12—H120.9300
C3—C41.368 (3)C13—H130.9300
C3—H30.9300C14—C161.511 (3)
C4—C51.378 (3)C14—C151.536 (3)
C4—H40.9300C14—H140.9800
C5—C61.378 (3)C15—O11.428 (2)
C5—H50.9300C15—C171.512 (3)
C6—H60.9300C15—H150.9800
C7—N11.488 (3)C16—O21.433 (3)
C7—C81.508 (3)C16—H16A0.9700
C7—C141.552 (3)C16—H16B0.9700
C7—H70.9800C17—O31.424 (3)
C8—C131.380 (4)C17—H17A0.9700
C8—C91.385 (4)C17—H17B0.9700
C9—C101.375 (4)N1—O11.458 (2)
C9—H90.9300O2—H2A0.86 (3)
C10—C111.347 (6)O3—H3A0.86 (3)
C2—C1—C6118.6 (2)C11—C12—C13119.1 (4)
C2—C1—N1122.14 (19)C11—C12—H12120.5
C6—C1—N1119.14 (19)C13—C12—H12120.5
C1—C2—C3120.0 (2)C8—C13—C12119.8 (4)
C1—C2—H2120.0C8—C13—H13120.1
C3—C2—H2120.0C12—C13—H13120.1
C4—C3—C2121.4 (2)C16—C14—C15117.50 (17)
C4—C3—H3119.3C16—C14—C7113.01 (18)
C2—C3—H3119.3C15—C14—C7102.49 (15)
C3—C4—C5118.7 (2)C16—C14—H14107.8
C3—C4—H4120.6C15—C14—H14107.8
C5—C4—H4120.6C7—C14—H14107.8
C6—C5—C4120.7 (2)O1—C15—C17107.96 (16)
C6—C5—H5119.6O1—C15—C14104.74 (16)
C4—C5—H5119.6C17—C15—C14118.40 (17)
C5—C6—C1120.6 (2)O1—C15—H15108.5
C5—C6—H6119.7C17—C15—H15108.5
C1—C6—H6119.7C14—C15—H15108.5
N1—C7—C8111.72 (17)O2—C16—C14111.57 (17)
N1—C7—C14103.43 (16)O2—C16—H16A109.3
C8—C7—C14112.57 (18)C14—C16—H16A109.3
N1—C7—H7109.7O2—C16—H16B109.3
C8—C7—H7109.7C14—C16—H16B109.3
C14—C7—H7109.7H16A—C16—H16B108.0
C13—C8—C9118.6 (2)O3—C17—C15110.49 (17)
C13—C8—C7120.3 (3)O3—C17—H17A109.6
C9—C8—C7120.9 (2)C15—C17—H17A109.6
C10—C9—C8121.1 (3)O3—C17—H17B109.6
C10—C9—H9119.5C15—C17—H17B109.6
C8—C9—H9119.5H17A—C17—H17B108.1
C11—C10—C9119.8 (4)C1—N1—O1108.72 (15)
C11—C10—H10120.1C1—N1—C7118.06 (17)
C9—C10—H10120.1O1—N1—C7103.59 (13)
C10—C11—C12121.7 (4)C15—O1—N1101.56 (13)
C10—C11—H11119.2C16—O2—H2A107 (2)
C12—C11—H11119.2C17—O3—H3A107 (2)
C6—C1—C2—C30.3 (3)N1—C7—C14—C156.3 (2)
N1—C1—C2—C3176.2 (2)C8—C7—C14—C15127.02 (19)
C1—C2—C3—C40.4 (4)C16—C14—C15—O1101.0 (2)
C2—C3—C4—C50.7 (4)C7—C14—C15—O123.48 (19)
C3—C4—C5—C60.9 (4)C16—C14—C15—C1719.3 (3)
C4—C5—C6—C10.9 (4)C7—C14—C15—C17143.79 (19)
C2—C1—C6—C50.5 (4)C15—C14—C16—O258.9 (3)
N1—C1—C6—C5176.6 (2)C7—C14—C16—O260.2 (2)
N1—C7—C8—C13139.9 (2)O1—C15—C17—O3176.79 (16)
C14—C7—C8—C13104.2 (3)C14—C15—C17—O364.6 (3)
N1—C7—C8—C943.5 (3)C2—C1—N1—O110.9 (3)
C14—C7—C8—C972.4 (3)C6—C1—N1—O1173.18 (19)
C13—C8—C9—C101.7 (4)C2—C1—N1—C7128.4 (2)
C7—C8—C9—C10178.3 (2)C6—C1—N1—C755.7 (3)
C8—C9—C10—C110.3 (5)C8—C7—N1—C185.1 (2)
C9—C10—C11—C120.9 (6)C14—C7—N1—C1153.59 (17)
C10—C11—C12—C130.7 (7)C8—C7—N1—O1154.71 (17)
C9—C8—C13—C121.8 (4)C14—C7—N1—O133.39 (19)
C7—C8—C13—C12178.5 (3)C17—C15—O1—N1171.89 (16)
C11—C12—C13—C80.7 (6)C14—C15—O1—N144.85 (17)
N1—C7—C14—C16133.72 (17)C1—N1—O1—C15175.74 (15)
C8—C7—C14—C16105.5 (2)C7—N1—O1—C1549.38 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.86 (3)1.90 (3)2.756 (2)172 (3)
O3—H3A···O2ii0.86 (3)1.91 (3)2.738 (2)160 (3)
Symmetry codes: (i) x+2, y+1, z; (ii) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC17H19NO3
Mr285.33
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)8.1254 (2), 11.0602 (2), 32.4813 (10)
V3)2919.05 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.68 × 0.28 × 0.03
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.985, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
35240, 2687, 1915
Rint0.070
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.108, 1.12
No. of reflections2687
No. of parameters198
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.14

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.86 (3)1.90 (3)2.756 (2)172 (3)
O3—H3A···O2ii0.86 (3)1.91 (3)2.738 (2)160 (3)
Symmetry codes: (i) x+2, y+1, z; (ii) x+3/2, y1/2, z.
 

Acknowledgements

This study was supported by the Research Fund of Kocaeli University (project No 2010/53). The authors also thank the Department of Physics, Faculty of Arts & Science, Ondokuz Mayıs University.

References

First citationAgirbas, H., Guner, S., Budak, F., Keceli, S., Kandemirli, F., Shvets, N., Kovalishyn, V. & Dimoglo, A. (2007). Bioorg. Med. Chem. 15, 2322–2333.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKelly, P. M., Legentil, L., Murkin, A. S., Li, L., Schramm, V. L., Tyler, P. C. & Woolhouse, A. D. (2009). J. Med. Chem. 52, 1126–1143.  Web of Science PubMed Google Scholar
First citationKumar, K. R. R., Mallesha, H. & Rangappa, K. S. (2003). Arch. Pharm. Pharm. Med. Chem, 336, 159–164.  Web of Science CrossRef CAS Google Scholar
First citationKwon, T., Heimann, A. S., Oriaku, E. T., Yoon, K. & Lee, H. J. (1995). J. Med. Chem. 38, 1048–1051.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimonsen, K. B., Hazell, R. G., Gothelf, K. V. & Jørgensen, K. A. (1999). J. Am. Chem. Soc. 121, 3845–3853.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTyukhteneva, Z. I. & Badovskaya, L. A. (1992). Zh. Org. Khim. 28, 568–572.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds