organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(di­methyl­ammonium) 3,3′-dicarb­­oxy-5,5′-(5,7,12,14-tetra­oxo-6,13-di­aza­tetra­cyclo­[6.6.2.04,16.011,15]hexa­deca-1,3,8,10,15-penta­ene-6,13-di­yl)dibenzoate dihydrate

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China, and bState Key Laboratory of Structural, Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: hanlei@nbu.edu.cn

(Received 19 March 2012; accepted 5 June 2012; online 23 June 2012)

The title compound, 2C2H8N+·C30H12N2O122−·2H2O, comprises dimethyl­ammonium cations, 3,3′-dicarb­oxy-5,5′-(5,7,12,14-tetra­oxo-6,13-diaza­tetra­cyclo­[6.6.2.04,16.011,15]hexa­deca-1,3,8,10,15-penta­ene-6,13-di­yl)dibenzoate dianions and water mol­ecules. The dianion is situated on a crystallographic inversion centre. Two very strong symmetry-restricted O⋯H⋯O hydrogen bonds are present which are situated about the crystallographic inversion centres. In one of these hydrogen bonds, the H atom is situated at its centre, while in the other one the H atom is disordered about its centre. Both H atoms are involved in the chain-like C22(16) motif, and not in a more common motif R22(8) that is composed of a pair of hydrogen carboxyl­ates with the H atoms situated about the centre between the pair of O atoms. In the crystal, inter­action of these hydrogen bonds results in formation of anionic layers of dianions parallel to (-111). The water mol­ecules donate their H atoms to one of two of the carboxyl­ate O atoms, forming strong hydrogen bonds. The dimethyl­ammonium donates a bifurcated hydrogen bond to an oxo group of the dianion, forming weak hydrogen bonds. All the hydrogen bonds form a three-dimensional hydrogen-bonded network.

Related literature

For organic supra­molecular solids, see: Pantos et al. (2007[Pantos, G. D., Wietor, J.-L. & Sanders, J. K. M. (2007). Angew. Chem. Int. Ed. 46, 2238-2240.]). For multi-component mol­ecular crystals or organic co-crystals, see: Bond (2007[Bond, A. D. (2007). CrystEngComm 9, 833-834.]); MacGillivray (2008[MacGillivray, L. R. (2008). J. Org. Chem. 73, 3311-3317.]); Yan et al. (2011[Yan, D.-P., Delori, A., Lloyd, G. O., Friščić, T., Day, G. M., Jones, W., Lu, J., Wei, M., Evans, D. G. & Duan, X. (2011). Angew. Chem. Int. Ed. 50, 12483-12486.]). For prediction of organic crystal structures, see: Pigge (2011[Pigge, F. C. (2011). CrystEngComm 13, 1733-1748.]). For organic structures based on naphthalaleneteracarb­oxy­lic diimide derivatives, see: Xu et al. (2011[Xu, L.-P., Zhao, W.-N. & Han, L. (2011). Acta Cryst. E67, o1971.]). For hydrogen carboxyl­ates forming chain-like motifs with very strong O—H⋯O hydrogen bonds, see: Foces-Foces et al. (1996[Foces-Foces, C., Cativiela, C., Zurbano, M. M., Sobrados, I., Jagerovic, N. & Elguero, J. (1996). J. Chem. Crystallogr. 26, 579-584.]); Hsu et al. (2006[Hsu, C.-J., Tang, S.-W., Wang, J.-S. & Wang, W.-J. (2006). Mol. Cryst. Liq. Cryst. 456, 201-208.]); Aciro et al. (2009[Aciro, C., Davies, S. G., Kurosawa, W., Roberts, P. M., Russell, A. J. & Thomson, J. E. (2009). Org. Lett. 11, 1333-1336.]). For in situ hydrolysis of dimethyl­formamide mol­ecules, see: Jain et al. (2008[Jain, P., Dalal, N. S., Toby, B. H., Kroto, H. W. & Cheetham, A. K. (2008). J. Am. Chem. Soc. 130, 10450-10451.]). For classification of hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13. New York: Oxford University Press Inc.]). For graph-set motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • 2C2H8N+·C30H12N2O122−·2H2O

  • Mr = 720.64

  • Monoclinic, P 21 /n

  • a = 10.428 (13) Å

  • b = 8.651 (10) Å

  • c = 18.40 (2) Å

  • β = 91.956 (16)°

  • V = 1659 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Saturn70 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2008[Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.788, Tmax = 1.000

  • 12286 measured reflections

  • 3780 independent reflections

  • 2137 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.266

  • S = 1.01

  • 3780 reflections

  • 248 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 1.22 (1) 1.22 (1) 2.432 (5) 180 (1)
O4—H2⋯O4ii 1.15 (6) 1.45 (5) 2.441 (5) 139 (4)
N2—H2B⋯O5iii 0.90 2.22 2.850 (5) 127
O7—H3⋯O2i 0.98 (2) 1.95 (5) 2.805 (6) 144 (6)
O7—H4⋯O3iv 0.98 (2) 1.85 (4) 2.771 (6) 154 (7)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+2, -z+1; (iii) x, y-1, z; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2008[Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Assemblies of functionalised organic molecules in the solid state have attracted much interest in crystal engineering and materials science (Pantos et al., 2007). Recently, much attention has been paid to formation of multi-component molecular crystals or organic co-crystals as a means of modification of properties of organic molecules in the solid state (Bond, 2007; MacGillivray, 2008; Yan et al., 2011). However, an effective strategy for tuning functionality of co-crystal solids still remains challenging (Pigge, 2011).

We have been interested in utilizing acid-functionalized naphthalaleneteracarboxylic diimide derivatives as starting materials in crystal engineering of a series of functional organic co-crystal materials (Xu et al., 2011). Herein we report an organic salt, 2(C2H8N)+.(C30H12N2O12)2-.2H2O, which has been prepared under solvothermal reaction from 5,5-[naphthalene-1,8:4,5- bis(dicarboximide)-N,N-diyl]bis(benzene-1,3-dicarboxylic acid) and 1,10-phenanthroline in dimethylformamide (DMF). The dimethylammonium cations in the title structure were formed by in situ hydrolysis of the dimethylformamide molecules (Jain et al., 2008).

Single-crystal X-ray diffraction analysis has indicated that the title structure is composed dimethylammonium cations, 3,3-dicarboxy-5,5-[naphthalene-1,8:4,5- bis(dicarboximide)-N,N-diyl]bis(benzene-1-carboxylate) anion and water molecules. As shown in Fig. 1, the anion is situated on the crystallographic inversion centre.

The most prominent as well as unusual feature of the title structure is presence of two different very strong symmetry restricted hydrogen bonds (Table 1; for the terminology of the hydrogen bonds, see Desiraju & Steiner, 1999). One of the hydrogens (H1) is situated at its centre while the other one (H4) is disordered about it as revealed the difference electron density maps. These hydrogens form a chain-like motif C22(16) (Etter et al., 1990). The atoms involved in this motif are as follows: H2···O4-C5-C4-C3-C2-C1-O1···H1···O1i-C1i-C2i-C3i-C4i-C5i-O4i···, where the symmetry code i = 1-x, 1-y, 1-z. This is only a fourth known example (Cambridge Structural Database (Allen, 2002; version 5.33)) of a chain motif in the hydrogen carboxylates with a strong or very strong hydrogen bond (up to 2.55Å for O···O) in contrast to 11 structures with a motif R22(8) with the same type of the hydrogen bonds (up to 2.55Å for O···O) between the hydrogen carboxylates. The structures with the chain motif are as follows: (RABNEN, 4-(3,5-dimethylpyrazol-4-yl)benzoic acid trifluoroacetate, Foces-Foces et al. (1996); SERYUK, sesquikis(3,6-di(pyridin-4-yl)-1,2,4,5-tetrazine) trimesic acid dehydrate, Hsu et al. (2006); POYXOR, hemikis((1RS,2RS,3RS)-3-N,N-dibenzylaminocyclohexane -1,2-diol N-oxide) 3-chlorobenzoic acid, Aciro et al. (2009).

In the title structure, these short hydrogen bonds form 2D-layers (Fig. 2). The 2D-framework is extended to a 3D network by involvement of water which donates strong O—H···O hydrogen bonds to the oxo-groups of the hydrogen carboxylates. Dimethylammonium donates a weak bifurcated hydrogen bond to the oxo-group O5.

Related literature top

For organic supramolecular solids, see: Pantos et al. (2007). For multi-component molecular crystals or organic co-crystals, see: Bond (2007); MacGillivray (2008); Yan et al. (2011). For prediction of organic crystal structures, see: Pigge (2011). For organic structures based on naphthalaleneteracarboxylic diimide derivatives, see: Xu et al. (2011). For hydrogen carboxylates forming chain-like motifs with very strong O—H···O hydrogen bonds, see: Foces-Foces et al. (1996); Hsu et al. (2006); Aciro et al. (2009). For in situ hydrolysis of dimethylformamide molecules, see: Jain et al. (2008). For classification of hydrogen bonds, see: Desiraju & Steiner (1999). For graph-set motifs, see: Etter et al. (1990). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

A mixture of 5,5-[naphthalene-1,8:4,5- bis(dicarboximide)-N,N-diyl]bis(benzene-1,3-dicarboxylic acid) (59.4 mg, 0.1 mmol), 1,10-phenanthroline (35.9 mg, 0.2 mmol) in dimethylformamide (3 ml) was sealed in a 25 ml teflon-lined stainless steel reactor and heated at 393 K for 72 h. Colourless and cube-like single crystals of the title compound were obtained after cooling to room temperature. The yield equals to 50 weight %.

Refinement top

All the hydrogens were discernible in the difference electron density maps. Notably in the final stages of the refinement it turned out that the hydrogens H1 and H2 involved in the symmetry restricted strong hydrogen bonds were situated just at the centre or disorded about it, respectively. The positional as well as the displacement parameters of these hydrogens have been refined. The positional parameters of the water hydrogens H3 and H4 were refined using the following restraints: The O7—H3 and O7—H4 distances equal to 0.965 (20) Å while for the angle was used restraint DANG 1.5555 (400) (SHELXL97; Sheldrick, 2008) which corresponds to the average angle H—Ow—H (107.407°) retrieved from the Cambridge Structural Database (CSD) (Allen, 2002) from the structures determined by neutron diffraction. The isotropic displacement parameters of these hydrogens (H3 and H4) were constrained as Uiso(H) = 1.5Ueq(O). Other H atoms were allowed to ride on their respective parent atoms at distances of C—H(phenyl) = 0.93 Å with Uiso(H) = 1.2 Ueq(C), C—H(methyl) = 0.96 Å with Uiso(H) = 1.5Ueq(C), N—H(ammonium) = 0.90 Å with Uiso(H) = 1.2Ueq(N).

Structure description top

Assemblies of functionalised organic molecules in the solid state have attracted much interest in crystal engineering and materials science (Pantos et al., 2007). Recently, much attention has been paid to formation of multi-component molecular crystals or organic co-crystals as a means of modification of properties of organic molecules in the solid state (Bond, 2007; MacGillivray, 2008; Yan et al., 2011). However, an effective strategy for tuning functionality of co-crystal solids still remains challenging (Pigge, 2011).

We have been interested in utilizing acid-functionalized naphthalaleneteracarboxylic diimide derivatives as starting materials in crystal engineering of a series of functional organic co-crystal materials (Xu et al., 2011). Herein we report an organic salt, 2(C2H8N)+.(C30H12N2O12)2-.2H2O, which has been prepared under solvothermal reaction from 5,5-[naphthalene-1,8:4,5- bis(dicarboximide)-N,N-diyl]bis(benzene-1,3-dicarboxylic acid) and 1,10-phenanthroline in dimethylformamide (DMF). The dimethylammonium cations in the title structure were formed by in situ hydrolysis of the dimethylformamide molecules (Jain et al., 2008).

Single-crystal X-ray diffraction analysis has indicated that the title structure is composed dimethylammonium cations, 3,3-dicarboxy-5,5-[naphthalene-1,8:4,5- bis(dicarboximide)-N,N-diyl]bis(benzene-1-carboxylate) anion and water molecules. As shown in Fig. 1, the anion is situated on the crystallographic inversion centre.

The most prominent as well as unusual feature of the title structure is presence of two different very strong symmetry restricted hydrogen bonds (Table 1; for the terminology of the hydrogen bonds, see Desiraju & Steiner, 1999). One of the hydrogens (H1) is situated at its centre while the other one (H4) is disordered about it as revealed the difference electron density maps. These hydrogens form a chain-like motif C22(16) (Etter et al., 1990). The atoms involved in this motif are as follows: H2···O4-C5-C4-C3-C2-C1-O1···H1···O1i-C1i-C2i-C3i-C4i-C5i-O4i···, where the symmetry code i = 1-x, 1-y, 1-z. This is only a fourth known example (Cambridge Structural Database (Allen, 2002; version 5.33)) of a chain motif in the hydrogen carboxylates with a strong or very strong hydrogen bond (up to 2.55Å for O···O) in contrast to 11 structures with a motif R22(8) with the same type of the hydrogen bonds (up to 2.55Å for O···O) between the hydrogen carboxylates. The structures with the chain motif are as follows: (RABNEN, 4-(3,5-dimethylpyrazol-4-yl)benzoic acid trifluoroacetate, Foces-Foces et al. (1996); SERYUK, sesquikis(3,6-di(pyridin-4-yl)-1,2,4,5-tetrazine) trimesic acid dehydrate, Hsu et al. (2006); POYXOR, hemikis((1RS,2RS,3RS)-3-N,N-dibenzylaminocyclohexane -1,2-diol N-oxide) 3-chlorobenzoic acid, Aciro et al. (2009).

In the title structure, these short hydrogen bonds form 2D-layers (Fig. 2). The 2D-framework is extended to a 3D network by involvement of water which donates strong O—H···O hydrogen bonds to the oxo-groups of the hydrogen carboxylates. Dimethylammonium donates a weak bifurcated hydrogen bond to the oxo-group O5.

For organic supramolecular solids, see: Pantos et al. (2007). For multi-component molecular crystals or organic co-crystals, see: Bond (2007); MacGillivray (2008); Yan et al. (2011). For prediction of organic crystal structures, see: Pigge (2011). For organic structures based on naphthalaleneteracarboxylic diimide derivatives, see: Xu et al. (2011). For hydrogen carboxylates forming chain-like motifs with very strong O—H···O hydrogen bonds, see: Foces-Foces et al. (1996); Hsu et al. (2006); Aciro et al. (2009). For in situ hydrolysis of dimethylformamide molecules, see: Jain et al. (2008). For classification of hydrogen bonds, see: Desiraju & Steiner (1999). For graph-set motifs, see: Etter et al. (1990). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: CrystalClear (Rigaku/MSC, 2008); data reduction: CrystalClear (Rigaku/MSC, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The title molecule with the displacement ellipsoids drawn at the 30% probability level and with the labelling scheme. The H atoms are shown as small spheres of arbitrary radii. (Symmetry code: i -x+1, -y+2, -z.)
[Figure 2] Fig. 2. View of the anionic layer with very strong symmetry-restricted hydrogen bonds.
Bis(dimethylammonium) 3,3'-dicarboxy-5,5'-(5,7,12,14-tetraoxo-6,13- diazatetracyclo[6.6.2.04,16.011,15]hexadeca-1,3,8,10,15-pentaene- 6,13-diyl)dibenzoate dihydrate top
Crystal data top
2C2H8N+·C30H12N2O122·2H2OF(000) = 752
Mr = 720.64Dx = 1.443 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3435 reflections
a = 10.428 (13) Åθ = 2.2–27.6°
b = 8.651 (10) ŵ = 0.11 mm1
c = 18.40 (2) ÅT = 293 K
β = 91.956 (16)°Cube-like, colourless
V = 1659 (4) Å30.20 × 0.20 × 0.20 mm
Z = 2
Data collection top
Rigaku Saturn70
diffractometer
3780 independent reflections
Radiation source: fine-focus sealed tube2137 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD_Profile_fitting scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2008)
k = 1111
Tmin = 0.788, Tmax = 1.000l = 2321
12286 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: difference Fourier map
wR(F2) = 0.266H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.1621P)2]
where P = (Fo2 + 2Fc2)/3
3780 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.43 e Å3
3 restraintsΔρmin = 0.36 e Å3
0 constraints
Crystal data top
2C2H8N+·C30H12N2O122·2H2OV = 1659 (4) Å3
Mr = 720.64Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.428 (13) ŵ = 0.11 mm1
b = 8.651 (10) ÅT = 293 K
c = 18.40 (2) Å0.20 × 0.20 × 0.20 mm
β = 91.956 (16)°
Data collection top
Rigaku Saturn70
diffractometer
3780 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2008)
2137 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 1.000Rint = 0.051
12286 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0813 restraints
wR(F2) = 0.266H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.43 e Å3
3780 reflectionsΔρmin = 0.36 e Å3
248 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.6155 (2)0.9195 (3)0.17822 (12)0.0435 (6)
C30.7165 (3)0.7875 (3)0.39335 (14)0.0430 (6)
H3A0.73800.75880.44090.052*
O60.7771 (2)0.7754 (3)0.13324 (12)0.0697 (7)
C60.7610 (3)0.9351 (3)0.28630 (15)0.0473 (7)
H6A0.81231.00430.26170.057*
C120.5244 (2)0.9859 (3)0.03593 (13)0.0402 (6)
C70.6535 (3)0.8733 (3)0.25224 (13)0.0415 (6)
C80.5761 (3)0.7673 (3)0.28718 (14)0.0425 (6)
H8A0.50400.72590.26330.051*
O50.4661 (3)1.0808 (3)0.22384 (12)0.0720 (8)
O30.9850 (2)1.0402 (3)0.36519 (13)0.0745 (8)
C140.5140 (3)1.0235 (3)0.17045 (14)0.0459 (7)
C40.7929 (3)0.8936 (3)0.35776 (14)0.0442 (7)
C130.4669 (3)1.0575 (3)0.09499 (14)0.0444 (7)
O10.5588 (3)0.5959 (3)0.46612 (13)0.0822 (9)
H10.50000.50000.50000.17 (4)*
C20.6085 (3)0.7243 (3)0.35853 (14)0.0409 (6)
C90.6833 (3)0.8543 (4)0.12086 (15)0.0473 (7)
C10.5278 (3)0.6114 (4)0.39882 (16)0.0538 (8)
C100.6314 (3)0.8857 (3)0.04610 (14)0.0452 (7)
C150.3628 (3)1.1555 (4)0.08394 (16)0.0569 (8)
H15A0.32551.20330.12320.068*
C50.9058 (3)0.9650 (4)0.39769 (17)0.0555 (8)
C110.6858 (3)0.8183 (4)0.01297 (16)0.0590 (8)
H11A0.75650.75380.00580.071*
N20.3624 (5)0.1938 (5)0.3549 (2)0.1119 (15)
H2A0.40890.27490.34010.134*
H2B0.34120.13750.31520.134*
C160.2451 (4)0.2531 (6)0.3843 (3)0.0923 (13)
H16A0.19290.29810.34590.138*
H16B0.26560.33030.42030.138*
H16C0.19900.17010.40620.138*
C170.4449 (5)0.0987 (6)0.4027 (3)0.1022 (15)
H17A0.51210.05410.37520.153*
H17B0.39500.01780.42350.153*
H17C0.48190.16190.44090.153*
O20.4408 (3)0.5385 (3)0.36690 (14)0.0844 (10)
O40.9083 (2)0.9425 (3)0.46707 (12)0.0759 (8)
H20.965 (5)1.036 (6)0.500 (3)0.040 (16)*0.50
O70.6740 (4)0.5344 (6)0.7689 (2)0.1276 (14)
H30.620 (6)0.552 (9)0.725 (2)0.191*
H40.611 (6)0.540 (9)0.808 (3)0.191*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0534 (13)0.0541 (13)0.0224 (11)0.0007 (10)0.0079 (9)0.0064 (9)
C30.0529 (15)0.0514 (15)0.0242 (13)0.0022 (12)0.0059 (11)0.0043 (11)
O60.0693 (14)0.1023 (18)0.0368 (13)0.0242 (13)0.0068 (10)0.0118 (12)
C60.0531 (15)0.0600 (17)0.0282 (14)0.0161 (13)0.0071 (11)0.0086 (12)
C120.0476 (14)0.0478 (14)0.0249 (14)0.0043 (12)0.0036 (11)0.0055 (10)
C70.0525 (14)0.0500 (15)0.0214 (13)0.0042 (12)0.0082 (11)0.0021 (10)
C80.0495 (14)0.0488 (15)0.0285 (14)0.0065 (12)0.0082 (11)0.0037 (11)
O50.0876 (17)0.1009 (19)0.0271 (12)0.0284 (14)0.0023 (11)0.0034 (11)
O30.0663 (14)0.111 (2)0.0455 (14)0.0401 (14)0.0119 (11)0.0173 (13)
C140.0555 (16)0.0581 (16)0.0238 (14)0.0009 (13)0.0035 (11)0.0045 (11)
C40.0467 (14)0.0576 (16)0.0277 (14)0.0103 (12)0.0087 (11)0.0040 (11)
C130.0514 (15)0.0588 (16)0.0226 (13)0.0014 (13)0.0049 (11)0.0043 (11)
O10.1009 (19)0.107 (2)0.0378 (13)0.0553 (16)0.0163 (13)0.0252 (13)
C20.0485 (14)0.0443 (14)0.0294 (14)0.0070 (11)0.0032 (11)0.0035 (11)
C90.0530 (15)0.0601 (17)0.0286 (14)0.0031 (14)0.0032 (12)0.0076 (12)
C10.0645 (18)0.0637 (18)0.0327 (16)0.0190 (15)0.0064 (13)0.0127 (13)
C100.0502 (15)0.0582 (16)0.0269 (14)0.0009 (13)0.0047 (11)0.0084 (11)
C150.0705 (19)0.074 (2)0.0262 (14)0.0165 (16)0.0010 (13)0.0003 (13)
C50.0581 (18)0.075 (2)0.0327 (16)0.0185 (16)0.0135 (13)0.0072 (14)
C110.0644 (18)0.079 (2)0.0332 (16)0.0206 (16)0.0042 (13)0.0068 (14)
N20.180 (4)0.084 (2)0.075 (3)0.040 (3)0.051 (3)0.013 (2)
C160.083 (3)0.096 (3)0.098 (4)0.009 (3)0.002 (2)0.004 (2)
C170.099 (3)0.109 (3)0.098 (4)0.019 (3)0.007 (3)0.019 (3)
O20.0893 (18)0.106 (2)0.0561 (16)0.0564 (16)0.0266 (13)0.0311 (14)
O40.0778 (16)0.115 (2)0.0328 (12)0.0436 (15)0.0197 (11)0.0107 (12)
O70.128 (3)0.165 (4)0.090 (3)0.030 (3)0.017 (2)0.026 (3)
Geometric parameters (Å, º) top
N1—C141.393 (4)C2—C11.501 (4)
N1—C91.408 (4)C9—C101.486 (4)
N1—C71.461 (3)C1—O21.237 (4)
C3—C21.389 (4)C10—C111.373 (4)
C3—C41.394 (4)C15—C11i1.403 (4)
C3—H3A0.9300C15—H15A0.9300
O6—C91.208 (4)C5—O41.291 (4)
C6—C71.374 (4)C11—C15i1.403 (4)
C6—C41.393 (4)C11—H11A0.9300
C6—H6A0.9300N2—C161.448 (6)
C12—C131.403 (4)N2—C171.463 (6)
C12—C101.421 (4)N2—H2A0.9000
C12—C12i1.421 (5)N2—H2B0.9000
C7—C81.393 (4)C16—H16A0.9600
C8—C21.395 (4)C16—H16B0.9600
C8—H8A0.9300C16—H16C0.9600
O5—C141.222 (4)C17—H17A0.9600
O3—C51.224 (4)C17—H17B0.9600
C14—C131.486 (4)C17—H17C0.9600
C4—C51.499 (4)O4—H21.15 (6)
C13—C151.387 (4)O7—H30.98 (2)
O1—C11.276 (4)O7—H40.98 (2)
O1—H11.216 (2)
C14—N1—C9125.5 (2)O2—C1—C2120.8 (3)
C14—N1—C7117.0 (2)O1—C1—C2114.8 (2)
C9—N1—C7117.5 (2)C11—C10—C12119.9 (2)
C2—C3—C4120.7 (2)C11—C10—C9120.5 (3)
C2—C3—H3A119.7C12—C10—C9119.5 (3)
C4—C3—H3A119.7C13—C15—C11i119.4 (3)
C7—C6—C4119.7 (3)C13—C15—H15A120.3
C7—C6—H6A120.2C11i—C15—H15A120.3
C4—C6—H6A120.2O3—C5—O4124.9 (3)
C13—C12—C10121.5 (2)O3—C5—C4120.8 (3)
C13—C12—C12i119.8 (3)O4—C5—C4114.3 (3)
C10—C12—C12i118.8 (3)C10—C11—C15i121.5 (3)
C6—C7—C8121.5 (2)C10—C11—H11A119.3
C6—C7—N1120.6 (2)C15i—C11—H11A119.3
C8—C7—N1117.9 (2)C16—N2—C17117.5 (4)
C7—C8—C2119.0 (2)C16—N2—H2A107.9
C7—C8—H8A120.5C17—N2—H2A107.9
C2—C8—H8A120.5C16—N2—H2B107.9
O5—C14—N1120.6 (3)C17—N2—H2B107.9
O5—C14—C13122.7 (3)H2A—N2—H2B107.2
N1—C14—C13116.7 (2)N2—C16—H16A109.5
C6—C4—C3119.4 (2)N2—C16—H16B109.5
C6—C4—C5121.0 (3)H16A—C16—H16B109.5
C3—C4—C5119.6 (2)N2—C16—H16C109.5
C15—C13—C12120.6 (3)H16A—C16—H16C109.5
C15—C13—C14119.3 (3)H16B—C16—H16C109.5
C12—C13—C14120.0 (3)N2—C17—H17A109.5
C1—O1—H1117.0 (2)N2—C17—H17B109.5
C3—C2—C8119.7 (2)H17A—C17—H17B109.5
C3—C2—C1119.2 (2)N2—C17—H17C109.5
C8—C2—C1121.1 (2)H17A—C17—H17C109.5
O6—C9—N1120.6 (3)H17B—C17—H17C109.5
O6—C9—C10123.0 (3)C5—O4—H2114 (3)
N1—C9—C10116.4 (2)H3—O7—H4102 (4)
O2—C1—O1124.4 (3)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1ii1.22 (1)1.22 (1)2.432 (5)180 (1)
O4—H2···O4iii1.15 (6)1.45 (5)2.441 (5)139 (4)
N2—H2B···O5iv0.902.222.850 (5)127
O7—H3···O2ii0.98 (2)1.95 (5)2.805 (6)144 (6)
O7—H4···O3v0.98 (2)1.85 (4)2.771 (6)154 (7)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+2, y+2, z+1; (iv) x, y1, z; (v) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula2C2H8N+·C30H12N2O122·2H2O
Mr720.64
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.428 (13), 8.651 (10), 18.40 (2)
β (°) 91.956 (16)
V3)1659 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Saturn70
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2008)
Tmin, Tmax0.788, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12286, 3780, 2137
Rint0.051
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.266, 1.01
No. of reflections3780
No. of parameters248
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.36

Computer programs: CrystalClear (Rigaku/MSC, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i1.216 (2)1.216 (2)2.432 (5)180.0 (2)
O4—H2···O4ii1.15 (6)1.45 (5)2.441 (5)139 (4)
N2—H2B···O5iii0.902.222.850 (5)127.0
O7—H3···O2i0.98 (2)1.95 (5)2.805 (6)144 (6)
O7—H4···O3iv0.98 (2)1.85 (4)2.771 (6)154 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z+1; (iii) x, y1, z; (iv) x1/2, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21071087, 91122012) and the K. C. Wong Magna Fund in Ningbo University.

References

First citationAciro, C., Davies, S. G., Kurosawa, W., Roberts, P. M., Russell, A. J. & Thomson, J. E. (2009). Org. Lett. 11, 1333–1336.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBond, A. D. (2007). CrystEngComm 9, 833–834.  Web of Science CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13. New York: Oxford University Press Inc.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFoces-Foces, C., Cativiela, C., Zurbano, M. M., Sobrados, I., Jagerovic, N. & Elguero, J. (1996). J. Chem. Crystallogr. 26, 579–584.  CAS Google Scholar
First citationHsu, C.-J., Tang, S.-W., Wang, J.-S. & Wang, W.-J. (2006). Mol. Cryst. Liq. Cryst. 456, 201–208.  Web of Science CSD CrossRef CAS Google Scholar
First citationJain, P., Dalal, N. S., Toby, B. H., Kroto, H. W. & Cheetham, A. K. (2008). J. Am. Chem. Soc. 130, 10450–10451.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacGillivray, L. R. (2008). J. Org. Chem. 73, 3311–3317.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPantos, G. D., Wietor, J.-L. & Sanders, J. K. M. (2007). Angew. Chem. Int. Ed. 46, 2238–2240.  CAS Google Scholar
First citationPigge, F. C. (2011). CrystEngComm 13, 1733–1748.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, L.-P., Zhao, W.-N. & Han, L. (2011). Acta Cryst. E67, o1971.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, D.-P., Delori, A., Lloyd, G. O., Friščić, T., Day, G. M., Jones, W., Lu, J., Wei, M., Evans, D. G. & Duan, X. (2011). Angew. Chem. Int. Ed. 50, 12483–12486.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds