organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-{4-[(1,3-Benzodioxol-5-yl)meth­yl]piperazin-1-yl}-1-cyclo­propyl-6-fluoro-4-oxo-1,4-di­hydro­quinoline-3-carb­­oxy­lic acid

aInstitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantan Xili 1#, Beijing, People's Republic of China
*Correspondence e-mail: lmllyx@yahoo.com.cn

(Received 18 April 2012; accepted 25 June 2012; online 30 June 2012)

In the title structure, C25H24FN3O5, a strong intra­molecular O—H⋯O hydrogen bond is present between the carb­oxy group at the 3-position and the carbonyl group at the 4-position. In the crystal, mol­ecules are held together by weak C—H⋯O, C—H⋯F and ππ [centroid–centroid distance 3.6080 (8) Å] inter­actions. The 1,4-dihydro­quinoline ring and cyclo­propyl group are not in the same plane, making an inter­planar angle of 57.52 (8)°.

Related literature

For the synthesis and properties of quinolone derivatives, see Basuri et al. (2011[Basuri, T. S., Vishal, M. & Thakar, P. M. (2011). J. Pharm. Res. 4, 1294-1297.]); Feng et al. (2011[Feng, L.-S., Liu, M.-L., Zhang, S., Chai, Y., Wang, B., Zhang, Y.-B., Lv, K., Guan, Y., Guo, H.-Y. & Xiao, C.-L. (2011). Eur. J. Med. Chem. 46, 341-348.]); Guo et al. (2011[Guo, Q., Liu, M.-L., Feng, L.-S., Lv, K., Guan, Y., Guo, H.-Y. & Xiao, C.-L. (2011). Arch. Pharm. Chem. Life Sci. 344, 802-809.]); Liu et al. (2010[Liu, M.-L., Feng, L.-S., Chai, Y., Guo, H.-Y. & Xiao, C.-L. (2010). Chin. J. New Drugs, 19, 190-198.]); Sharma et al. (2010[Sharma, P. C., Jain, A., Jain, S., Pahwa, R. & Yar, M. S. (2010). J. Enz. Med. Chem. 25, 577-589.]); Xu et al. (2007[Xu, H.-T., Tao, F.-R., Liang, Y.-Z., Wang, G.-X., Zou, Y.-L., Hu, Y.-J. & Zhang, X.-Z. (2007). Chin. J. Infect. Chemother. 7, 92-95.]). For the cryogenic cooler used in the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For hydrogen bonding, see Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13. New York: International Union of Crystallography and Oxford University Press Inc.]).

[Scheme 1]

Experimental

Crystal data
  • C25H24FN3O5

  • Mr = 465.47

  • Triclinic, [P \overline 1]

  • a = 8.6200 (5) Å

  • b = 9.7068 (9) Å

  • c = 13.7680 (13) Å

  • α = 79.089 (8)°

  • β = 76.000 (6)°

  • γ = 87.939 (6)°

  • V = 1097.52 (16) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.88 mm−1

  • T = 118 K

  • 0.55 × 0.35 × 0.15 mm

Data collection
  • Oxford Gemini S Ultra Sapphire CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.645, Tmax = 0.880

  • 10407 measured reflections

  • 3876 independent reflections

  • 3518 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.04

  • 3876 reflections

  • 311 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.992 (19) 1.563 (19) 2.5215 (13) 161.1 (17)
C20—H20⋯O13i 0.93 2.58 3.3206 (17) 137
C28—H28a⋯F1 0.97 2.18 2.8587 (15) 126
C32—H32b⋯O2ii 0.97 2.49 3.4144 (16) 158
C34—H34b⋯O3iii 0.97 2.44 3.3853 (18) 165
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+1, -z; (iii) x-1, y+1, z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Ciprofloxacin, the most applied antibacterial agent worldwide (Basuri et al., 2011), is used extensively for the treatment of various bacterial infections including tuberculosis (Liu et al., 2010). However, extensive use and even abuse have brought increasing ciprofloxacin resistance to many Gram-positive and Gram-negative pathogens, as well as to Mycobacterium tuberculosis (Xu et al., 2007; Liu et al., 2010). Recently, as a part of our program which is aimed to increase potency and to overcome resistance of existing quinolones by their structural modifications, we have focused our attention on introducing various lipophilic groups, such as an isatin or a coumarin moieties, to ciprofloxacin (Feng et al., 2011; Guo et al., 2011). Some of the ciprofloxacin derivatives were found to have improved activity against drug-resistant Mycobacterium tuberculosis. Our results have suggested that the activity of fluoroquinolones against drug-resistant Mycobacterium tuberculosis is proportional to increment of lipophilicity in ciprofloxacin derivatives (Sharma et al., 2010).

The crystal structure of the title compound is reported here. The title compound shows remarkable improvement in lipophilicity by introduction of a lipophilic 3,4-methylenedioxyl benzyl group to the N atom which is situated on the C-7 piperazine ring of ciprofloxacin.

The title molecule is shown in Fig. 1. The 1,4-dihydroquinoline ring and cyclopropyl group (C31\C32\C33) are not in the same plane and the interplanar angle between them is 57.52 (8)°. The six-membered piperazine ring adopts a chair conformation. In the title structure, there is a strong intramolecular hydrogen bond O—H···O and a weak C-H···F interaction (Table 1; Fig. 2) (Desiraju & Steiner, 1999). The intermolecular interactions that are present in the structure are weak ones exclusively: a) C—H···O hydrogen bonds (Table 1) and b) π-electron ring — π-electron ring interactions in the structure as it is indicated by the distance 3.6080 (8) Å between the respective centroids of the benzene rings C7\C8\C17\C18\C12\C9 (symmetry codes x, y, z and 1-x, 1-y, -z).

Related literature top

For the synthesis and properties of quinolone derivatives, see Basuri et al. ( 2011); Feng et al. (2011); Guo et al. (2011); Liu et al. (2010); Sharma et al. (2010); Xu et al. (2007). For the cryogenic cooler used in the data collection, see Cosier & Glazer (1986). For hydrogen bonding, see Desiraju & Steiner (1999).

Experimental top

To a stirred solution of piperonyl alcohol (0.61 g, 4 mmol) in anhydrous methylene chloride (50 ml) at 0–5°C was added phosphorus tribromide (0.5 ml, 5 mmol) dropwise over a period of 15 min. The reaction mixture was stirred for additional 30 min at the 0–5°C, washed with saturated brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The obtained residue was dissolved in N,N-dimethyl formamide (20 ml) and anhydrous potassium carbonate (0.83 g, 6 mmol) with ciprofloxacin hydrochloride (0.51 g, 1.4 mmol) were added to this solution. The reaction mixture was heated to 40°C and stirred at this temperature for 14 h and then diluted with methylene chloride (50 ml), washed with distilled water (50 ml), dried over anhydrous sodium sulphate and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel), eluted by methylene chloride and methanol in proportion 10:1 (v/v) to yield the title compound (0.32 g, 17.2 wt. %) as transparent block-like light yellow crystals, the longest distance of which was about 4 mm. The measured sample was cut from a larger crystal. Melting point: 238–239°C. 1H-NMR(DMSO, δ): 1.16–1.18 (2H, m, CH2 cyclopropyl), 1.28–1.31(2H, m, CH2cyclopropyl), 2.57–2.58 (4H, m, 2CH2 piperazinyl), 3.30–3.33 (4H, m, 2CH2 piperazinyl), 3.47 (2H, s, CH2 Benzyl), 3.78–3.82 (1H, m, CH cyclopropyl), 5.99(2H, s, OCH2O), 6.78–6.90(3H, m, CH benzyl), 7.55–7.57(1H, d, C8, J=8 Hz), 7.88–7.91(1H, d, C5, J=12 Hz),8.649(1H, s, C2), 15.21(1H, s, COOH). MS (ESI, m/z): 466 (M+H+). HRMS(ESI,m/z): C25H24FN3O5 Calculated:466.1769; Found:466.1772.

Refinement top

All the H atoms were discernible in the difference electron density map. The positional parameters of the hydrogen H3 involved in the strong hydrogen bond O—H···O (Table 1) were refined freely while its displacement parameter was constrained: Uiso(H3)=1.5Ueq(O3). The aryl, methine and methylene hydrogens were constrained in the riding atom approximation: C—H = 0.95, 1.0, 0.99 Å for aryl, methine and methylene H atoms, respectively, while Uiso(H) = 1.2Ueq(C) for aryl, methine and methylene.

Structure description top

Ciprofloxacin, the most applied antibacterial agent worldwide (Basuri et al., 2011), is used extensively for the treatment of various bacterial infections including tuberculosis (Liu et al., 2010). However, extensive use and even abuse have brought increasing ciprofloxacin resistance to many Gram-positive and Gram-negative pathogens, as well as to Mycobacterium tuberculosis (Xu et al., 2007; Liu et al., 2010). Recently, as a part of our program which is aimed to increase potency and to overcome resistance of existing quinolones by their structural modifications, we have focused our attention on introducing various lipophilic groups, such as an isatin or a coumarin moieties, to ciprofloxacin (Feng et al., 2011; Guo et al., 2011). Some of the ciprofloxacin derivatives were found to have improved activity against drug-resistant Mycobacterium tuberculosis. Our results have suggested that the activity of fluoroquinolones against drug-resistant Mycobacterium tuberculosis is proportional to increment of lipophilicity in ciprofloxacin derivatives (Sharma et al., 2010).

The crystal structure of the title compound is reported here. The title compound shows remarkable improvement in lipophilicity by introduction of a lipophilic 3,4-methylenedioxyl benzyl group to the N atom which is situated on the C-7 piperazine ring of ciprofloxacin.

The title molecule is shown in Fig. 1. The 1,4-dihydroquinoline ring and cyclopropyl group (C31\C32\C33) are not in the same plane and the interplanar angle between them is 57.52 (8)°. The six-membered piperazine ring adopts a chair conformation. In the title structure, there is a strong intramolecular hydrogen bond O—H···O and a weak C-H···F interaction (Table 1; Fig. 2) (Desiraju & Steiner, 1999). The intermolecular interactions that are present in the structure are weak ones exclusively: a) C—H···O hydrogen bonds (Table 1) and b) π-electron ring — π-electron ring interactions in the structure as it is indicated by the distance 3.6080 (8) Å between the respective centroids of the benzene rings C7\C8\C17\C18\C12\C9 (symmetry codes x, y, z and 1-x, 1-y, -z).

For the synthesis and properties of quinolone derivatives, see Basuri et al. ( 2011); Feng et al. (2011); Guo et al. (2011); Liu et al. (2010); Sharma et al. (2010); Xu et al. (2007). For the cryogenic cooler used in the data collection, see Cosier & Glazer (1986). For hydrogen bonding, see Desiraju & Steiner (1999).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom-numbering scheme. The displacement parameters are shown at the 30% probability level.
[Figure 2] Fig. 2. Packing of the title molecules viewed along the a direction. The dashed lines indicate the hydrogen bonds.
7-{4-[(1,3-Benzodioxol-5-yl)methyl]piperazin-1-yl}-1-cyclopropyl-6- fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid top
Crystal data top
C25H24FN3O5Z = 2
Mr = 465.47F(000) = 488
Triclinic, P1Dx = 1.409 Mg m3
Hall symbol: -P 1Melting point = 511–512 K
a = 8.6200 (5) ÅCu Kα radiation, λ = 1.54180 Å
b = 9.7068 (9) ÅCell parameters from 6313 reflections
c = 13.7680 (13) Åθ = 3.4–66.9°
α = 79.089 (8)°µ = 0.88 mm1
β = 76.000 (6)°T = 118 K
γ = 87.939 (6)°Block, colourless
V = 1097.52 (16) Å30.55 × 0.35 × 0.15 mm
Data collection top
Oxford Gemini S Ultra Sapphire CCD
diffractometer
3876 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source3518 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.4713 pixels mm-1θmax = 67.0°, θmin = 3.4°
ω scansh = 810
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1111
Tmin = 0.645, Tmax = 0.880l = 1516
10407 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.3141P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3876 reflectionsΔρmax = 0.25 e Å3
311 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
93 constraintsExtinction coefficient: 0.0056 (6)
Primary atom site location: structure-invariant direct methods
Crystal data top
C25H24FN3O5γ = 87.939 (6)°
Mr = 465.47V = 1097.52 (16) Å3
Triclinic, P1Z = 2
a = 8.6200 (5) ÅCu Kα radiation
b = 9.7068 (9) ŵ = 0.88 mm1
c = 13.7680 (13) ÅT = 118 K
α = 79.089 (8)°0.55 × 0.35 × 0.15 mm
β = 76.000 (6)°
Data collection top
Oxford Gemini S Ultra Sapphire CCD
diffractometer
3876 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3518 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 0.880Rint = 0.024
10407 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.25 e Å3
3876 reflectionsΔρmin = 0.20 e Å3
311 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.57863 (9)0.83866 (7)0.04072 (5)0.0264 (2)
O20.99664 (10)0.51558 (9)0.18920 (7)0.0247 (2)
O31.16469 (11)0.30144 (10)0.21487 (7)0.0289 (2)
H31.115 (2)0.395 (2)0.2171 (14)0.043*
O41.11852 (12)0.10674 (10)0.09798 (8)0.0362 (3)
N50.25302 (12)0.83641 (10)0.31959 (8)0.0191 (2)
N60.75205 (12)0.29596 (10)0.08703 (8)0.0192 (2)
C70.71154 (14)0.43605 (12)0.05691 (9)0.0177 (3)
C80.79299 (14)0.51058 (13)0.03849 (9)0.0182 (3)
C90.59360 (14)0.50087 (13)0.12175 (9)0.0185 (3)
H90.54260.45000.18510.022*
C100.95480 (14)0.30413 (13)0.06705 (10)0.0206 (3)
N110.43402 (12)0.70790 (10)0.15591 (8)0.0188 (2)
C120.55067 (14)0.63977 (12)0.09375 (9)0.0178 (3)
O130.41707 (12)1.17463 (10)0.53985 (8)0.0342 (3)
O140.31968 (13)1.39049 (10)0.47811 (8)0.0345 (3)
C150.20577 (14)0.70110 (13)0.30375 (10)0.0219 (3)
H15a0.12850.71580.26200.026*
H15b0.15480.64450.36900.026*
C160.92076 (14)0.44720 (13)0.10431 (9)0.0193 (3)
C170.74649 (14)0.64957 (13)0.06867 (9)0.0197 (3)
H170.79690.70090.13200.024*
C180.62876 (14)0.70857 (12)0.00577 (9)0.0194 (3)
C190.14668 (15)1.29718 (14)0.38467 (10)0.0253 (3)
H190.10621.38350.36030.030*
C200.26908 (14)1.03395 (13)0.45990 (10)0.0230 (3)
H200.31000.94830.48510.028*
C210.10290 (15)1.17255 (14)0.36068 (10)0.0229 (3)
H210.03191.17680.31900.027*
C221.08468 (15)0.22684 (14)0.12629 (10)0.0248 (3)
C230.34835 (14)0.62297 (13)0.25215 (9)0.0200 (3)
H23a0.42030.59940.29700.024*
H23b0.31190.53620.23930.024*
C240.86751 (15)0.23478 (13)0.02508 (10)0.0211 (3)
H240.88920.14070.04580.025*
C250.25223 (15)1.28555 (13)0.44597 (10)0.0232 (3)
C260.11331 (14)0.90959 (13)0.36969 (10)0.0228 (3)
H26a0.05640.84820.43110.027*
H26b0.04150.93230.32460.027*
C270.16168 (14)1.04287 (13)0.39686 (9)0.0205 (3)
C280.47789 (14)0.84670 (12)0.17178 (10)0.0208 (3)
H28a0.52930.90370.10680.025*
H28b0.55280.83480.21510.025*
C290.32998 (15)0.91944 (13)0.22088 (10)0.0212 (3)
H29a0.35901.01110.22970.025*
H29b0.25590.93260.17700.025*
C300.31084 (14)1.15687 (14)0.48255 (10)0.0227 (3)
C310.66294 (15)0.21667 (13)0.18405 (10)0.0223 (3)
H310.55090.19600.18790.027*
C320.69772 (16)0.24489 (14)0.28023 (10)0.0251 (3)
H32a0.60860.24300.33910.030*
H32b0.78150.31240.27390.030*
C330.74586 (17)0.10871 (14)0.24508 (10)0.0270 (3)
H33a0.85870.09420.21780.032*
H33b0.68590.02480.28290.032*
C340.40629 (18)1.31863 (15)0.54924 (11)0.0308 (3)
H34a0.51251.35930.53460.037*
H34b0.35111.32710.61810.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0320 (4)0.0191 (4)0.0236 (4)0.0074 (3)0.0035 (3)0.0020 (3)
O20.0194 (4)0.0269 (5)0.0244 (5)0.0011 (4)0.0001 (4)0.0028 (4)
O30.0208 (5)0.0317 (5)0.0315 (5)0.0025 (4)0.0002 (4)0.0081 (4)
O40.0323 (6)0.0238 (5)0.0467 (6)0.0058 (4)0.0024 (5)0.0085 (4)
N50.0166 (5)0.0178 (5)0.0217 (5)0.0018 (4)0.0008 (4)0.0051 (4)
N60.0191 (5)0.0158 (5)0.0227 (5)0.0007 (4)0.0058 (4)0.0029 (4)
C70.0170 (6)0.0162 (6)0.0221 (6)0.0017 (4)0.0083 (5)0.0037 (5)
C80.0157 (6)0.0202 (6)0.0208 (6)0.0017 (5)0.0069 (5)0.0051 (5)
C90.0180 (6)0.0188 (6)0.0183 (6)0.0027 (5)0.0042 (5)0.0020 (5)
C100.0170 (6)0.0214 (6)0.0258 (7)0.0001 (5)0.0069 (5)0.0081 (5)
N110.0175 (5)0.0169 (5)0.0210 (5)0.0011 (4)0.0021 (4)0.0039 (4)
C120.0148 (6)0.0186 (6)0.0214 (6)0.0012 (4)0.0062 (5)0.0050 (5)
O130.0371 (6)0.0307 (5)0.0432 (6)0.0005 (4)0.0224 (5)0.0109 (4)
O140.0457 (6)0.0225 (5)0.0402 (6)0.0072 (4)0.0188 (5)0.0052 (4)
C150.0188 (6)0.0205 (6)0.0249 (6)0.0052 (5)0.0009 (5)0.0047 (5)
C160.0152 (6)0.0225 (6)0.0221 (6)0.0034 (5)0.0066 (5)0.0059 (5)
C170.0194 (6)0.0199 (6)0.0189 (6)0.0034 (5)0.0043 (5)0.0013 (5)
C180.0201 (6)0.0154 (6)0.0230 (6)0.0007 (5)0.0072 (5)0.0016 (5)
C190.0260 (7)0.0204 (6)0.0267 (7)0.0003 (5)0.0045 (5)0.0007 (5)
C200.0195 (6)0.0216 (6)0.0267 (7)0.0032 (5)0.0029 (5)0.0054 (5)
C210.0192 (6)0.0266 (7)0.0216 (6)0.0009 (5)0.0036 (5)0.0030 (5)
C220.0190 (6)0.0257 (7)0.0312 (7)0.0011 (5)0.0054 (5)0.0097 (6)
C230.0208 (6)0.0174 (6)0.0208 (6)0.0032 (5)0.0027 (5)0.0032 (5)
C240.0194 (6)0.0183 (6)0.0280 (7)0.0006 (5)0.0081 (5)0.0071 (5)
C250.0239 (6)0.0195 (6)0.0237 (6)0.0047 (5)0.0008 (5)0.0034 (5)
C260.0165 (6)0.0250 (7)0.0257 (7)0.0014 (5)0.0005 (5)0.0076 (5)
C270.0149 (6)0.0236 (6)0.0205 (6)0.0012 (5)0.0026 (5)0.0062 (5)
C280.0188 (6)0.0165 (6)0.0250 (6)0.0028 (5)0.0003 (5)0.0045 (5)
C290.0203 (6)0.0178 (6)0.0235 (6)0.0006 (5)0.0019 (5)0.0034 (5)
C300.0176 (6)0.0273 (7)0.0232 (6)0.0015 (5)0.0038 (5)0.0058 (5)
C310.0216 (6)0.0186 (6)0.0252 (7)0.0034 (5)0.0048 (5)0.0003 (5)
C320.0270 (7)0.0228 (6)0.0235 (7)0.0004 (5)0.0038 (5)0.0020 (5)
C330.0339 (7)0.0198 (6)0.0271 (7)0.0010 (5)0.0093 (6)0.0011 (5)
C340.0354 (8)0.0301 (7)0.0292 (7)0.0067 (6)0.0087 (6)0.0083 (6)
Geometric parameters (Å, º) top
F1—C181.3580 (14)C17—C181.3522 (17)
O2—C161.2657 (15)C19—H190.9300
O3—H30.992 (19)C19—C211.3998 (19)
O3—C221.3349 (17)C19—C251.3714 (19)
O4—C221.2061 (17)C20—H200.9300
N5—C151.4590 (15)C20—C271.4044 (18)
N5—C261.4673 (15)C20—C301.3700 (18)
N5—C291.4575 (16)C21—H210.9300
N6—C71.4020 (16)C21—C271.3886 (18)
N6—C241.3451 (16)C23—H23a0.9700
N6—C311.4573 (16)C23—H23b0.9700
C7—C81.4043 (17)C24—H240.9300
C7—C91.3978 (18)C25—C301.3816 (18)
C8—C161.4464 (17)C26—H26a0.9700
C8—C171.4082 (17)C26—H26b0.9700
C9—H90.9300C26—C271.5116 (17)
C9—C121.3927 (17)C28—H28a0.9700
C10—C161.4324 (18)C28—H28b0.9700
C10—C221.4870 (18)C28—C291.5100 (16)
C10—C241.3710 (18)C29—H29a0.9700
N11—C121.3896 (16)C29—H29b0.9700
N11—C231.4620 (15)C31—H310.9800
N11—C281.4812 (15)C31—C321.5013 (18)
C12—C181.4199 (17)C31—C331.4895 (18)
O13—C301.3794 (16)C32—H32a0.9700
O13—C341.4256 (17)C32—H32b0.9700
O14—C251.3817 (16)C32—C331.5031 (18)
O14—C341.4356 (18)C33—H33a0.9700
C15—H15a0.9700C33—H33b0.9700
C15—H15b0.9700C34—H34a0.9700
C15—C231.5182 (17)C34—H34b0.9700
C17—H170.9300
C22—O3—H3103.9 (10)C15—C23—H23a109.4
C15—N5—C26110.56 (9)C15—C23—H23b109.4
C29—N5—C15108.42 (9)H23a—C23—H23b108.0
C29—N5—C26110.61 (10)N6—C24—C10123.29 (12)
C7—N6—C31119.05 (10)N6—C24—H24118.4
C24—N6—C7120.11 (11)C10—C24—H24118.4
C24—N6—C31120.80 (10)C19—C25—O14128.82 (12)
N6—C7—C8118.99 (11)C19—C25—C30121.38 (12)
C9—C7—N6120.33 (11)C30—C25—O14109.78 (11)
C9—C7—C8120.67 (11)N5—C26—H26a109.3
C7—C8—C16121.34 (11)N5—C26—H26b109.3
C7—C8—C17118.00 (11)N5—C26—C27111.40 (10)
C17—C8—C16120.65 (11)H26a—C26—H26b108.0
C7—C9—H9119.2C27—C26—H26a109.3
C12—C9—C7121.58 (11)C27—C26—H26b109.3
C12—C9—H9119.2C20—C27—C26118.66 (11)
C16—C10—C22121.43 (11)C21—C27—C20119.83 (12)
C24—C10—C16120.38 (11)C21—C27—C26121.52 (12)
C24—C10—C22118.19 (12)N11—C28—H28a109.7
C12—N11—C23116.32 (10)N11—C28—H28b109.7
C12—N11—C28116.83 (9)N11—C28—C29109.89 (9)
C23—N11—C28110.59 (9)H28a—C28—H28b108.2
C9—C12—C18115.93 (11)C29—C28—H28a109.7
N11—C12—C9123.34 (11)C29—C28—H28b109.7
N11—C12—C18120.68 (11)N5—C29—C28110.38 (10)
C30—O13—C34105.55 (10)N5—C29—H29a109.6
C25—O14—C34105.13 (10)N5—C29—H29b109.6
N5—C15—H15a109.3C28—C29—H29a109.6
N5—C15—H15b109.3C28—C29—H29b109.6
N5—C15—C23111.63 (10)H29a—C29—H29b108.1
H15a—C15—H15b108.0O13—C30—C25109.77 (11)
C23—C15—H15a109.3C20—C30—O13127.45 (12)
C23—C15—H15b109.3C20—C30—C25122.75 (12)
O2—C16—C8121.28 (11)N6—C31—H31115.7
O2—C16—C10122.92 (11)N6—C31—C32118.35 (10)
C10—C16—C8115.81 (11)N6—C31—C33119.73 (11)
C8—C17—H17119.9C32—C31—H31115.7
C18—C17—C8120.14 (11)C33—C31—H31115.7
C18—C17—H17119.9C33—C31—C3260.34 (9)
F1—C18—C12118.11 (10)C31—C32—H32a117.8
C17—C18—F1118.36 (11)C31—C32—H32b117.8
C17—C18—C12123.49 (11)C31—C32—C3359.44 (8)
C21—C19—H19121.7H32a—C32—H32b115.0
C25—C19—H19121.7C33—C32—H32a117.8
C25—C19—C21116.60 (12)C33—C32—H32b117.8
C27—C20—H20121.5C31—C33—C3260.22 (9)
C30—C20—H20121.5C31—C33—H33a117.7
C30—C20—C27117.07 (12)C31—C33—H33b117.7
C19—C21—H21118.8C32—C33—H33a117.7
C27—C21—C19122.37 (12)C32—C33—H33b117.7
C27—C21—H21118.8H33a—C33—H33b114.9
O3—C22—C10114.69 (11)O13—C34—O14108.06 (10)
O4—C22—O3121.37 (12)O13—C34—H34a110.1
O4—C22—C10123.93 (12)O13—C34—H34b110.1
N11—C23—C15111.08 (10)O14—C34—H34a110.1
N11—C23—H23a109.4O14—C34—H34b110.1
N11—C23—H23b109.4H34a—C34—H34b108.4
N5—C15—C23—N1155.89 (14)C19—C25—C30—O13178.54 (11)
N5—C26—C27—C2057.52 (15)C19—C25—C30—C200.5 (2)
N5—C26—C27—C21122.24 (12)C21—C19—C25—O14177.31 (12)
N6—C7—C8—C162.09 (17)C21—C19—C25—C300.51 (19)
N6—C7—C8—C17177.82 (10)C22—C10—C16—O20.78 (18)
N6—C7—C9—C12179.86 (10)C22—C10—C16—C8179.11 (10)
N6—C31—C32—C33109.95 (13)C22—C10—C24—N6177.03 (11)
N6—C31—C33—C32107.70 (13)C23—N11—C12—C93.85 (16)
C7—N6—C24—C102.42 (18)C23—N11—C12—C18173.30 (10)
C7—N6—C31—C3275.97 (14)C23—N11—C28—C2956.22 (13)
C7—N6—C31—C33146.14 (11)C24—N6—C7—C80.10 (17)
C7—C8—C16—O2178.28 (10)C24—N6—C7—C9178.88 (11)
C7—C8—C16—C101.61 (17)C24—N6—C31—C32106.58 (13)
C7—C8—C17—C181.25 (17)C24—N6—C31—C3336.42 (17)
C7—C9—C12—N11179.93 (11)C24—C10—C16—O2179.31 (11)
C7—C9—C12—C182.66 (17)C24—C10—C16—C80.80 (17)
C8—C7—C9—C121.18 (18)C24—C10—C22—O3179.72 (11)
C8—C17—C18—F1174.85 (10)C24—C10—C22—O40.3 (2)
C8—C17—C18—C122.83 (19)C25—O14—C34—O1312.86 (14)
C9—C7—C8—C16176.89 (10)C25—C19—C21—C270.29 (18)
C9—C7—C8—C173.21 (17)C26—N5—C15—C23179.89 (10)
C9—C12—C18—F1172.94 (10)C26—N5—C29—C28177.45 (10)
C9—C12—C18—C174.75 (18)C27—C20—C30—O13177.87 (12)
N11—C12—C18—F14.41 (17)C27—C20—C30—C250.16 (18)
N11—C12—C18—C17177.90 (11)C28—N11—C12—C9129.76 (12)
N11—C28—C29—N560.54 (13)C28—N11—C12—C1853.09 (15)
C12—N11—C23—C15169.84 (10)C28—N11—C23—C1553.80 (13)
C12—N11—C28—C29167.66 (10)C29—N5—C15—C2358.71 (13)
O14—C25—C30—O130.34 (14)C29—N5—C26—C2765.90 (13)
O14—C25—C30—C20177.73 (11)C30—O13—C34—O1412.70 (14)
C15—N5—C26—C27174.00 (10)C30—C20—C27—C210.06 (17)
C15—N5—C29—C2861.18 (12)C30—C20—C27—C26179.70 (11)
C16—C8—C17—C18178.84 (11)C31—N6—C7—C8177.36 (10)
C16—C10—C22—O30.20 (17)C31—N6—C7—C93.66 (16)
C16—C10—C22—O4179.57 (12)C31—N6—C24—C10179.84 (11)
C16—C10—C24—N62.89 (19)C34—O13—C30—C20174.34 (13)
C17—C8—C16—O21.81 (18)C34—O13—C30—C257.71 (14)
C17—C8—C16—C10178.30 (11)C34—O14—C25—C19173.81 (13)
C19—C21—C27—C200.01 (18)C34—O14—C25—C308.17 (14)
C19—C21—C27—C26179.77 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.992 (19)1.563 (19)2.5215 (13)161.1 (17)
C20—H20···O13i0.932.583.3206 (17)137
C28—H28a···F10.972.182.8587 (15)126
C32—H32b···O2ii0.972.493.4144 (16)158
C34—H34b···O3iii0.972.443.3853 (18)165
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+1, z; (iii) x1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC25H24FN3O5
Mr465.47
Crystal system, space groupTriclinic, P1
Temperature (K)118
a, b, c (Å)8.6200 (5), 9.7068 (9), 13.7680 (13)
α, β, γ (°)79.089 (8), 76.000 (6), 87.939 (6)
V3)1097.52 (16)
Z2
Radiation typeCu Kα
µ (mm1)0.88
Crystal size (mm)0.55 × 0.35 × 0.15
Data collection
DiffractometerOxford Gemini S Ultra Sapphire CCD
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.645, 0.880
No. of measured, independent and
observed [I > 2σ(I)] reflections
10407, 3876, 3518
Rint0.024
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.04
No. of reflections3876
No. of parameters311
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.20

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.992 (19)1.563 (19)2.5215 (13)161.1 (17)
C20—H20···O13i0.932.583.3206 (17)137.0
C28—H28a···F10.972.182.8587 (15)125.8
C32—H32b···O2ii0.972.493.4144 (16)158.4
C34—H34b···O3iii0.972.443.3853 (18)164.6
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+1, z; (iii) x1, y+1, z+1.
 

Acknowledgements

This work was supported by New Teachers' Fund for Doctor Stations, Ministry of Education (20101106120032) and the IMB Research Foundation.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBasuri, T. S., Vishal, M. & Thakar, P. M. (2011). J. Pharm. Res. 4, 1294–1297.  CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13. New York: International Union of Crystallography and Oxford University Press Inc.  Google Scholar
First citationFeng, L.-S., Liu, M.-L., Zhang, S., Chai, Y., Wang, B., Zhang, Y.-B., Lv, K., Guan, Y., Guo, H.-Y. & Xiao, C.-L. (2011). Eur. J. Med. Chem. 46, 341–348.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGuo, Q., Liu, M.-L., Feng, L.-S., Lv, K., Guan, Y., Guo, H.-Y. & Xiao, C.-L. (2011). Arch. Pharm. Chem. Life Sci. 344, 802–809.  Web of Science CrossRef CAS Google Scholar
First citationLiu, M.-L., Feng, L.-S., Chai, Y., Guo, H.-Y. & Xiao, C.-L. (2010). Chin. J. New Drugs, 19, 190–198.  CAS Google Scholar
First citationSharma, P. C., Jain, A., Jain, S., Pahwa, R. & Yar, M. S. (2010). J. Enz. Med. Chem. 25, 577–589.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H.-T., Tao, F.-R., Liang, Y.-Z., Wang, G.-X., Zou, Y.-L., Hu, Y.-J. & Zhang, X.-Z. (2007). Chin. J. Infect. Chemother. 7, 92–95.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds