metal-organic compounds
A second monoclinic polymorph of di-μ-chlorido-bis(chlorido{2-[(4-ethylphenyl)iminomethyl]pyridine-κ2N,N′}copper(II))
aDepartment of Chemistry, Islamic Azad University, Buinzahra Branch, Qazvin, Iran, bDepartment of Chemistry, Alzahra University, Tehran, Iran, cDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran, and dDepartment of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: khalaj_mehdi@yahoo.com
The title compound, [Cu2Cl4(C14H14N2)2], is a new polymorph of a previously reported compound [Dehghanpour et al. (2011). Acta Cryst. E67, m1296]. The current polymorph was obtained from an acetonitrile solution of the title compound. Like the first polymorph, it is monoclinic (space group P21/c). The unique CuII ion in the title centrosymmetric dinuclear complex is in a distorted trigonal–bipyramidal coordination environment formed by the bis-chelating N-heterocyclic ligand, two bridging Cl ligands and one terminal Cl ligand. In the crystal, weak C—H⋯Cl hydrogen bonds are observed in addition to π–π stacking interactions, with a centroid–centroid distance of 3.6597 (18) Å.
Related literature
For the synthesis of the ligand, see: Dehghanpour et al. (2009). For background to diimine complexes and related structures, see: Dehghanpour et al. (2011); Salehzadeh et al. (2011). For an index of trigonality as a general descriptor of five-coordinate complexes, see: Addison et al. (1984).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2002); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536812026347/fb2253sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812026347/fb2253Isup2.hkl
The title complex was prepared by the reaction of CuCl2 (13.4 mg, 0.1 mmol) and (4-methylphenyl)pyridin-2-ylmethyleneamine (21.0 mg, 0.1) in 15 ml of acetonitrile at room temperature. The solution was allowed to stand at room temperature and orange block-shaped crystal of the title compound suitable for X-ray analysis precipitated within few days.
All the H atoms were located in the difference
Nevertheless, the H atoms were constrained and refined in the riding motion approximation: Caryl—H = 0.95, Cmethylene—H = 0.99, Cmethyl—H = 0.98 Å. Uiso(Haryl/methylene) = 1.2 × Ueq(Ccarrier) and Uiso(Hmethyl) = 1.5 × Ueq(Ccarrier).The
of a polymorph of the title compound has previously been reported (Dehghanpour et al., 2011). In the course of our studies on the synthesis, structural and spectroscopic characterization of transition metal complexes with diimine ligands (Dehghanpour et al., 2009; Salehzadeh et al., 2011) a new polymorph of the title compound was obtained.The title complex is shown in Fig. 1. The most significant structural difference between this structure and the polymorph (Dehghanpour et al., 2011) is the coordination environment of the CuII ion. The structural index τ, (Addison et al., 1984) which is a measure of trigonal distortion, is 0.75 for the title structure indicating a distorted trigonal-bipyramidal environment of Cu(II) for the title compound. The value of τ is 0.21 for the other polymorph with a distorted square-planar coordination enviroment. These differences are shown in Fig. 2.
The interplanar angles between the benzene and pyridine rings in the title structure is 12.40 (15)° whereas this angle is 43.02 (13)° in the polymorph determined by Dehghanpour et al. (2011).
In the crystal, weak C—H···Cl hydrogen bonds are observed in addition to π–π stacking interactions with a centroid to centroid distance of 3.6597 (18)Å for Cg1···Cg2i (where Cg1 and Cg2 are centroids of the N1-C1-C5 and C7-C12 rings; symmetry code: 1+x, y, z).
For the synthesis of the ligand, see: Dehghanpour et al. (2009). For background to diimine complexes and related structures, see: Dehghanpour et al. (2011); Salehzadeh et al. (2011). For an index of trigonality as a general descriptor of five-coordinate complexes, see: Addison et al. (1984).
Data collection: COLLECT (Nonius, 2002); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu2Cl4(C14H14N2)2] | F(000) = 700 |
Mr = 689.42 | Dx = 1.609 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4440 reflections |
a = 7.8480 (4) Å | θ = 2.6–27.5° |
b = 13.7160 (6) Å | µ = 1.90 mm−1 |
c = 14.4601 (7) Å | T = 150 K |
β = 113.924 (3)° | Block, orange |
V = 1422.80 (12) Å3 | 0.30 × 0.25 × 0.20 mm |
Z = 2 |
Nonius KappaCCD diffractometer | 3249 independent reflections |
Radiation source: fine-focus sealed tube | 2399 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 2.8° |
φ scans and ω scans with κ offsets | h = −10→10 |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | k = −17→15 |
Tmin = 0.581, Tmax = 0.689 | l = −12→18 |
7862 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0441P)2 + 0.8729P] where P = (Fo2 + 2Fc2)/3 |
3249 reflections | (Δ/σ)max = 0.001 |
173 parameters | Δρmax = 0.76 e Å−3 |
0 restraints | Δρmin = −0.70 e Å−3 |
55 constraints |
[Cu2Cl4(C14H14N2)2] | V = 1422.80 (12) Å3 |
Mr = 689.42 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.8480 (4) Å | µ = 1.90 mm−1 |
b = 13.7160 (6) Å | T = 150 K |
c = 14.4601 (7) Å | 0.30 × 0.25 × 0.20 mm |
β = 113.924 (3)° |
Nonius KappaCCD diffractometer | 3249 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | 2399 reflections with I > 2σ(I) |
Tmin = 0.581, Tmax = 0.689 | Rint = 0.045 |
7862 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.76 e Å−3 |
3249 reflections | Δρmin = −0.70 e Å−3 |
173 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.50129 (5) | 0.45502 (2) | 0.61249 (3) | 0.02458 (13) | |
Cl1 | 0.60970 (11) | 0.59376 (5) | 0.56397 (5) | 0.0301 (2) | |
Cl2 | 0.33826 (11) | 0.53968 (5) | 0.68632 (6) | 0.03089 (19) | |
N1 | 0.7670 (3) | 0.40393 (17) | 0.70183 (18) | 0.0239 (5) | |
N2 | 0.4320 (3) | 0.32164 (16) | 0.64881 (17) | 0.0227 (5) | |
C1 | 0.9333 (4) | 0.4446 (2) | 0.7264 (2) | 0.0290 (7) | |
H1A | 0.9403 | 0.5066 | 0.6987 | 0.035* | |
C2 | 1.0974 (4) | 0.4000 (2) | 0.7912 (2) | 0.0329 (7) | |
H2A | 1.2139 | 0.4315 | 0.8077 | 0.040* | |
C3 | 1.0897 (4) | 0.3100 (2) | 0.8311 (2) | 0.0337 (7) | |
H3A | 1.2003 | 0.2784 | 0.8757 | 0.040* | |
C4 | 0.9176 (4) | 0.2662 (2) | 0.8049 (2) | 0.0342 (7) | |
H4A | 0.9079 | 0.2034 | 0.8301 | 0.041* | |
C5 | 0.7598 (4) | 0.3157 (2) | 0.7415 (2) | 0.0265 (6) | |
C6 | 0.5738 (4) | 0.2752 (2) | 0.7108 (2) | 0.0287 (7) | |
H6A | 0.5573 | 0.2140 | 0.7368 | 0.034* | |
C7 | 0.2496 (4) | 0.2788 (2) | 0.6146 (2) | 0.0262 (6) | |
C8 | 0.2256 (5) | 0.1806 (2) | 0.6308 (3) | 0.0442 (9) | |
H8A | 0.3310 | 0.1398 | 0.6634 | 0.053* | |
C9 | 0.0487 (5) | 0.1429 (3) | 0.5996 (3) | 0.0530 (11) | |
H9A | 0.0340 | 0.0758 | 0.6111 | 0.064* | |
C10 | −0.1092 (4) | 0.1998 (2) | 0.5515 (3) | 0.0368 (8) | |
C11 | −0.0829 (4) | 0.2962 (2) | 0.5328 (2) | 0.0302 (7) | |
H11A | −0.1883 | 0.3364 | 0.4983 | 0.036* | |
C12 | 0.0946 (4) | 0.3355 (2) | 0.5634 (2) | 0.0279 (7) | |
H12A | 0.1094 | 0.4018 | 0.5491 | 0.033* | |
C13 | −0.3033 (5) | 0.1564 (3) | 0.5204 (3) | 0.0522 (10) | |
H13A | −0.3205 | 0.1371 | 0.5821 | 0.063* | |
H13B | −0.3971 | 0.2072 | 0.4854 | 0.063* | |
C14 | −0.3384 (6) | 0.0684 (3) | 0.4514 (3) | 0.0581 (11) | |
H14A | −0.4675 | 0.0465 | 0.4307 | 0.087* | |
H14B | −0.2532 | 0.0156 | 0.4876 | 0.087* | |
H14C | −0.3170 | 0.0862 | 0.3913 | 0.087* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0276 (2) | 0.01543 (19) | 0.0310 (2) | −0.00135 (14) | 0.01221 (17) | 0.00164 (14) |
Cl1 | 0.0399 (4) | 0.0189 (4) | 0.0290 (4) | −0.0081 (3) | 0.0116 (3) | 0.0005 (3) |
Cl2 | 0.0375 (4) | 0.0188 (4) | 0.0416 (4) | −0.0010 (3) | 0.0214 (4) | −0.0044 (3) |
N1 | 0.0276 (13) | 0.0190 (12) | 0.0258 (13) | −0.0006 (11) | 0.0116 (11) | 0.0015 (10) |
N2 | 0.0259 (13) | 0.0171 (12) | 0.0258 (13) | −0.0004 (10) | 0.0113 (10) | −0.0018 (10) |
C1 | 0.0290 (16) | 0.0277 (16) | 0.0307 (17) | −0.0014 (13) | 0.0127 (14) | 0.0044 (13) |
C2 | 0.0263 (16) | 0.0390 (18) | 0.0329 (18) | −0.0026 (15) | 0.0114 (14) | 0.0017 (14) |
C3 | 0.0287 (17) | 0.0326 (17) | 0.0346 (18) | 0.0042 (14) | 0.0074 (14) | 0.0065 (14) |
C4 | 0.0360 (18) | 0.0232 (15) | 0.0378 (18) | 0.0020 (15) | 0.0094 (15) | 0.0050 (14) |
C5 | 0.0298 (16) | 0.0205 (14) | 0.0299 (16) | 0.0022 (13) | 0.0127 (13) | 0.0014 (12) |
C6 | 0.0322 (17) | 0.0186 (14) | 0.0345 (17) | 0.0005 (13) | 0.0127 (14) | 0.0043 (13) |
C7 | 0.0268 (15) | 0.0233 (15) | 0.0298 (16) | −0.0013 (13) | 0.0126 (13) | 0.0006 (12) |
C8 | 0.0275 (18) | 0.0250 (17) | 0.069 (3) | 0.0008 (15) | 0.0081 (17) | 0.0166 (17) |
C9 | 0.0330 (19) | 0.0299 (19) | 0.082 (3) | −0.0036 (16) | 0.009 (2) | 0.0176 (19) |
C10 | 0.0278 (17) | 0.0346 (19) | 0.047 (2) | −0.0026 (15) | 0.0136 (15) | 0.0002 (15) |
C11 | 0.0265 (16) | 0.0283 (16) | 0.0328 (17) | 0.0048 (13) | 0.0090 (14) | −0.0013 (13) |
C12 | 0.0300 (16) | 0.0193 (14) | 0.0317 (17) | 0.0016 (13) | 0.0097 (13) | 0.0000 (12) |
C13 | 0.033 (2) | 0.042 (2) | 0.076 (3) | −0.0026 (17) | 0.0158 (19) | 0.004 (2) |
C14 | 0.048 (2) | 0.072 (3) | 0.048 (2) | −0.023 (2) | 0.0130 (19) | −0.003 (2) |
Cu1—N2 | 2.037 (2) | C6—H6A | 0.9500 |
Cu1—N1 | 2.079 (2) | C7—C12 | 1.379 (4) |
Cu1—Cl2 | 2.2876 (8) | C7—C8 | 1.393 (4) |
Cu1—Cl1 | 2.3067 (8) | C8—C9 | 1.375 (5) |
Cu1—Cl1i | 2.4321 (8) | C8—H8A | 0.9500 |
Cl1—Cu1i | 2.4321 (8) | C9—C10 | 1.389 (5) |
N1—C1 | 1.328 (4) | C9—H9A | 0.9500 |
N1—C5 | 1.350 (4) | C10—C11 | 1.382 (4) |
N2—C6 | 1.280 (4) | C10—C13 | 1.523 (5) |
N2—C7 | 1.437 (4) | C11—C12 | 1.388 (4) |
C1—C2 | 1.390 (4) | C11—H11A | 0.9500 |
C1—H1A | 0.9500 | C12—H12A | 0.9500 |
C2—C3 | 1.374 (4) | C13—C14 | 1.520 (6) |
C2—H2A | 0.9500 | C13—H13A | 0.9900 |
C3—C4 | 1.384 (4) | C13—H13B | 0.9900 |
C3—H3A | 0.9500 | C14—H14A | 0.9800 |
C4—C5 | 1.383 (4) | C14—H14B | 0.9800 |
C4—H4A | 0.9500 | C14—H14C | 0.9800 |
C5—C6 | 1.453 (4) | ||
N2—Cu1—N1 | 80.94 (9) | N2—C6—H6A | 119.9 |
N2—Cu1—Cl2 | 94.43 (7) | C5—C6—H6A | 119.9 |
N1—Cu1—Cl2 | 119.40 (7) | C12—C7—C8 | 119.1 (3) |
N2—Cu1—Cl1 | 171.55 (7) | C12—C7—N2 | 119.5 (3) |
N1—Cu1—Cl1 | 93.80 (7) | C8—C7—N2 | 121.4 (3) |
Cl2—Cu1—Cl1 | 93.91 (3) | C9—C8—C7 | 119.7 (3) |
N2—Cu1—Cl1i | 90.23 (7) | C9—C8—H8A | 120.1 |
N1—Cu1—Cl1i | 113.66 (7) | C7—C8—H8A | 120.1 |
Cl2—Cu1—Cl1i | 126.81 (3) | C8—C9—C10 | 122.0 (3) |
Cl1—Cu1—Cl1i | 85.82 (3) | C8—C9—H9A | 119.0 |
Cu1—Cl1—Cu1i | 94.18 (3) | C10—C9—H9A | 119.0 |
C1—N1—C5 | 118.0 (3) | C11—C10—C9 | 117.5 (3) |
C1—N1—Cu1 | 130.8 (2) | C11—C10—C13 | 121.8 (3) |
C5—N1—Cu1 | 111.22 (19) | C9—C10—C13 | 120.7 (3) |
C6—N2—C7 | 119.9 (2) | C10—C11—C12 | 121.3 (3) |
C6—N2—Cu1 | 112.36 (19) | C10—C11—H11A | 119.3 |
C7—N2—Cu1 | 127.69 (18) | C12—C11—H11A | 119.3 |
N1—C1—C2 | 122.4 (3) | C7—C12—C11 | 120.3 (3) |
N1—C1—H1A | 118.8 | C7—C12—H12A | 119.9 |
C2—C1—H1A | 118.8 | C11—C12—H12A | 119.9 |
C3—C2—C1 | 119.5 (3) | C14—C13—C10 | 113.4 (3) |
C3—C2—H2A | 120.3 | C14—C13—H13A | 108.9 |
C1—C2—H2A | 120.3 | C10—C13—H13A | 108.9 |
C2—C3—C4 | 118.6 (3) | C14—C13—H13B | 108.9 |
C2—C3—H3A | 120.7 | C10—C13—H13B | 108.9 |
C4—C3—H3A | 120.7 | H13A—C13—H13B | 107.7 |
C5—C4—C3 | 118.7 (3) | C13—C14—H14A | 109.5 |
C5—C4—H4A | 120.7 | C13—C14—H14B | 109.5 |
C3—C4—H4A | 120.7 | H14A—C14—H14B | 109.5 |
N1—C5—C4 | 122.8 (3) | C13—C14—H14C | 109.5 |
N1—C5—C6 | 115.0 (3) | H14A—C14—H14C | 109.5 |
C4—C5—C6 | 122.2 (3) | H14B—C14—H14C | 109.5 |
N2—C6—C5 | 120.3 (3) | ||
N2—Cu1—Cl1—Cu1i | 62.3 (5) | Cu1—N1—C5—C4 | −179.1 (2) |
N1—Cu1—Cl1—Cu1i | 113.48 (7) | C1—N1—C5—C6 | −179.5 (3) |
Cl2—Cu1—Cl1—Cu1i | −126.67 (3) | Cu1—N1—C5—C6 | 2.2 (3) |
Cl1i—Cu1—Cl1—Cu1i | 0.0 | C3—C4—C5—N1 | 1.7 (5) |
N2—Cu1—N1—C1 | 178.7 (3) | C3—C4—C5—C6 | −179.7 (3) |
Cl2—Cu1—N1—C1 | −91.4 (3) | C7—N2—C6—C5 | 176.6 (3) |
Cl1—Cu1—N1—C1 | 5.3 (3) | Cu1—N2—C6—C5 | −4.4 (4) |
Cl1i—Cu1—N1—C1 | 92.4 (3) | N1—C5—C6—N2 | 1.5 (4) |
N2—Cu1—N1—C5 | −3.39 (19) | C4—C5—C6—N2 | −177.3 (3) |
Cl2—Cu1—N1—C5 | 86.6 (2) | C6—N2—C7—C12 | 168.0 (3) |
Cl1—Cu1—N1—C5 | −176.73 (19) | Cu1—N2—C7—C12 | −10.8 (4) |
Cl1i—Cu1—N1—C5 | −89.63 (19) | C6—N2—C7—C8 | −12.8 (4) |
N1—Cu1—N2—C6 | 4.2 (2) | Cu1—N2—C7—C8 | 168.4 (3) |
Cl2—Cu1—N2—C6 | −114.9 (2) | C12—C7—C8—C9 | −2.7 (5) |
Cl1—Cu1—N2—C6 | 56.1 (6) | N2—C7—C8—C9 | 178.1 (3) |
Cl1i—Cu1—N2—C6 | 118.1 (2) | C7—C8—C9—C10 | 0.1 (6) |
N1—Cu1—N2—C7 | −176.9 (2) | C8—C9—C10—C11 | 2.1 (6) |
Cl2—Cu1—N2—C7 | 64.0 (2) | C8—C9—C10—C13 | −178.3 (4) |
Cl1—Cu1—N2—C7 | −125.0 (4) | C9—C10—C11—C12 | −1.8 (5) |
Cl1i—Cu1—N2—C7 | −63.0 (2) | C13—C10—C11—C12 | 178.6 (3) |
C5—N1—C1—C2 | −0.4 (4) | C8—C7—C12—C11 | 2.9 (5) |
Cu1—N1—C1—C2 | 177.5 (2) | N2—C7—C12—C11 | −177.8 (3) |
N1—C1—C2—C3 | 0.6 (5) | C10—C11—C12—C7 | −0.7 (5) |
C1—C2—C3—C4 | 0.3 (5) | C11—C10—C13—C14 | 123.0 (4) |
C2—C3—C4—C5 | −1.4 (5) | C9—C10—C13—C14 | −56.6 (5) |
C1—N1—C5—C4 | −0.8 (4) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···Cl1 | 0.95 | 2.80 | 3.364 (3) | 119 |
C2—H2A···Cl2ii | 0.95 | 2.76 | 3.445 (3) | 130 |
C6—H6A···Cl2iii | 0.95 | 2.62 | 3.506 (3) | 155 |
C12—H12A···Cl2 | 0.95 | 2.80 | 3.450 (3) | 126 |
Symmetry codes: (ii) x+1, y, z; (iii) −x+1, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu2Cl4(C14H14N2)2] |
Mr | 689.42 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 7.8480 (4), 13.7160 (6), 14.4601 (7) |
β (°) | 113.924 (3) |
V (Å3) | 1422.80 (12) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.90 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995) |
Tmin, Tmax | 0.581, 0.689 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7862, 3249, 2399 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.102, 1.05 |
No. of reflections | 3249 |
No. of parameters | 173 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.76, −0.70 |
Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···Cl1 | 0.95 | 2.80 | 3.364 (3) | 119 |
C2—H2A···Cl2i | 0.95 | 2.76 | 3.445 (3) | 130 |
C6—H6A···Cl2ii | 0.95 | 2.62 | 3.506 (3) | 155 |
C12—H12A···Cl2 | 0.95 | 2.80 | 3.450 (3) | 126. |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, y−1/2, −z+3/2. |
Acknowledgements
The authors would like to acknowledge the Islamic Azad and Alzahra University Research Councils for partial support of this work.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dehghanpour, S., Khalaj, M. & Mahmoudi, A. (2009). Polyhedron, 28, 1205–1210. Web of Science CSD CrossRef CAS Google Scholar
Dehghanpour, S., Mahmoudi, A., Khalaj, M., Abbasi, S. & Mojahed, F. (2011). Acta Cryst. E67, m1296. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Salehzadeh, S., Dehghanpour, S., Khalaj, M. & Rahimishakiba, M. (2011). Acta Cryst. E67, m327. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The crystal structure of a polymorph of the title compound has previously been reported (Dehghanpour et al., 2011). In the course of our studies on the synthesis, structural and spectroscopic characterization of transition metal complexes with diimine ligands (Dehghanpour et al., 2009; Salehzadeh et al., 2011) a new polymorph of the title compound was obtained.
The title complex is shown in Fig. 1. The most significant structural difference between this structure and the polymorph (Dehghanpour et al., 2011) is the coordination environment of the CuII ion. The structural index τ, (Addison et al., 1984) which is a measure of trigonal distortion, is 0.75 for the title structure indicating a distorted trigonal-bipyramidal environment of Cu(II) for the title compound. The value of τ is 0.21 for the other polymorph with a distorted square-planar coordination enviroment. These differences are shown in Fig. 2.
The interplanar angles between the benzene and pyridine rings in the title structure is 12.40 (15)° whereas this angle is 43.02 (13)° in the polymorph determined by Dehghanpour et al. (2011).
In the crystal, weak C—H···Cl hydrogen bonds are observed in addition to π–π stacking interactions with a centroid to centroid distance of 3.6597 (18)Å for Cg1···Cg2i (where Cg1 and Cg2 are centroids of the N1-C1-C5 and C7-C12 rings; symmetry code: 1+x, y, z).