organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(Adamantan-1-yl)-3-[(4-benzyl­piperazin-1-yl)meth­yl]-1,3,4-oxa­diazole-2(3H)-thione

aCollege of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and bDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo – CINN, C/ Julián Clavería, 8, 33006 Oviedo, Asturias, Spain
*Correspondence e-mail: sgg@uniovi.es

(Received 1 June 2012; accepted 15 June 2012; online 23 June 2012)

The mol­ecule of the title compound, C24H32N4OS, is a functionalized 1,3,4-oxadiazole-2-thione with substituted piperazine and adamantanyl substituents attached at the 3- and 5-positions, respectively, of the oxadiazole spacer with an approximately C-shaped conformation. In the crystal, mol­ecules form dimers via C—H⋯S inter­action. The piperazine ring has a chair conformation; the substituents S, methyl­ene C and adamantane C of the essentially planar oxadiazole ring are approximately in the same plane, with distances of −0.046 (2), −0.085 (5) and 0.003 (4) Å, respectively. The dihedral angle between the planes of the phenyl and oxadiazole rings is 31.3 (3)°.

Related literature

For the biological activity of adamantyl-1,3,4-oxadiazole derivatives, see: Kadi et al. (2007[Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.], 2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El- Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]); Al-Deeb et al. (2006[Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40-47.]), Vernier et al. (1969[Vernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642-665.]), El-Emam & Ibrahim (1991[El-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug. Res. 41, 1260-1264.]). For the synthesis of the title compound, see: El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]). For related adamantane structures, see: Almutairi et al. (2012[Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.]); Al-Tamimi et al. (2010[Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.]); Al-Abdullah et al. (2012[Al-Abdullah, E. S., Asiri, H. H., El-Emam, A. & Ng, S. W. (2012). Acta Cryst. E68, o344.]). For related 1,3,4-oxadiazole structures, see: Fun et al. (2011[Fun, H.-K., Arshad, S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Acta Cryst. E67, o3372.]); El-Emam et al. (2012[El-Emam, A. A., Kadi, A. A., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o795.]).

[Scheme 1]

Experimental

Crystal data
  • C24H32N4OS

  • Mr = 424.61

  • Monoclinic, P 21 /c

  • a = 11.6417 (9) Å

  • b = 17.198 (2) Å

  • c = 12.774 (1) Å

  • β = 115.06 (1)°

  • V = 2316.8 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.41 mm−1

  • T = 293 K

  • 0.11 × 0.09 × 0.02 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.857, Tmax = 0.975

  • 9969 measured reflections

  • 4368 independent reflections

  • 2049 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.219

  • S = 1.01

  • 4368 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯S1i 0.97 2.97 3.652 (5) 128 (1)
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Considerable attention has been devoted to adamantane derivatives, which have been known for their diverse biological properties as antiviral against the influenza (Vernier et al., 1969) and HIV viruses (El-Emam et al., 2004). Moreover, adamantane derivatives were recently reported to exhibit remarkable antibacterial (Kadi et al., 2007, 2010) and anti-inflammatory (El-Emam & Ibrahim, 1991) activities. In an earlier publication (El-Emam et al., 2004), we reported the synthesis and potent antimicrobial and antiviral activities of a series of 1-adamantyl-1,3,4-oxadiazoles and related derivatives including the title compound (I).

Molecules of the title compound form dimers connected to each other through C5—H5B···S1 with distance 3.652 (4) Å and bond angle 128.2 (3)°. The planar oxadiazole ring includes S1, C3 and C15 approximately in the same plane with distances -0.046 (2) Å, -0.085 (5) Å and 0.003 (4) Å respectively. The plane defined by the phenyl ring contains C8 with distance 0.021 (5) A°. These planar structures do not deviate significantly from planarity and the dihedral angle between the two planes is 31.3 (3)°.

Related literature top

For the biological activity of adamantyl-1,3,4-oxadiazole derivatives, see: Kadi et al. (2007, 2010); Al-Deeb et al. (2006), Vernier et al. (1969), El-Emam & Ibrahim (1991). For the synthesis of the title compound, see: El-Emam et al. (2004). For related adamantane structures, see: Almutairi et al. (2012); Al-Tamimi et al. (2010); Al-Abdullah et al. (2012). For related 1,3,4-oxadiazole structures, see: Fun et al. (2011); El-Emam et al. (2012).

Experimental top

A mixture of 5-(Adamantan-1-yl)-1,3,4-oxadiazole-2-thiol (2.36 g, 0.01 mol), N-benzylpiperazine (1.76 g, 0.01 mol) and 37% formaldehyde solution (1.5 ml), in ethanol (15 ml), was stirred at room temperature for 2 h. and allowed to stand overnight. The precipitated crude product was filtered, washed with water, dried, and crystallized from ethanol to yield 3.18 g (75%) of the title compound I (C24H32N4OS) as fine colorless needles crystals. M.p. 127–129 °C. Single crystals suitable for X-ray analysis were obtained by slow evaporation of the compound solution in chloroform-ethanol (1:1; 10 ml) at room temperature. 1H NMR (CDCl3, 500.13 MHz): δ 1.72–1.75 (m, 6H, Adamantane-H), 1.99 (s, 6H, Adamantane-H), 2.11 (s, 3H, Adamantane-H), 2.49 (t, 4H, Piperazine-CH2), 2.85 (t, 4H, Piperazine-CH2), 3.52 (s, 2H, CH2Ph), 4.98 (s, 2H, CH2), 7.25–7.34 (m, 5H, Ar—H). 13C NMR (CDCl3, 125.76 MHz): δ 27.48, 34.36, 36.11, 39.11 (Adamantane-C), 50.20, 52.94 (Piperazine-C), 63.14 (CH2Ph), 69.99 (CH2), 127.16, 128.16, 129.29, 137.74 (Ar—C), 167.76 (Oxadiazole C=N), 178.62 (C=S).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). At the end of the refinement the highest peak in the electron density was 0.4600 e Å -3, while the deepest hole was -0.2200 e Å -3.

Structure description top

Considerable attention has been devoted to adamantane derivatives, which have been known for their diverse biological properties as antiviral against the influenza (Vernier et al., 1969) and HIV viruses (El-Emam et al., 2004). Moreover, adamantane derivatives were recently reported to exhibit remarkable antibacterial (Kadi et al., 2007, 2010) and anti-inflammatory (El-Emam & Ibrahim, 1991) activities. In an earlier publication (El-Emam et al., 2004), we reported the synthesis and potent antimicrobial and antiviral activities of a series of 1-adamantyl-1,3,4-oxadiazoles and related derivatives including the title compound (I).

Molecules of the title compound form dimers connected to each other through C5—H5B···S1 with distance 3.652 (4) Å and bond angle 128.2 (3)°. The planar oxadiazole ring includes S1, C3 and C15 approximately in the same plane with distances -0.046 (2) Å, -0.085 (5) Å and 0.003 (4) Å respectively. The plane defined by the phenyl ring contains C8 with distance 0.021 (5) A°. These planar structures do not deviate significantly from planarity and the dihedral angle between the two planes is 31.3 (3)°.

For the biological activity of adamantyl-1,3,4-oxadiazole derivatives, see: Kadi et al. (2007, 2010); Al-Deeb et al. (2006), Vernier et al. (1969), El-Emam & Ibrahim (1991). For the synthesis of the title compound, see: El-Emam et al. (2004). For related adamantane structures, see: Almutairi et al. (2012); Al-Tamimi et al. (2010); Al-Abdullah et al. (2012). For related 1,3,4-oxadiazole structures, see: Fun et al. (2011); El-Emam et al. (2012).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis CCD (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. An ORTEP-style plot of title compound with labeling. Ellipsoids are given at the 50% probability level.
5-(Adamantan-1-yl)-3-[(4-benzylpiperazin-1-yl)methyl]-1,3,4-oxadiazole- 2(3H)-thione top
Crystal data top
C24H32N4OSF(000) = 912
Mr = 424.61Dx = 1.217 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 1030 reflections
a = 11.6417 (9) Åθ = 3.8–70.6°
b = 17.198 (2) ŵ = 1.41 mm1
c = 12.774 (1) ÅT = 293 K
β = 115.06 (1)°Prismatic, colourless
V = 2316.8 (4) Å30.11 × 0.09 × 0.02 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
4368 independent reflections
Radiation source: fine-focus sealed tube2049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 10.2673 pixels mm-1θmax = 70.7°, θmin = 4.2°
ω scansh = 1413
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1721
Tmin = 0.857, Tmax = 0.975l = 1515
9969 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.219H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0727P)2]
where P = (Fo2 + 2Fc2)/3
4368 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C24H32N4OSV = 2316.8 (4) Å3
Mr = 424.61Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.6417 (9) ŵ = 1.41 mm1
b = 17.198 (2) ÅT = 293 K
c = 12.774 (1) Å0.11 × 0.09 × 0.02 mm
β = 115.06 (1)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
4368 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2049 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.975Rint = 0.069
9969 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.219H-atom parameters constrained
S = 1.01Δρmax = 0.46 e Å3
4368 reflectionsΔρmin = 0.22 e Å3
271 parameters
Special details top

Experimental. Absorption correction: CrysAlis PRO (Oxford Diffraction, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.87513 (13)0.09736 (11)0.58610 (13)0.1011 (6)
O10.6438 (3)0.15777 (18)0.4778 (2)0.0621 (8)
N30.8803 (3)0.1628 (2)0.2778 (3)0.0581 (9)
N40.8057 (3)0.0547 (2)0.0914 (3)0.0577 (9)
N20.7676 (3)0.1910 (2)0.3997 (3)0.0588 (9)
N10.6514 (3)0.2280 (2)0.3359 (3)0.0579 (9)
C10.5809 (4)0.2066 (2)0.3858 (3)0.0502 (9)
C150.4469 (3)0.2263 (2)0.3571 (3)0.0489 (9)
C60.7735 (4)0.1783 (3)0.1668 (4)0.0606 (11)
H6A0.76550.23390.15270.073*
H6B0.69570.15990.16880.073*
C90.6932 (4)0.0165 (3)0.1133 (4)0.0623 (11)
C70.7926 (4)0.1384 (3)0.0711 (4)0.0639 (11)
H7A0.72080.14880.00200.077*
H7B0.86820.15860.06670.077*
C50.9163 (4)0.0404 (3)0.2003 (4)0.0670 (12)
H5A0.99170.06030.19520.080*
H5B0.92710.01520.21430.080*
C40.9009 (4)0.0790 (3)0.2991 (4)0.0612 (11)
H4A0.82930.05640.30800.073*
H4B0.97630.07040.37010.073*
C160.4394 (4)0.2710 (3)0.4570 (4)0.0722 (13)
H16A0.48830.31860.47070.087*
H16B0.47490.23980.52680.087*
C20.7658 (4)0.1489 (3)0.4861 (4)0.0637 (11)
C80.8150 (4)0.0136 (3)0.0047 (4)0.0712 (13)
H8A0.83720.04030.01700.085*
H8B0.88250.03660.02000.085*
C30.8766 (4)0.2065 (3)0.3718 (4)0.0651 (12)
H3A0.87640.26130.35410.078*
H3B0.95400.19610.44020.078*
C210.2521 (4)0.2984 (4)0.2190 (4)0.0848 (16)
H210.21640.33130.14990.102*
C170.2980 (5)0.2908 (3)0.4275 (4)0.0810 (15)
H170.29190.31890.49170.097*
C140.6870 (5)0.0445 (3)0.2163 (4)0.0781 (14)
H140.76040.06290.21960.094*
C240.3926 (4)0.2767 (4)0.2486 (4)0.0810 (15)
H24A0.39670.24860.18440.097*
H24B0.44270.32370.26100.097*
C100.5819 (4)0.0092 (3)0.1108 (4)0.0698 (12)
H100.58310.02730.04170.084*
C190.2511 (5)0.3400 (3)0.3222 (5)0.0881 (16)
H19A0.30370.38610.33740.106*
H19B0.16530.35660.30460.106*
C220.1798 (5)0.2217 (4)0.1996 (5)0.098 (2)
H22A0.09050.23240.17600.118*
H22B0.18830.19310.13770.118*
C110.4697 (5)0.0085 (3)0.2086 (5)0.0816 (15)
H110.39600.02680.20550.098*
C120.4655 (6)0.0190 (3)0.3111 (5)0.0928 (18)
H120.38950.01930.37730.111*
C230.3697 (4)0.1522 (3)0.3371 (5)0.0806 (15)
H23A0.40320.12040.40640.097*
H23B0.37510.12260.27470.097*
C200.2280 (5)0.1735 (4)0.3056 (5)0.0895 (17)
H200.17740.12590.29210.107*
C180.2269 (5)0.2162 (4)0.4060 (5)0.0908 (17)
H18A0.26410.18370.47430.109*
H18B0.13980.22690.39220.109*
C130.5746 (7)0.0460 (3)0.3148 (5)0.0962 (19)
H130.57270.06520.38350.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0724 (8)0.1413 (14)0.0814 (9)0.0392 (9)0.0245 (7)0.0333 (9)
O10.0553 (16)0.078 (2)0.0531 (16)0.0100 (15)0.0228 (13)0.0091 (15)
N30.0456 (17)0.062 (2)0.065 (2)0.0015 (16)0.0219 (16)0.0016 (18)
N40.0491 (17)0.060 (2)0.058 (2)0.0056 (16)0.0174 (16)0.0011 (17)
N20.0415 (17)0.071 (2)0.063 (2)0.0038 (16)0.0215 (15)0.0008 (18)
N10.0446 (17)0.066 (2)0.063 (2)0.0033 (16)0.0225 (16)0.0017 (18)
C10.046 (2)0.053 (2)0.047 (2)0.0005 (18)0.0147 (17)0.0036 (18)
C150.0444 (19)0.056 (2)0.044 (2)0.0053 (17)0.0167 (16)0.0058 (18)
C60.052 (2)0.062 (3)0.063 (3)0.005 (2)0.020 (2)0.005 (2)
C90.061 (3)0.063 (3)0.063 (3)0.001 (2)0.026 (2)0.006 (2)
C70.058 (2)0.064 (3)0.069 (3)0.002 (2)0.027 (2)0.009 (2)
C50.048 (2)0.061 (3)0.077 (3)0.003 (2)0.012 (2)0.003 (2)
C40.045 (2)0.067 (3)0.060 (3)0.0044 (19)0.0115 (18)0.004 (2)
C160.050 (2)0.096 (4)0.066 (3)0.001 (2)0.021 (2)0.016 (3)
C20.047 (2)0.076 (3)0.062 (3)0.009 (2)0.018 (2)0.001 (2)
C80.055 (2)0.084 (3)0.072 (3)0.001 (2)0.025 (2)0.006 (3)
C30.041 (2)0.081 (3)0.072 (3)0.005 (2)0.023 (2)0.009 (2)
C210.058 (3)0.129 (5)0.061 (3)0.007 (3)0.020 (2)0.020 (3)
C170.076 (3)0.105 (4)0.070 (3)0.003 (3)0.037 (3)0.015 (3)
C140.099 (4)0.068 (3)0.078 (3)0.008 (3)0.047 (3)0.001 (3)
C240.064 (3)0.110 (4)0.070 (3)0.018 (3)0.029 (2)0.020 (3)
C100.064 (3)0.074 (3)0.070 (3)0.004 (2)0.028 (2)0.001 (2)
C190.083 (3)0.085 (4)0.103 (4)0.019 (3)0.046 (3)0.002 (3)
C220.062 (3)0.140 (5)0.070 (3)0.017 (3)0.005 (3)0.025 (4)
C110.059 (3)0.074 (3)0.096 (4)0.003 (2)0.018 (3)0.008 (3)
C120.088 (4)0.073 (3)0.083 (4)0.010 (3)0.002 (3)0.015 (3)
C230.061 (3)0.071 (3)0.101 (4)0.010 (2)0.025 (3)0.005 (3)
C200.072 (3)0.091 (4)0.107 (5)0.023 (3)0.038 (3)0.016 (4)
C180.064 (3)0.123 (5)0.089 (4)0.004 (3)0.035 (3)0.012 (4)
C130.134 (5)0.077 (4)0.069 (4)0.009 (4)0.034 (4)0.004 (3)
Geometric parameters (Å, º) top
S1—C21.631 (4)C8—H8B0.9700
O1—C11.376 (5)C3—H3A0.9700
O1—C21.387 (5)C3—H3B0.9700
N3—C31.432 (6)C21—C191.504 (8)
N3—C61.461 (5)C21—C221.528 (9)
N3—C41.468 (6)C21—C241.560 (7)
N4—C71.459 (6)C21—H210.9800
N4—C81.460 (6)C17—C191.484 (8)
N4—C51.462 (5)C17—C181.487 (8)
N2—C21.327 (6)C17—H170.9800
N2—N11.403 (5)C14—C131.379 (8)
N2—C31.480 (5)C14—H140.9300
N1—C11.287 (5)C24—H24A0.9700
C1—C151.483 (5)C24—H24B0.9700
C15—C231.518 (6)C10—C111.374 (6)
C15—C161.524 (6)C10—H100.9300
C15—C241.526 (6)C19—H19A0.9700
C6—C71.498 (6)C19—H19B0.9700
C6—H6A0.9700C22—C201.481 (8)
C6—H6B0.9700C22—H22A0.9700
C9—C141.372 (7)C22—H22B0.9700
C9—C101.382 (6)C11—C121.373 (8)
C9—C81.508 (6)C11—H110.9300
C7—H7A0.9700C12—C131.371 (8)
C7—H7B0.9700C12—H120.9300
C5—C41.503 (6)C23—C201.566 (7)
C5—H5A0.9700C23—H23A0.9700
C5—H5B0.9700C23—H23B0.9700
C4—H4A0.9700C20—C181.483 (8)
C4—H4B0.9700C20—H200.9800
C16—C171.562 (7)C18—H18A0.9700
C16—H16A0.9700C18—H18B0.9700
C16—H16B0.9700C13—H130.9300
C8—H8A0.9700
C1—O1—C2106.8 (3)N2—C3—H3B108.2
C3—N3—C6113.7 (3)H3A—C3—H3B107.4
C3—N3—C4114.8 (4)C19—C21—C22110.2 (5)
C6—N3—C4111.3 (3)C19—C21—C24107.3 (4)
C7—N4—C8111.5 (4)C22—C21—C24106.3 (5)
C7—N4—C5108.6 (3)C19—C21—H21111.0
C8—N4—C5111.7 (3)C22—C21—H21111.0
C2—N2—N1112.3 (3)C24—C21—H21111.0
C2—N2—C3128.0 (4)C19—C17—C18111.2 (4)
N1—N2—C3119.5 (4)C19—C17—C16106.8 (4)
C1—N1—N2104.0 (3)C18—C17—C16107.7 (5)
N1—C1—O1112.2 (3)C19—C17—H17110.4
N1—C1—C15129.5 (4)C18—C17—H17110.4
O1—C1—C15118.3 (3)C16—C17—H17110.4
C1—C15—C23109.6 (4)C9—C14—C13121.7 (5)
C1—C15—C16109.7 (3)C9—C14—H14119.1
C23—C15—C16108.9 (4)C13—C14—H14119.1
C1—C15—C24110.0 (3)C15—C24—C21110.2 (4)
C23—C15—C24109.6 (4)C15—C24—H24A109.6
C16—C15—C24109.0 (4)C21—C24—H24A109.6
N3—C6—C7110.4 (4)C15—C24—H24B109.6
N3—C6—H6A109.6C21—C24—H24B109.6
C7—C6—H6A109.6H24A—C24—H24B108.1
N3—C6—H6B109.6C11—C10—C9121.0 (5)
C7—C6—H6B109.6C11—C10—H10119.5
H6A—C6—H6B108.1C9—C10—H10119.5
C14—C9—C10117.7 (4)C17—C19—C21112.8 (5)
C14—C9—C8122.7 (5)C17—C19—H19A109.0
C10—C9—C8119.5 (4)C21—C19—H19A109.0
N4—C7—C6110.3 (4)C17—C19—H19B109.0
N4—C7—H7A109.6C21—C19—H19B109.0
C6—C7—H7A109.6H19A—C19—H19B107.8
N4—C7—H7B109.6C20—C22—C21111.5 (4)
C6—C7—H7B109.6C20—C22—H22A109.3
H7A—C7—H7B108.1C21—C22—H22A109.3
N4—C5—C4110.7 (4)C20—C22—H22B109.3
N4—C5—H5A109.5C21—C22—H22B109.3
C4—C5—H5A109.5H22A—C22—H22B108.0
N4—C5—H5B109.5C12—C11—C10120.4 (5)
C4—C5—H5B109.5C12—C11—H11119.8
H5A—C5—H5B108.1C10—C11—H11119.8
N3—C4—C5110.3 (4)C13—C12—C11119.3 (5)
N3—C4—H4A109.6C13—C12—H12120.3
C5—C4—H4A109.6C11—C12—H12120.3
N3—C4—H4B109.6C15—C23—C20109.3 (4)
C5—C4—H4B109.6C15—C23—H23A109.8
H4A—C4—H4B108.1C20—C23—H23A109.8
C15—C16—C17109.7 (3)C15—C23—H23B109.8
C15—C16—H16A109.7C20—C23—H23B109.8
C17—C16—H16A109.7H23A—C23—H23B108.3
C15—C16—H16B109.7C22—C20—C18112.0 (5)
C17—C16—H16B109.7C22—C20—C23108.4 (5)
H16A—C16—H16B108.2C18—C20—C23106.7 (5)
N2—C2—O1104.7 (3)C22—C20—H20109.9
N2—C2—S1131.7 (3)C18—C20—H20109.9
O1—C2—S1123.6 (4)C23—C20—H20109.9
N4—C8—C9112.4 (4)C20—C18—C17112.2 (5)
N4—C8—H8A109.1C20—C18—H18A109.2
C9—C8—H8A109.1C17—C18—H18A109.2
N4—C8—H8B109.1C20—C18—H18B109.2
C9—C8—H8B109.1C17—C18—H18B109.2
H8A—C8—H8B107.9H18A—C18—H18B107.9
N3—C3—N2116.2 (3)C12—C13—C14119.8 (6)
N3—C3—H3A108.2C12—C13—H13120.1
N2—C3—H3A108.2C14—C13—H13120.1
N3—C3—H3B108.2
C2—N2—N1—C10.5 (5)C4—N3—C3—N267.1 (5)
C3—N2—N1—C1175.9 (4)C2—N2—C3—N3102.8 (5)
N2—N1—C1—O10.1 (4)N1—N2—C3—N382.5 (5)
N2—N1—C1—C15179.5 (4)C15—C16—C17—C1960.8 (6)
C2—O1—C1—N10.7 (4)C15—C16—C17—C1858.7 (6)
C2—O1—C1—C15179.9 (3)C10—C9—C14—C131.0 (8)
N1—C1—C15—C23123.4 (5)C8—C9—C14—C13179.4 (5)
O1—C1—C15—C2355.9 (5)C1—C15—C24—C21179.3 (4)
N1—C1—C15—C16117.1 (5)C23—C15—C24—C2160.1 (6)
O1—C1—C15—C1663.5 (5)C16—C15—C24—C2159.0 (5)
N1—C1—C15—C242.8 (6)C19—C21—C24—C1558.0 (6)
O1—C1—C15—C24176.5 (4)C22—C21—C24—C1559.9 (6)
C3—N3—C6—C7172.9 (4)C14—C9—C10—C111.5 (7)
C4—N3—C6—C755.5 (5)C8—C9—C10—C11178.9 (5)
C8—N4—C7—C6175.8 (3)C18—C17—C19—C2154.3 (6)
C5—N4—C7—C660.7 (5)C16—C17—C19—C2162.9 (6)
N3—C6—C7—N458.8 (5)C22—C21—C19—C1753.6 (6)
C7—N4—C5—C460.2 (5)C24—C21—C19—C1761.7 (6)
C8—N4—C5—C4176.4 (4)C19—C21—C22—C2053.4 (6)
C3—N3—C4—C5174.3 (3)C24—C21—C22—C2062.6 (6)
C6—N3—C4—C554.7 (5)C9—C10—C11—C121.0 (8)
N4—C5—C4—N357.3 (5)C10—C11—C12—C130.2 (9)
C1—C15—C16—C17179.2 (4)C1—C15—C23—C20179.4 (4)
C23—C15—C16—C1759.3 (5)C16—C15—C23—C2060.7 (5)
C24—C15—C16—C1760.3 (5)C24—C15—C23—C2058.5 (6)
N1—N2—C2—O10.9 (5)C21—C22—C20—C1854.6 (6)
C3—N2—C2—O1175.8 (4)C21—C22—C20—C2362.8 (6)
N1—N2—C2—S1178.2 (4)C15—C23—C20—C2259.6 (6)
C3—N2—C2—S13.3 (8)C15—C23—C20—C1861.2 (6)
C1—O1—C2—N20.9 (4)C22—C20—C18—C1755.2 (6)
C1—O1—C2—S1178.3 (3)C23—C20—C18—C1763.3 (6)
C7—N4—C8—C967.9 (5)C19—C17—C18—C2054.3 (6)
C5—N4—C8—C9170.4 (4)C16—C17—C18—C2062.4 (6)
C14—C9—C8—N4124.2 (5)C11—C12—C13—C140.7 (9)
C10—C9—C8—N455.3 (6)C9—C14—C13—C120.1 (9)
C6—N3—C3—N262.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···S1i0.972.973.652 (5)128 (1)
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC24H32N4OS
Mr424.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.6417 (9), 17.198 (2), 12.774 (1)
β (°) 115.06 (1)
V3)2316.8 (4)
Z4
Radiation typeCu Kα
µ (mm1)1.41
Crystal size (mm)0.11 × 0.09 × 0.02
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.857, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
9969, 4368, 2049
Rint0.069
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.219, 1.01
No. of reflections4368
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.22

Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999), PLATON (Spek, 2009), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···S1i0.972.973.652 (5)128.2 (3)
Symmetry code: (i) x+2, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: elemam5@hotmail.com.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. We are also grateful for financial support from the Spanish Ministerio de Economía y Competitividad (MAT2010–15094, MAT2006–01997, Factoría de Cristalización – Consolider Ingenio 2010, and FPI grant BES-2011–046948 to MSM-A) and FEDER.

References

First citationAl-Abdullah, E. S., Asiri, H. H., El-Emam, A. & Ng, S. W. (2012). Acta Cryst. E68, o344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40–47.  CAS Google Scholar
First citationAlmutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.  CSD CrossRef IUCr Journals Google Scholar
First citationAl-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug. Res. 41, 1260–1264.  CAS Google Scholar
First citationEl-Emam, A. A., Kadi, A. A., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o795.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Arshad, S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Acta Cryst. E67, o3372.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El- Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642–665.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds