organic compounds
5-(Adamantan-1-yl)-3-[(4-benzylpiperazin-1-yl)methyl]-1,3,4-oxadiazole-2(3H)-thione
aCollege of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and bDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo – CINN, C/ Julián Clavería, 8, 33006 Oviedo, Asturias, Spain
*Correspondence e-mail: sgg@uniovi.es
The molecule of the title compound, C24H32N4OS, is a functionalized 1,3,4-oxadiazole-2-thione with substituted piperazine and adamantanyl substituents attached at the 3- and 5-positions, respectively, of the oxadiazole spacer with an approximately C-shaped conformation. In the crystal, molecules form dimers via C—H⋯S interaction. The piperazine ring has a chair conformation; the substituents S, methylene C and adamantane C of the essentially planar oxadiazole ring are approximately in the same plane, with distances of −0.046 (2), −0.085 (5) and 0.003 (4) Å, respectively. The dihedral angle between the planes of the phenyl and oxadiazole rings is 31.3 (3)°.
Related literature
For the biological activity of adamantyl-1,3,4-oxadiazole derivatives, see: Kadi et al. (2007, 2010); Al-Deeb et al. (2006), Vernier et al. (1969), El-Emam & Ibrahim (1991). For the synthesis of the title compound, see: El-Emam et al. (2004). For related adamantane structures, see: Almutairi et al. (2012); Al-Tamimi et al. (2010); Al-Abdullah et al. (2012). For related 1,3,4-oxadiazole structures, see: Fun et al. (2011); El-Emam et al. (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536812027249/ff2070sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812027249/ff2070Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812027249/ff2070Isup3.cml
A mixture of 5-(Adamantan-1-yl)-1,3,4-oxadiazole-2-thiol (2.36 g, 0.01 mol), N-benzylpiperazine (1.76 g, 0.01 mol) and 37% formaldehyde solution (1.5 ml), in ethanol (15 ml), was stirred at room temperature for 2 h. and allowed to stand overnight. The precipitated crude product was filtered, washed with water, dried, and crystallized from ethanol to yield 3.18 g (75%) of the title compound I (C24H32N4OS) as fine colorless needles crystals. M.p. 127–129 °C. Single crystals suitable for X-ray analysis were obtained by slow evaporation of the compound solution in chloroform-ethanol (1:1; 10 ml) at room temperature. 1H NMR (CDCl3, 500.13 MHz): δ 1.72–1.75 (m, 6H, Adamantane-H), 1.99 (s, 6H, Adamantane-H), 2.11 (s, 3H, Adamantane-H), 2.49 (t, 4H, Piperazine-CH2), 2.85 (t, 4H, Piperazine-CH2), 3.52 (s, 2H, CH2Ph), 4.98 (s, 2H, CH2), 7.25–7.34 (m, 5H, Ar—H). 13C NMR (CDCl3, 125.76 MHz): δ 27.48, 34.36, 36.11, 39.11 (Adamantane-C), 50.20, 52.94 (Piperazine-C), 63.14 (CH2Ph), 69.99 (CH2), 127.16, 128.16, 129.29, 137.74 (Ar—C), 167.76 (Oxadiazole C=N), 178.62 (C=S).
Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the
in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). At the end of the the highest peak in the electron density was 0.4600 e Å -3, while the deepest hole was -0.2200 e Å -3.Considerable attention has been devoted to adamantane derivatives, which have been known for their diverse biological properties as antiviral against the influenza (Vernier et al., 1969) and HIV viruses (El-Emam et al., 2004). Moreover, adamantane derivatives were recently reported to exhibit remarkable antibacterial (Kadi et al., 2007, 2010) and anti-inflammatory (El-Emam & Ibrahim, 1991) activities. In an earlier publication (El-Emam et al., 2004), we reported the synthesis and potent antimicrobial and antiviral activities of a series of 1-adamantyl-1,3,4-oxadiazoles and related derivatives including the title compound (I).
Molecules of the title compound form dimers connected to each other through C5—H5B···S1 with distance 3.652 (4) Å and bond angle 128.2 (3)°. The planar oxadiazole ring includes S1, C3 and C15 approximately in the same plane with distances -0.046 (2) Å, -0.085 (5) Å and 0.003 (4) Å respectively. The plane defined by the phenyl ring contains C8 with distance 0.021 (5) A°. These planar structures do not deviate significantly from planarity and the dihedral angle between the two planes is 31.3 (3)°.
For the biological activity of adamantyl-1,3,4-oxadiazole derivatives, see: Kadi et al. (2007, 2010); Al-Deeb et al. (2006), Vernier et al. (1969), El-Emam & Ibrahim (1991). For the synthesis of the title compound, see: El-Emam et al. (2004). For related adamantane structures, see: Almutairi et al. (2012); Al-Tamimi et al. (2010); Al-Abdullah et al. (2012). For related 1,3,4-oxadiazole structures, see: Fun et al. (2011); El-Emam et al. (2012).
Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell
CrysAlis CCD (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010).Fig. 1. An ORTEP-style plot of title compound with labeling. Ellipsoids are given at the 50% probability level. |
C24H32N4OS | F(000) = 912 |
Mr = 424.61 | Dx = 1.217 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54180 Å |
Hall symbol: -P 2ybc | Cell parameters from 1030 reflections |
a = 11.6417 (9) Å | θ = 3.8–70.6° |
b = 17.198 (2) Å | µ = 1.41 mm−1 |
c = 12.774 (1) Å | T = 293 K |
β = 115.06 (1)° | Prismatic, colourless |
V = 2316.8 (4) Å3 | 0.11 × 0.09 × 0.02 mm |
Z = 4 |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 4368 independent reflections |
Radiation source: fine-focus sealed tube | 2049 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.069 |
Detector resolution: 10.2673 pixels mm-1 | θmax = 70.7°, θmin = 4.2° |
ω scans | h = −14→13 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −17→21 |
Tmin = 0.857, Tmax = 0.975 | l = −15→15 |
9969 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.071 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.219 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0727P)2] where P = (Fo2 + 2Fc2)/3 |
4368 reflections | (Δ/σ)max < 0.001 |
271 parameters | Δρmax = 0.46 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C24H32N4OS | V = 2316.8 (4) Å3 |
Mr = 424.61 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 11.6417 (9) Å | µ = 1.41 mm−1 |
b = 17.198 (2) Å | T = 293 K |
c = 12.774 (1) Å | 0.11 × 0.09 × 0.02 mm |
β = 115.06 (1)° |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 4368 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 2049 reflections with I > 2σ(I) |
Tmin = 0.857, Tmax = 0.975 | Rint = 0.069 |
9969 measured reflections |
R[F2 > 2σ(F2)] = 0.071 | 0 restraints |
wR(F2) = 0.219 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.46 e Å−3 |
4368 reflections | Δρmin = −0.22 e Å−3 |
271 parameters |
Experimental. Absorption correction: CrysAlis PRO (Oxford Diffraction, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.87513 (13) | 0.09736 (11) | 0.58610 (13) | 0.1011 (6) | |
O1 | 0.6438 (3) | 0.15777 (18) | 0.4778 (2) | 0.0621 (8) | |
N3 | 0.8803 (3) | 0.1628 (2) | 0.2778 (3) | 0.0581 (9) | |
N4 | 0.8057 (3) | 0.0547 (2) | 0.0914 (3) | 0.0577 (9) | |
N2 | 0.7676 (3) | 0.1910 (2) | 0.3997 (3) | 0.0588 (9) | |
N1 | 0.6514 (3) | 0.2280 (2) | 0.3359 (3) | 0.0579 (9) | |
C1 | 0.5809 (4) | 0.2066 (2) | 0.3858 (3) | 0.0502 (9) | |
C15 | 0.4469 (3) | 0.2263 (2) | 0.3571 (3) | 0.0489 (9) | |
C6 | 0.7735 (4) | 0.1783 (3) | 0.1668 (4) | 0.0606 (11) | |
H6A | 0.7655 | 0.2339 | 0.1527 | 0.073* | |
H6B | 0.6957 | 0.1599 | 0.1688 | 0.073* | |
C9 | 0.6932 (4) | 0.0165 (3) | −0.1133 (4) | 0.0623 (11) | |
C7 | 0.7926 (4) | 0.1384 (3) | 0.0711 (4) | 0.0639 (11) | |
H7A | 0.7208 | 0.1488 | −0.0020 | 0.077* | |
H7B | 0.8682 | 0.1586 | 0.0667 | 0.077* | |
C5 | 0.9163 (4) | 0.0404 (3) | 0.2003 (4) | 0.0670 (12) | |
H5A | 0.9917 | 0.0603 | 0.1952 | 0.080* | |
H5B | 0.9271 | −0.0152 | 0.2143 | 0.080* | |
C4 | 0.9009 (4) | 0.0790 (3) | 0.2991 (4) | 0.0612 (11) | |
H4A | 0.8293 | 0.0564 | 0.3080 | 0.073* | |
H4B | 0.9763 | 0.0704 | 0.3701 | 0.073* | |
C16 | 0.4394 (4) | 0.2710 (3) | 0.4570 (4) | 0.0722 (13) | |
H16A | 0.4883 | 0.3186 | 0.4707 | 0.087* | |
H16B | 0.4749 | 0.2398 | 0.5268 | 0.087* | |
C2 | 0.7658 (4) | 0.1489 (3) | 0.4861 (4) | 0.0637 (11) | |
C8 | 0.8150 (4) | 0.0136 (3) | −0.0047 (4) | 0.0712 (13) | |
H8A | 0.8372 | −0.0403 | 0.0170 | 0.085* | |
H8B | 0.8825 | 0.0366 | −0.0200 | 0.085* | |
C3 | 0.8766 (4) | 0.2065 (3) | 0.3718 (4) | 0.0651 (12) | |
H3A | 0.8764 | 0.2613 | 0.3541 | 0.078* | |
H3B | 0.9540 | 0.1961 | 0.4402 | 0.078* | |
C21 | 0.2521 (4) | 0.2984 (4) | 0.2190 (4) | 0.0848 (16) | |
H21 | 0.2164 | 0.3313 | 0.1499 | 0.102* | |
C17 | 0.2980 (5) | 0.2908 (3) | 0.4275 (4) | 0.0810 (15) | |
H17 | 0.2919 | 0.3189 | 0.4917 | 0.097* | |
C14 | 0.6870 (5) | 0.0445 (3) | −0.2163 (4) | 0.0781 (14) | |
H14 | 0.7604 | 0.0629 | −0.2196 | 0.094* | |
C24 | 0.3926 (4) | 0.2767 (4) | 0.2486 (4) | 0.0810 (15) | |
H24A | 0.3967 | 0.2486 | 0.1844 | 0.097* | |
H24B | 0.4427 | 0.3237 | 0.2610 | 0.097* | |
C10 | 0.5819 (4) | −0.0092 (3) | −0.1108 (4) | 0.0698 (12) | |
H10 | 0.5831 | −0.0273 | −0.0417 | 0.084* | |
C19 | 0.2511 (5) | 0.3400 (3) | 0.3222 (5) | 0.0881 (16) | |
H19A | 0.3037 | 0.3861 | 0.3374 | 0.106* | |
H19B | 0.1653 | 0.3566 | 0.3046 | 0.106* | |
C22 | 0.1798 (5) | 0.2217 (4) | 0.1996 (5) | 0.098 (2) | |
H22A | 0.0905 | 0.2324 | 0.1760 | 0.118* | |
H22B | 0.1883 | 0.1931 | 0.1377 | 0.118* | |
C11 | 0.4697 (5) | −0.0085 (3) | −0.2086 (5) | 0.0816 (15) | |
H11 | 0.3960 | −0.0268 | −0.2055 | 0.098* | |
C12 | 0.4655 (6) | 0.0190 (3) | −0.3111 (5) | 0.0928 (18) | |
H12 | 0.3895 | 0.0193 | −0.3773 | 0.111* | |
C23 | 0.3697 (4) | 0.1522 (3) | 0.3371 (5) | 0.0806 (15) | |
H23A | 0.4032 | 0.1204 | 0.4064 | 0.097* | |
H23B | 0.3751 | 0.1226 | 0.2747 | 0.097* | |
C20 | 0.2280 (5) | 0.1735 (4) | 0.3056 (5) | 0.0895 (17) | |
H20 | 0.1774 | 0.1259 | 0.2921 | 0.107* | |
C18 | 0.2269 (5) | 0.2162 (4) | 0.4060 (5) | 0.0908 (17) | |
H18A | 0.2641 | 0.1837 | 0.4743 | 0.109* | |
H18B | 0.1398 | 0.2269 | 0.3922 | 0.109* | |
C13 | 0.5746 (7) | 0.0460 (3) | −0.3148 (5) | 0.0962 (19) | |
H13 | 0.5727 | 0.0652 | −0.3835 | 0.115* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0724 (8) | 0.1413 (14) | 0.0814 (9) | 0.0392 (9) | 0.0245 (7) | 0.0333 (9) |
O1 | 0.0553 (16) | 0.078 (2) | 0.0531 (16) | 0.0100 (15) | 0.0228 (13) | 0.0091 (15) |
N3 | 0.0456 (17) | 0.062 (2) | 0.065 (2) | 0.0015 (16) | 0.0219 (16) | −0.0016 (18) |
N4 | 0.0491 (17) | 0.060 (2) | 0.058 (2) | 0.0056 (16) | 0.0174 (16) | 0.0011 (17) |
N2 | 0.0415 (17) | 0.071 (2) | 0.063 (2) | 0.0038 (16) | 0.0215 (15) | 0.0008 (18) |
N1 | 0.0446 (17) | 0.066 (2) | 0.063 (2) | 0.0033 (16) | 0.0225 (16) | 0.0017 (18) |
C1 | 0.046 (2) | 0.053 (2) | 0.047 (2) | −0.0005 (18) | 0.0147 (17) | −0.0036 (18) |
C15 | 0.0444 (19) | 0.056 (2) | 0.044 (2) | −0.0053 (17) | 0.0167 (16) | −0.0058 (18) |
C6 | 0.052 (2) | 0.062 (3) | 0.063 (3) | 0.005 (2) | 0.020 (2) | 0.005 (2) |
C9 | 0.061 (3) | 0.063 (3) | 0.063 (3) | −0.001 (2) | 0.026 (2) | −0.006 (2) |
C7 | 0.058 (2) | 0.064 (3) | 0.069 (3) | 0.002 (2) | 0.027 (2) | 0.009 (2) |
C5 | 0.048 (2) | 0.061 (3) | 0.077 (3) | 0.003 (2) | 0.012 (2) | −0.003 (2) |
C4 | 0.045 (2) | 0.067 (3) | 0.060 (3) | 0.0044 (19) | 0.0115 (18) | 0.004 (2) |
C16 | 0.050 (2) | 0.096 (4) | 0.066 (3) | 0.001 (2) | 0.021 (2) | −0.016 (3) |
C2 | 0.047 (2) | 0.076 (3) | 0.062 (3) | 0.009 (2) | 0.018 (2) | 0.001 (2) |
C8 | 0.055 (2) | 0.084 (3) | 0.072 (3) | 0.001 (2) | 0.025 (2) | −0.006 (3) |
C3 | 0.041 (2) | 0.081 (3) | 0.072 (3) | −0.005 (2) | 0.023 (2) | −0.009 (2) |
C21 | 0.058 (3) | 0.129 (5) | 0.061 (3) | 0.007 (3) | 0.020 (2) | 0.020 (3) |
C17 | 0.076 (3) | 0.105 (4) | 0.070 (3) | 0.003 (3) | 0.037 (3) | −0.015 (3) |
C14 | 0.099 (4) | 0.068 (3) | 0.078 (3) | −0.008 (3) | 0.047 (3) | 0.001 (3) |
C24 | 0.064 (3) | 0.110 (4) | 0.070 (3) | 0.018 (3) | 0.029 (2) | 0.020 (3) |
C10 | 0.064 (3) | 0.074 (3) | 0.070 (3) | −0.004 (2) | 0.028 (2) | 0.001 (2) |
C19 | 0.083 (3) | 0.085 (4) | 0.103 (4) | 0.019 (3) | 0.046 (3) | 0.002 (3) |
C22 | 0.062 (3) | 0.140 (5) | 0.070 (3) | 0.017 (3) | 0.005 (3) | −0.025 (4) |
C11 | 0.059 (3) | 0.074 (3) | 0.096 (4) | −0.003 (2) | 0.018 (3) | −0.008 (3) |
C12 | 0.088 (4) | 0.073 (3) | 0.083 (4) | 0.010 (3) | 0.002 (3) | −0.015 (3) |
C23 | 0.061 (3) | 0.071 (3) | 0.101 (4) | −0.010 (2) | 0.025 (3) | −0.005 (3) |
C20 | 0.072 (3) | 0.091 (4) | 0.107 (5) | −0.023 (3) | 0.038 (3) | −0.016 (4) |
C18 | 0.064 (3) | 0.123 (5) | 0.089 (4) | −0.004 (3) | 0.035 (3) | 0.012 (4) |
C13 | 0.134 (5) | 0.077 (4) | 0.069 (4) | 0.009 (4) | 0.034 (4) | 0.004 (3) |
S1—C2 | 1.631 (4) | C8—H8B | 0.9700 |
O1—C1 | 1.376 (5) | C3—H3A | 0.9700 |
O1—C2 | 1.387 (5) | C3—H3B | 0.9700 |
N3—C3 | 1.432 (6) | C21—C19 | 1.504 (8) |
N3—C6 | 1.461 (5) | C21—C22 | 1.528 (9) |
N3—C4 | 1.468 (6) | C21—C24 | 1.560 (7) |
N4—C7 | 1.459 (6) | C21—H21 | 0.9800 |
N4—C8 | 1.460 (6) | C17—C19 | 1.484 (8) |
N4—C5 | 1.462 (5) | C17—C18 | 1.487 (8) |
N2—C2 | 1.327 (6) | C17—H17 | 0.9800 |
N2—N1 | 1.403 (5) | C14—C13 | 1.379 (8) |
N2—C3 | 1.480 (5) | C14—H14 | 0.9300 |
N1—C1 | 1.287 (5) | C24—H24A | 0.9700 |
C1—C15 | 1.483 (5) | C24—H24B | 0.9700 |
C15—C23 | 1.518 (6) | C10—C11 | 1.374 (6) |
C15—C16 | 1.524 (6) | C10—H10 | 0.9300 |
C15—C24 | 1.526 (6) | C19—H19A | 0.9700 |
C6—C7 | 1.498 (6) | C19—H19B | 0.9700 |
C6—H6A | 0.9700 | C22—C20 | 1.481 (8) |
C6—H6B | 0.9700 | C22—H22A | 0.9700 |
C9—C14 | 1.372 (7) | C22—H22B | 0.9700 |
C9—C10 | 1.382 (6) | C11—C12 | 1.373 (8) |
C9—C8 | 1.508 (6) | C11—H11 | 0.9300 |
C7—H7A | 0.9700 | C12—C13 | 1.371 (8) |
C7—H7B | 0.9700 | C12—H12 | 0.9300 |
C5—C4 | 1.503 (6) | C23—C20 | 1.566 (7) |
C5—H5A | 0.9700 | C23—H23A | 0.9700 |
C5—H5B | 0.9700 | C23—H23B | 0.9700 |
C4—H4A | 0.9700 | C20—C18 | 1.483 (8) |
C4—H4B | 0.9700 | C20—H20 | 0.9800 |
C16—C17 | 1.562 (7) | C18—H18A | 0.9700 |
C16—H16A | 0.9700 | C18—H18B | 0.9700 |
C16—H16B | 0.9700 | C13—H13 | 0.9300 |
C8—H8A | 0.9700 | ||
C1—O1—C2 | 106.8 (3) | N2—C3—H3B | 108.2 |
C3—N3—C6 | 113.7 (3) | H3A—C3—H3B | 107.4 |
C3—N3—C4 | 114.8 (4) | C19—C21—C22 | 110.2 (5) |
C6—N3—C4 | 111.3 (3) | C19—C21—C24 | 107.3 (4) |
C7—N4—C8 | 111.5 (4) | C22—C21—C24 | 106.3 (5) |
C7—N4—C5 | 108.6 (3) | C19—C21—H21 | 111.0 |
C8—N4—C5 | 111.7 (3) | C22—C21—H21 | 111.0 |
C2—N2—N1 | 112.3 (3) | C24—C21—H21 | 111.0 |
C2—N2—C3 | 128.0 (4) | C19—C17—C18 | 111.2 (4) |
N1—N2—C3 | 119.5 (4) | C19—C17—C16 | 106.8 (4) |
C1—N1—N2 | 104.0 (3) | C18—C17—C16 | 107.7 (5) |
N1—C1—O1 | 112.2 (3) | C19—C17—H17 | 110.4 |
N1—C1—C15 | 129.5 (4) | C18—C17—H17 | 110.4 |
O1—C1—C15 | 118.3 (3) | C16—C17—H17 | 110.4 |
C1—C15—C23 | 109.6 (4) | C9—C14—C13 | 121.7 (5) |
C1—C15—C16 | 109.7 (3) | C9—C14—H14 | 119.1 |
C23—C15—C16 | 108.9 (4) | C13—C14—H14 | 119.1 |
C1—C15—C24 | 110.0 (3) | C15—C24—C21 | 110.2 (4) |
C23—C15—C24 | 109.6 (4) | C15—C24—H24A | 109.6 |
C16—C15—C24 | 109.0 (4) | C21—C24—H24A | 109.6 |
N3—C6—C7 | 110.4 (4) | C15—C24—H24B | 109.6 |
N3—C6—H6A | 109.6 | C21—C24—H24B | 109.6 |
C7—C6—H6A | 109.6 | H24A—C24—H24B | 108.1 |
N3—C6—H6B | 109.6 | C11—C10—C9 | 121.0 (5) |
C7—C6—H6B | 109.6 | C11—C10—H10 | 119.5 |
H6A—C6—H6B | 108.1 | C9—C10—H10 | 119.5 |
C14—C9—C10 | 117.7 (4) | C17—C19—C21 | 112.8 (5) |
C14—C9—C8 | 122.7 (5) | C17—C19—H19A | 109.0 |
C10—C9—C8 | 119.5 (4) | C21—C19—H19A | 109.0 |
N4—C7—C6 | 110.3 (4) | C17—C19—H19B | 109.0 |
N4—C7—H7A | 109.6 | C21—C19—H19B | 109.0 |
C6—C7—H7A | 109.6 | H19A—C19—H19B | 107.8 |
N4—C7—H7B | 109.6 | C20—C22—C21 | 111.5 (4) |
C6—C7—H7B | 109.6 | C20—C22—H22A | 109.3 |
H7A—C7—H7B | 108.1 | C21—C22—H22A | 109.3 |
N4—C5—C4 | 110.7 (4) | C20—C22—H22B | 109.3 |
N4—C5—H5A | 109.5 | C21—C22—H22B | 109.3 |
C4—C5—H5A | 109.5 | H22A—C22—H22B | 108.0 |
N4—C5—H5B | 109.5 | C12—C11—C10 | 120.4 (5) |
C4—C5—H5B | 109.5 | C12—C11—H11 | 119.8 |
H5A—C5—H5B | 108.1 | C10—C11—H11 | 119.8 |
N3—C4—C5 | 110.3 (4) | C13—C12—C11 | 119.3 (5) |
N3—C4—H4A | 109.6 | C13—C12—H12 | 120.3 |
C5—C4—H4A | 109.6 | C11—C12—H12 | 120.3 |
N3—C4—H4B | 109.6 | C15—C23—C20 | 109.3 (4) |
C5—C4—H4B | 109.6 | C15—C23—H23A | 109.8 |
H4A—C4—H4B | 108.1 | C20—C23—H23A | 109.8 |
C15—C16—C17 | 109.7 (3) | C15—C23—H23B | 109.8 |
C15—C16—H16A | 109.7 | C20—C23—H23B | 109.8 |
C17—C16—H16A | 109.7 | H23A—C23—H23B | 108.3 |
C15—C16—H16B | 109.7 | C22—C20—C18 | 112.0 (5) |
C17—C16—H16B | 109.7 | C22—C20—C23 | 108.4 (5) |
H16A—C16—H16B | 108.2 | C18—C20—C23 | 106.7 (5) |
N2—C2—O1 | 104.7 (3) | C22—C20—H20 | 109.9 |
N2—C2—S1 | 131.7 (3) | C18—C20—H20 | 109.9 |
O1—C2—S1 | 123.6 (4) | C23—C20—H20 | 109.9 |
N4—C8—C9 | 112.4 (4) | C20—C18—C17 | 112.2 (5) |
N4—C8—H8A | 109.1 | C20—C18—H18A | 109.2 |
C9—C8—H8A | 109.1 | C17—C18—H18A | 109.2 |
N4—C8—H8B | 109.1 | C20—C18—H18B | 109.2 |
C9—C8—H8B | 109.1 | C17—C18—H18B | 109.2 |
H8A—C8—H8B | 107.9 | H18A—C18—H18B | 107.9 |
N3—C3—N2 | 116.2 (3) | C12—C13—C14 | 119.8 (6) |
N3—C3—H3A | 108.2 | C12—C13—H13 | 120.1 |
N2—C3—H3A | 108.2 | C14—C13—H13 | 120.1 |
N3—C3—H3B | 108.2 | ||
C2—N2—N1—C1 | −0.5 (5) | C4—N3—C3—N2 | −67.1 (5) |
C3—N2—N1—C1 | −175.9 (4) | C2—N2—C3—N3 | 102.8 (5) |
N2—N1—C1—O1 | −0.1 (4) | N1—N2—C3—N3 | −82.5 (5) |
N2—N1—C1—C15 | −179.5 (4) | C15—C16—C17—C19 | −60.8 (6) |
C2—O1—C1—N1 | 0.7 (4) | C15—C16—C17—C18 | 58.7 (6) |
C2—O1—C1—C15 | −179.9 (3) | C10—C9—C14—C13 | −1.0 (8) |
N1—C1—C15—C23 | 123.4 (5) | C8—C9—C14—C13 | 179.4 (5) |
O1—C1—C15—C23 | −55.9 (5) | C1—C15—C24—C21 | −179.3 (4) |
N1—C1—C15—C16 | −117.1 (5) | C23—C15—C24—C21 | 60.1 (6) |
O1—C1—C15—C16 | 63.5 (5) | C16—C15—C24—C21 | −59.0 (5) |
N1—C1—C15—C24 | 2.8 (6) | C19—C21—C24—C15 | 58.0 (6) |
O1—C1—C15—C24 | −176.5 (4) | C22—C21—C24—C15 | −59.9 (6) |
C3—N3—C6—C7 | 172.9 (4) | C14—C9—C10—C11 | 1.5 (7) |
C4—N3—C6—C7 | −55.5 (5) | C8—C9—C10—C11 | −178.9 (5) |
C8—N4—C7—C6 | 175.8 (3) | C18—C17—C19—C21 | −54.3 (6) |
C5—N4—C7—C6 | −60.7 (5) | C16—C17—C19—C21 | 62.9 (6) |
N3—C6—C7—N4 | 58.8 (5) | C22—C21—C19—C17 | 53.6 (6) |
C7—N4—C5—C4 | 60.2 (5) | C24—C21—C19—C17 | −61.7 (6) |
C8—N4—C5—C4 | −176.4 (4) | C19—C21—C22—C20 | −53.4 (6) |
C3—N3—C4—C5 | −174.3 (3) | C24—C21—C22—C20 | 62.6 (6) |
C6—N3—C4—C5 | 54.7 (5) | C9—C10—C11—C12 | −1.0 (8) |
N4—C5—C4—N3 | −57.3 (5) | C10—C11—C12—C13 | −0.2 (9) |
C1—C15—C16—C17 | −179.2 (4) | C1—C15—C23—C20 | −179.4 (4) |
C23—C15—C16—C17 | −59.3 (5) | C16—C15—C23—C20 | 60.7 (5) |
C24—C15—C16—C17 | 60.3 (5) | C24—C15—C23—C20 | −58.5 (6) |
N1—N2—C2—O1 | 0.9 (5) | C21—C22—C20—C18 | 54.6 (6) |
C3—N2—C2—O1 | 175.8 (4) | C21—C22—C20—C23 | −62.8 (6) |
N1—N2—C2—S1 | −178.2 (4) | C15—C23—C20—C22 | 59.6 (6) |
C3—N2—C2—S1 | −3.3 (8) | C15—C23—C20—C18 | −61.2 (6) |
C1—O1—C2—N2 | −0.9 (4) | C22—C20—C18—C17 | −55.2 (6) |
C1—O1—C2—S1 | 178.3 (3) | C23—C20—C18—C17 | 63.3 (6) |
C7—N4—C8—C9 | −67.9 (5) | C19—C17—C18—C20 | 54.3 (6) |
C5—N4—C8—C9 | 170.4 (4) | C16—C17—C18—C20 | −62.4 (6) |
C14—C9—C8—N4 | 124.2 (5) | C11—C12—C13—C14 | 0.7 (9) |
C10—C9—C8—N4 | −55.3 (6) | C9—C14—C13—C12 | −0.1 (9) |
C6—N3—C3—N2 | 62.8 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5B···S1i | 0.97 | 2.97 | 3.652 (5) | 128 (1) |
Symmetry code: (i) −x+2, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C24H32N4OS |
Mr | 424.61 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 11.6417 (9), 17.198 (2), 12.774 (1) |
β (°) | 115.06 (1) |
V (Å3) | 2316.8 (4) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 1.41 |
Crystal size (mm) | 0.11 × 0.09 × 0.02 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Ruby Gemini |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.857, 0.975 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9969, 4368, 2049 |
Rint | 0.069 |
(sin θ/λ)max (Å−1) | 0.612 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.071, 0.219, 1.01 |
No. of reflections | 4368 |
No. of parameters | 271 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.46, −0.22 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999), PLATON (Spek, 2009), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5B···S1i | 0.97 | 2.97 | 3.652 (5) | 128.2 (3) |
Symmetry code: (i) −x+2, −y, −z+1. |
Footnotes
‡Additional correspondence author, e-mail: elemam5@hotmail.com.
Acknowledgements
The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. We are also grateful for financial support from the Spanish Ministerio de Economía y Competitividad (MAT2010–15094, MAT2006–01997, Factoría de Cristalización – Consolider Ingenio 2010, and FPI grant BES-2011–046948 to MSM-A) and FEDER.
References
Al-Abdullah, E. S., Asiri, H. H., El-Emam, A. & Ng, S. W. (2012). Acta Cryst. E68, o344. Web of Science CSD CrossRef IUCr Journals Google Scholar
Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40–47. CAS Google Scholar
Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656. CSD CrossRef IUCr Journals Google Scholar
Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756. Web of Science CSD CrossRef IUCr Journals Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113. Web of Science CrossRef PubMed CAS Google Scholar
El-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug. Res. 41, 1260–1264. CAS Google Scholar
El-Emam, A. A., Kadi, A. A., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o795. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Arshad, S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Acta Cryst. E67, o3372. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El- Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011. Web of Science CrossRef CAS PubMed Google Scholar
Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642–665. CrossRef CAS PubMed Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Considerable attention has been devoted to adamantane derivatives, which have been known for their diverse biological properties as antiviral against the influenza (Vernier et al., 1969) and HIV viruses (El-Emam et al., 2004). Moreover, adamantane derivatives were recently reported to exhibit remarkable antibacterial (Kadi et al., 2007, 2010) and anti-inflammatory (El-Emam & Ibrahim, 1991) activities. In an earlier publication (El-Emam et al., 2004), we reported the synthesis and potent antimicrobial and antiviral activities of a series of 1-adamantyl-1,3,4-oxadiazoles and related derivatives including the title compound (I).
Molecules of the title compound form dimers connected to each other through C5—H5B···S1 with distance 3.652 (4) Å and bond angle 128.2 (3)°. The planar oxadiazole ring includes S1, C3 and C15 approximately in the same plane with distances -0.046 (2) Å, -0.085 (5) Å and 0.003 (4) Å respectively. The plane defined by the phenyl ring contains C8 with distance 0.021 (5) A°. These planar structures do not deviate significantly from planarity and the dihedral angle between the two planes is 31.3 (3)°.