organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cyclo­hexyl­ammonium acetate–N,N′,N′′-tri­cyclo­hexyl­phospho­ric tri­amide (1/1)

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran, and bDepartment of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: Mojtaba.keikha@yahoo.com

(Received 7 June 2012; accepted 23 June 2012; online 30 June 2012)

In the phospho­ric triamide mol­ecule of the title compound, C6H14N+·C2H3O2·C18H36N3OP, the P atom displays a distorted tetra­hedral geometry and the cyclo­hexyl rings adopt chair conformations with the NH groups in equatorial positions. In the crystal, the cations, anions and phosphoric triamide mol­ecules are linked via N—H⋯O hydrogen bonds into a two-dimensional array parallel to the bc plane. The O atom of the P(O) group acts as a double-hydrogen-bond acceptor.

Related literature

For background to phospho­ric triamide mol­ecules and for bond lengths and angles in related structures, see: Pourayoubi, Tarahhomi et al. (2012[Pourayoubi, M., Tarahhomi, A., Karimi Ahmadabad, F., Fejfarová, K., Lee, A. van der & Dušek, M. (2012). Acta Cryst. C68, o164-o169.]); Sabbaghi et al. (2011[Sabbaghi, F., Pourayoubi, M., Karimi Ahmadabad, F., Azarkamanzad, Z. & Ebrahimi Valmoozi, A. A. (2011). Acta Cryst. E67, o502.]). For a definition of double-hydrogen-bond acceptor, see: Pourayoubi, Nečas & Negari (2012[Pourayoubi, M., Nečas, M. & Negari, M. (2012). Acta Cryst. C68, o51-o56.]). For hydrolysis of compounds containing a C≡N bond, see: Vollhardt & Schore (1998[Vollhardt, K. P. C. & Schore, N. E. (1998). Organic Chemistry: Structure and Function, 3rd ed., ch. 19, p. 837. New York: W. H. Freeman Co.]).

[Scheme 1]

Experimental

Crystal data
  • C6H14N+·C2H3O2·C18H36N3OP

  • Mr = 500.69

  • Monoclinic, P 21 /c

  • a = 12.7663 (8) Å

  • b = 10.9011 (7) Å

  • c = 21.2791 (13) Å

  • β = 104.523 (3)°

  • V = 2866.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 90 K

  • 0.35 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.957, Tmax = 0.975

  • 21979 measured reflections

  • 5898 independent reflections

  • 4702 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.119

  • S = 0.97

  • 5898 reflections

  • 326 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1i 0.87 (1) 2.14 (2) 3.0049 (18) 171 (2)
N3—H3N⋯O2ii 0.84 (1) 2.05 (2) 2.8837 (18) 173 (2)
N1—H1N⋯O3 0.86 (1) 2.21 (2) 3.0394 (18) 163 (2)
N4—H4NC⋯O1iii 0.89 (1) 2.05 (2) 2.9445 (18) 178 (2)
N4—H4NB⋯O3iv 0.89 (2) 1.94 (2) 2.7666 (19) 155 (2)
N4—H4NA⋯O2v 0.88 (2) 1.83 (2) 2.6992 (19) 169 (2)
Symmetry codes: (i) -x, -y, -z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y+1, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The X-ray determination of the title co-crystal, P(O)(NHC6H11)3,(C6H11NH3+)(CH3COO-), (Fig. 1) was performed following to our previous study on synthesis and crystal structure determination of phosphoric triamide compounds (Pourayoubi, Tarahhomi et al., 2012 and Sabbaghi et al., 2011).

The cyclohexyl rings of phosphoric triamide molecule and also in the C6H11NH3+ cation have the chair conformation and the NH and NH3+ groups are in the equatorial position of the rings. In P(O)(NHC6H11)3, the P atom exists in a distorted tetrahedral environment with the P—N bond lengths of 1.6315 (14) Å, 1.6440 (14) Å and 1.6463 (14) Å (for P1—N1). The PO bond length and the P—N—C bond angles are standard for the phosphoric triamides (Pourayoubi, Tarahhomi et al., 2012 and Sabbaghi et al., 2011).

In the crystal, the oxygen atom of the PO group acts as a double-hydrogen bond acceptor (Pourayoubi, Nečas & Negari, 2012), forming the PO···[H—N][H—N] grouping with one N—H unit of a neighboring P(O)(NHC6H11)3 molecule and one N—H unit of C6H11NH3+ cation. Other N—H units of P(O)(NHC6H11)3 and N—H units of C6H11NH3+ are involved in the N—H···O hydrogen bonds with the O atoms of acetate anion. These N—H···O hydrogen bonds form a two-dimensional arrangement parallel to bc plane (Fig. 2).

Related literature top

For background to phosphoric triamide molecules and for bond lengths and angles in related structures, see: Pourayoubi, Tarahhomi et al. (2012); Sabbaghi et al. (2011). For a definition of double-hydrogen-bond acceptor, see: Pourayoubi, Nečas & Negari (2012). For hydrolysis of compounds containing a CN bond, see: Vollhardt & Schore (1998).

Experimental top

The title co-crystal was obtained fortuitously from a reaction between phosphoryl chloride and cyclohexylamine in acetonitrile at 273 K (4 h) and then the treatment of dibenzylamine at ice bath temperature. The presence of acetate anion is attributed to the hydrolysis of acetonitrile in acidic media of reaction (Vollhardt & Schore, 1998).

Refinement top

Structure was solved by direct methods and all non-hydrogen atoms were refined by full matrix least squares on F2. All nitrogen hydrogen atoms were found from a Fourier difference map and were refined isotropically with N—H distance of 0.87 (2) Å and 1.2Ueq of parent N atom. All other H atoms were placed in calculated positions and treated as riding on their parent atoms with C—H = 0.980 Å (CH3), 0.990 Å (CH2), and 1.000 Å (CH) with 1.5Ueq for methyl groups and 1.2Ueq for other H atoms.

Structure description top

The X-ray determination of the title co-crystal, P(O)(NHC6H11)3,(C6H11NH3+)(CH3COO-), (Fig. 1) was performed following to our previous study on synthesis and crystal structure determination of phosphoric triamide compounds (Pourayoubi, Tarahhomi et al., 2012 and Sabbaghi et al., 2011).

The cyclohexyl rings of phosphoric triamide molecule and also in the C6H11NH3+ cation have the chair conformation and the NH and NH3+ groups are in the equatorial position of the rings. In P(O)(NHC6H11)3, the P atom exists in a distorted tetrahedral environment with the P—N bond lengths of 1.6315 (14) Å, 1.6440 (14) Å and 1.6463 (14) Å (for P1—N1). The PO bond length and the P—N—C bond angles are standard for the phosphoric triamides (Pourayoubi, Tarahhomi et al., 2012 and Sabbaghi et al., 2011).

In the crystal, the oxygen atom of the PO group acts as a double-hydrogen bond acceptor (Pourayoubi, Nečas & Negari, 2012), forming the PO···[H—N][H—N] grouping with one N—H unit of a neighboring P(O)(NHC6H11)3 molecule and one N—H unit of C6H11NH3+ cation. Other N—H units of P(O)(NHC6H11)3 and N—H units of C6H11NH3+ are involved in the N—H···O hydrogen bonds with the O atoms of acetate anion. These N—H···O hydrogen bonds form a two-dimensional arrangement parallel to bc plane (Fig. 2).

For background to phosphoric triamide molecules and for bond lengths and angles in related structures, see: Pourayoubi, Tarahhomi et al. (2012); Sabbaghi et al. (2011). For a definition of double-hydrogen-bond acceptor, see: Pourayoubi, Nečas & Negari (2012). For hydrolysis of compounds containing a CN bond, see: Vollhardt & Schore (1998).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. An ORTEP-style plot and atom labeling scheme for the title cocrystal. Displacement ellipsoids are given at 50% probability level and H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the two-dimensional arrangement with the N—H···O hydrogen bonds parallel to bc plane. The N–H···O hydrogen bonds are shown as dashed lines and the H atoms bound to C atoms have been omitted for clarity.
Cyclohexylammonium acetate–N,N',N''-tricyclohexylphosphoric triamide (1/1) top
Crystal data top
C6H14N+·C2H3O2·C18H36N3OPF(000) = 1104
Mr = 500.69Dx = 1.160 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4565 reflections
a = 12.7663 (8) Åθ = 2.5–26.4°
b = 10.9011 (7) ŵ = 0.13 mm1
c = 21.2791 (13) ÅT = 90 K
β = 104.523 (3)°Block, colourless
V = 2866.7 (3) Å30.35 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5898 independent reflections
Radiation source: fine-focus sealed tube4702 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 26.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1316
Tmin = 0.957, Tmax = 0.975k = 1213
21979 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0636P)2 + 1.5804P]
where P = (Fo2 + 2Fc2)/3
5898 reflections(Δ/σ)max < 0.001
326 parametersΔρmax = 0.47 e Å3
6 restraintsΔρmin = 0.47 e Å3
Crystal data top
C6H14N+·C2H3O2·C18H36N3OPV = 2866.7 (3) Å3
Mr = 500.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.7663 (8) ŵ = 0.13 mm1
b = 10.9011 (7) ÅT = 90 K
c = 21.2791 (13) Å0.35 × 0.25 × 0.20 mm
β = 104.523 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
5898 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4702 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.975Rint = 0.043
21979 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0446 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.47 e Å3
5898 reflectionsΔρmin = 0.47 e Å3
326 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.03749 (3)0.03310 (4)0.110490 (19)0.01413 (12)
O10.03516 (9)0.06943 (10)0.07941 (5)0.0162 (3)
O20.03699 (11)0.56848 (11)0.20581 (6)0.0235 (3)
O30.03597 (10)0.39451 (11)0.18349 (6)0.0226 (3)
N10.03942 (11)0.14670 (13)0.12349 (6)0.0162 (3)
H1N0.0051 (14)0.2092 (15)0.1427 (9)0.019*
N20.12192 (11)0.06325 (12)0.06552 (7)0.0153 (3)
H2N0.0942 (14)0.0571 (17)0.0240 (7)0.018*
N30.11772 (11)0.01218 (13)0.18250 (7)0.0169 (3)
H3N0.0902 (15)0.0241 (18)0.2140 (8)0.020*
N40.90968 (12)0.80813 (14)0.19022 (7)0.0175 (3)
H4NC0.9261 (15)0.8438 (17)0.1561 (8)0.021*
H4NB0.9447 (14)0.8426 (17)0.2274 (8)0.021*
H4NA0.9338 (15)0.7323 (14)0.1928 (9)0.021*
C10.21703 (13)0.06129 (15)0.19470 (8)0.0165 (3)
H1A0.24720.05280.15580.020*
C20.19909 (15)0.19790 (16)0.20397 (9)0.0223 (4)
H2B0.14550.23030.16560.027*
H2A0.17010.21000.24250.027*
C30.30587 (16)0.26732 (17)0.21303 (9)0.0277 (4)
H3B0.29400.35490.22160.033*
H3A0.33010.26250.17240.033*
C40.39406 (16)0.21611 (18)0.26870 (9)0.0279 (4)
H4A0.37520.23260.31030.033*
H4B0.46320.25820.26990.033*
C50.40827 (15)0.07895 (19)0.26147 (9)0.0281 (4)
H5A0.43790.06340.22350.034*
H5B0.46080.04730.30050.034*
C60.30118 (14)0.01101 (17)0.25267 (9)0.0237 (4)
H6A0.27470.02010.29240.028*
H6B0.31240.07750.24610.028*
C70.21298 (13)0.14884 (15)0.08461 (8)0.0156 (3)
H7A0.24310.14050.13250.019*
C80.30137 (13)0.11132 (16)0.05214 (8)0.0192 (4)
H8A0.27310.11620.00440.023*
H8B0.32230.02510.06350.023*
C90.40097 (15)0.19339 (17)0.07308 (10)0.0262 (4)
H9A0.43550.17920.11960.031*
H9B0.45380.17120.04800.031*
C100.37214 (15)0.32891 (17)0.06253 (9)0.0251 (4)
H10A0.43710.37930.08100.030*
H10B0.34850.34600.01540.030*
C110.28244 (15)0.36423 (16)0.09441 (9)0.0244 (4)
H11A0.26230.45110.08450.029*
H11B0.30900.35600.14210.029*
C120.18287 (14)0.28355 (15)0.07060 (9)0.0208 (4)
H12A0.15330.29540.02330.025*
H12B0.12640.30740.09280.025*
C130.13969 (13)0.17719 (15)0.07496 (8)0.0165 (3)
H13A0.17730.09840.05910.020*
C140.12088 (14)0.24561 (16)0.01597 (8)0.0181 (4)
H14A0.07920.32140.03060.022*
H14B0.07750.19350.00610.022*
C150.22712 (15)0.27884 (16)0.03186 (8)0.0226 (4)
H15A0.26440.20280.05080.027*
H15B0.21190.32800.06770.027*
C160.30106 (15)0.35149 (18)0.00041 (9)0.0256 (4)
H16A0.37110.36640.03130.031*
H16B0.26770.43200.01480.031*
C170.32031 (15)0.28178 (18)0.05861 (9)0.0275 (4)
H17A0.36040.20520.04350.033*
H17B0.36510.33240.08040.033*
C180.21338 (14)0.25052 (16)0.10695 (8)0.0207 (4)
H18A0.17650.32730.12510.025*
H18B0.22810.20240.14330.025*
C190.00103 (13)0.50061 (15)0.16902 (8)0.0170 (3)
C200.00121 (17)0.55092 (16)0.10254 (9)0.0251 (4)
H20A0.05990.51270.08740.038*
H20B0.01210.63990.10540.038*
H20C0.06820.53260.07190.038*
C210.79125 (14)0.81068 (15)0.18393 (8)0.0184 (4)
H21A0.77700.77600.22450.022*
C220.73229 (14)0.73242 (16)0.12695 (8)0.0224 (4)
H22A0.75640.64620.13440.027*
H22B0.75050.76130.08690.027*
C230.61009 (15)0.73912 (18)0.11812 (9)0.0284 (4)
H23A0.59110.69990.15580.034*
H23B0.57360.69290.07870.034*
C240.56931 (16)0.87123 (19)0.11199 (10)0.0323 (5)
H24A0.57910.90720.07110.039*
H24B0.49110.87230.11020.039*
C250.63031 (15)0.94796 (19)0.16928 (10)0.0302 (4)
H25A0.60561.03420.16290.036*
H25B0.61370.91740.20950.036*
C260.75158 (15)0.94279 (16)0.17677 (9)0.0242 (4)
H26A0.78900.99050.21550.029*
H26B0.76910.98020.13830.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0168 (2)0.0128 (2)0.0132 (2)0.00017 (16)0.00465 (16)0.00000 (15)
O10.0194 (6)0.0131 (6)0.0164 (6)0.0014 (4)0.0051 (5)0.0006 (4)
O20.0365 (8)0.0165 (6)0.0221 (6)0.0046 (5)0.0157 (6)0.0018 (5)
O30.0317 (7)0.0137 (6)0.0225 (6)0.0031 (5)0.0068 (5)0.0004 (5)
N10.0182 (7)0.0144 (7)0.0153 (7)0.0001 (6)0.0030 (6)0.0026 (5)
N20.0176 (7)0.0156 (7)0.0131 (7)0.0019 (5)0.0043 (6)0.0006 (5)
N30.0193 (7)0.0189 (7)0.0140 (7)0.0030 (6)0.0068 (6)0.0000 (6)
N40.0215 (8)0.0137 (7)0.0184 (7)0.0004 (6)0.0071 (6)0.0008 (6)
C10.0167 (8)0.0169 (8)0.0168 (8)0.0018 (6)0.0060 (7)0.0011 (6)
C20.0246 (9)0.0192 (9)0.0220 (9)0.0002 (7)0.0036 (7)0.0040 (7)
C30.0324 (11)0.0225 (10)0.0272 (10)0.0075 (8)0.0056 (8)0.0055 (8)
C40.0250 (10)0.0378 (11)0.0216 (9)0.0108 (8)0.0073 (8)0.0062 (8)
C50.0204 (9)0.0377 (11)0.0245 (10)0.0018 (8)0.0025 (8)0.0001 (8)
C60.0234 (9)0.0258 (10)0.0205 (9)0.0006 (8)0.0032 (7)0.0031 (7)
C70.0168 (8)0.0140 (8)0.0159 (8)0.0015 (6)0.0039 (6)0.0010 (6)
C80.0187 (9)0.0157 (8)0.0238 (9)0.0004 (7)0.0064 (7)0.0004 (7)
C90.0189 (9)0.0248 (10)0.0355 (11)0.0012 (7)0.0081 (8)0.0027 (8)
C100.0242 (10)0.0206 (9)0.0317 (10)0.0073 (7)0.0095 (8)0.0035 (8)
C110.0302 (10)0.0162 (9)0.0285 (10)0.0021 (7)0.0107 (8)0.0015 (7)
C120.0233 (9)0.0147 (8)0.0266 (9)0.0015 (7)0.0106 (8)0.0019 (7)
C130.0180 (8)0.0137 (8)0.0179 (8)0.0004 (6)0.0046 (7)0.0001 (6)
C140.0205 (9)0.0163 (8)0.0183 (8)0.0003 (7)0.0061 (7)0.0006 (7)
C150.0273 (10)0.0194 (9)0.0198 (9)0.0017 (7)0.0033 (7)0.0028 (7)
C160.0213 (9)0.0260 (10)0.0284 (10)0.0053 (7)0.0040 (8)0.0063 (8)
C170.0209 (10)0.0301 (11)0.0335 (10)0.0042 (8)0.0106 (8)0.0064 (8)
C180.0224 (9)0.0189 (9)0.0231 (9)0.0012 (7)0.0103 (7)0.0021 (7)
C190.0187 (8)0.0143 (8)0.0182 (8)0.0031 (6)0.0050 (7)0.0007 (6)
C200.0401 (11)0.0169 (9)0.0217 (9)0.0004 (8)0.0141 (8)0.0000 (7)
C210.0196 (9)0.0168 (8)0.0198 (8)0.0005 (7)0.0069 (7)0.0013 (6)
C220.0264 (10)0.0196 (9)0.0209 (9)0.0018 (7)0.0056 (7)0.0009 (7)
C230.0238 (10)0.0326 (11)0.0269 (10)0.0040 (8)0.0031 (8)0.0006 (8)
C240.0228 (10)0.0390 (12)0.0334 (11)0.0046 (8)0.0041 (8)0.0048 (9)
C250.0251 (10)0.0309 (11)0.0349 (11)0.0075 (8)0.0080 (8)0.0002 (8)
C260.0268 (10)0.0185 (9)0.0280 (10)0.0029 (7)0.0079 (8)0.0001 (7)
Geometric parameters (Å, º) top
P1—O11.4964 (12)C10—H10B0.9900
P1—N31.6315 (14)C11—C121.524 (2)
P1—N21.6440 (14)C11—H11A0.9900
P1—N11.6463 (14)C11—H11B0.9900
O2—C191.260 (2)C12—H12A0.9900
O3—C191.250 (2)C12—H12B0.9900
N1—C131.467 (2)C13—C181.519 (2)
N1—H1N0.857 (14)C13—C141.530 (2)
N2—C71.466 (2)C13—H13A1.0000
N2—H2N0.868 (14)C14—C151.521 (2)
N3—C11.467 (2)C14—H14A0.9900
N3—H3N0.841 (14)C14—H14B0.9900
N4—C211.484 (2)C15—C161.521 (3)
N4—H4NC0.894 (14)C15—H15A0.9900
N4—H4NB0.888 (15)C15—H15B0.9900
N4—H4NA0.879 (15)C16—C171.525 (3)
C1—C61.520 (2)C16—H16A0.9900
C1—C21.527 (2)C16—H16B0.9900
C1—H1A1.0000C17—C181.527 (3)
C2—C31.529 (3)C17—H17A0.9900
C2—H2B0.9900C17—H17B0.9900
C2—H2A0.9900C18—H18A0.9900
C3—C41.521 (3)C18—H18B0.9900
C3—H3B0.9900C19—C201.518 (2)
C3—H3A0.9900C20—H20A0.9800
C4—C51.519 (3)C20—H20B0.9800
C4—H4A0.9900C20—H20C0.9800
C4—H4B0.9900C21—C221.519 (2)
C5—C61.525 (3)C21—C261.521 (2)
C5—H5A0.9900C21—H21A1.0000
C5—H5B0.9900C22—C231.526 (3)
C6—H6A0.9900C22—H22A0.9900
C6—H6B0.9900C22—H22B0.9900
C7—C81.519 (2)C23—C241.526 (3)
C7—C121.528 (2)C23—H23A0.9900
C7—H7A1.0000C23—H23B0.9900
C8—C91.527 (2)C24—C251.522 (3)
C8—H8A0.9900C24—H24A0.9900
C8—H8B0.9900C24—H24B0.9900
C9—C101.525 (3)C25—C261.517 (3)
C9—H9A0.9900C25—H25A0.9900
C9—H9B0.9900C25—H25B0.9900
C10—C111.520 (2)C26—H26A0.9900
C10—H10A0.9900C26—H26B0.9900
O1—P1—N3118.96 (7)C11—C12—C7109.97 (14)
O1—P1—N2108.44 (7)C11—C12—H12A109.7
N3—P1—N2103.05 (7)C7—C12—H12A109.7
O1—P1—N1107.84 (7)C11—C12—H12B109.7
N3—P1—N1101.99 (7)C7—C12—H12B109.7
N2—P1—N1116.95 (7)H12A—C12—H12B108.2
C13—N1—P1120.26 (11)N1—C13—C18109.44 (13)
C13—N1—H1N114.0 (13)N1—C13—C14113.53 (13)
P1—N1—H1N115.0 (13)C18—C13—C14110.69 (14)
C7—N2—P1123.78 (11)N1—C13—H13A107.7
C7—N2—H2N115.0 (12)C18—C13—H13A107.7
P1—N2—H2N114.7 (12)C14—C13—H13A107.7
C1—N3—P1123.63 (11)C15—C14—C13111.59 (14)
C1—N3—H3N117.3 (13)C15—C14—H14A109.3
P1—N3—H3N116.0 (13)C13—C14—H14A109.3
C21—N4—H4NC111.1 (12)C15—C14—H14B109.3
C21—N4—H4NB110.3 (12)C13—C14—H14B109.3
H4NC—N4—H4NB111.7 (18)H14A—C14—H14B108.0
C21—N4—H4NA110.9 (13)C14—C15—C16111.84 (15)
H4NC—N4—H4NA108.0 (17)C14—C15—H15A109.2
H4NB—N4—H4NA104.6 (18)C16—C15—H15A109.2
N3—C1—C6110.51 (14)C14—C15—H15B109.2
N3—C1—C2113.85 (14)C16—C15—H15B109.2
C6—C1—C2110.19 (14)H15A—C15—H15B107.9
N3—C1—H1A107.3C15—C16—C17110.59 (15)
C6—C1—H1A107.3C15—C16—H16A109.5
C2—C1—H1A107.3C17—C16—H16A109.5
C1—C2—C3109.95 (15)C15—C16—H16B109.5
C1—C2—H2B109.7C17—C16—H16B109.5
C3—C2—H2B109.7H16A—C16—H16B108.1
C1—C2—H2A109.7C16—C17—C18111.06 (15)
C3—C2—H2A109.7C16—C17—H17A109.4
H2B—C2—H2A108.2C18—C17—H17A109.4
C4—C3—C2112.27 (16)C16—C17—H17B109.4
C4—C3—H3B109.2C18—C17—H17B109.4
C2—C3—H3B109.2H17A—C17—H17B108.0
C4—C3—H3A109.2C13—C18—C17111.40 (15)
C2—C3—H3A109.2C13—C18—H18A109.3
H3B—C3—H3A107.9C17—C18—H18A109.3
C5—C4—C3111.49 (15)C13—C18—H18B109.3
C5—C4—H4A109.3C17—C18—H18B109.3
C3—C4—H4A109.3H18A—C18—H18B108.0
C5—C4—H4B109.3O3—C19—O2124.04 (15)
C3—C4—H4B109.3O3—C19—C20118.69 (15)
H4A—C4—H4B108.0O2—C19—C20117.26 (15)
C4—C5—C6111.38 (16)C19—C20—H20A109.5
C4—C5—H5A109.4C19—C20—H20B109.5
C6—C5—H5A109.4H20A—C20—H20B109.5
C4—C5—H5B109.4C19—C20—H20C109.5
C6—C5—H5B109.4H20A—C20—H20C109.5
H5A—C5—H5B108.0H20B—C20—H20C109.5
C1—C6—C5110.73 (15)N4—C21—C22110.56 (14)
C1—C6—H6A109.5N4—C21—C26109.43 (14)
C5—C6—H6A109.5C22—C21—C26111.46 (15)
C1—C6—H6B109.5N4—C21—H21A108.4
C5—C6—H6B109.5C22—C21—H21A108.4
H6A—C6—H6B108.1C26—C21—H21A108.4
N2—C7—C8109.29 (13)C21—C22—C23110.98 (15)
N2—C7—C12114.46 (14)C21—C22—H22A109.4
C8—C7—C12110.43 (13)C23—C22—H22A109.4
N2—C7—H7A107.5C21—C22—H22B109.4
C8—C7—H7A107.5C23—C22—H22B109.4
C12—C7—H7A107.5H22A—C22—H22B108.0
C7—C8—C9111.62 (14)C22—C23—C24111.85 (16)
C7—C8—H8A109.3C22—C23—H23A109.2
C9—C8—H8A109.3C24—C23—H23A109.2
C7—C8—H8B109.3C22—C23—H23B109.2
C9—C8—H8B109.3C24—C23—H23B109.2
H8A—C8—H8B108.0H23A—C23—H23B107.9
C10—C9—C8111.84 (15)C25—C24—C23110.81 (16)
C10—C9—H9A109.2C25—C24—H24A109.5
C8—C9—H9A109.2C23—C24—H24A109.5
C10—C9—H9B109.2C25—C24—H24B109.5
C8—C9—H9B109.2C23—C24—H24B109.5
H9A—C9—H9B107.9H24A—C24—H24B108.1
C11—C10—C9111.14 (15)C26—C25—C24111.55 (16)
C11—C10—H10A109.4C26—C25—H25A109.3
C9—C10—H10A109.4C24—C25—H25A109.3
C11—C10—H10B109.4C26—C25—H25B109.3
C9—C10—H10B109.4C24—C25—H25B109.3
H10A—C10—H10B108.0H25A—C25—H25B108.0
C10—C11—C12111.37 (15)C25—C26—C21110.54 (15)
C10—C11—H11A109.4C25—C26—H26A109.5
C12—C11—H11A109.4C21—C26—H26A109.5
C10—C11—H11B109.4C25—C26—H26B109.5
C12—C11—H11B109.4C21—C26—H26B109.5
H11A—C11—H11B108.0H26A—C26—H26B108.1
O1—P1—N1—C1339.88 (14)C8—C9—C10—C1153.0 (2)
N3—P1—N1—C13165.92 (12)C9—C10—C11—C1255.6 (2)
N2—P1—N1—C1382.56 (14)C10—C11—C12—C758.17 (19)
O1—P1—N2—C7172.79 (12)N2—C7—C12—C11178.05 (14)
N3—P1—N2—C745.84 (14)C8—C7—C12—C1158.12 (18)
N1—P1—N2—C765.08 (15)P1—N1—C13—C18160.06 (12)
O1—P1—N3—C175.27 (15)P1—N1—C13—C1475.72 (16)
N2—P1—N3—C144.69 (14)N1—C13—C14—C15178.14 (13)
N1—P1—N3—C1166.34 (13)C18—C13—C14—C1554.60 (19)
P1—N3—C1—C6148.80 (13)C13—C14—C15—C1654.91 (19)
P1—N3—C1—C286.58 (17)C14—C15—C16—C1755.3 (2)
N3—C1—C2—C3177.23 (14)C15—C16—C17—C1855.9 (2)
C6—C1—C2—C357.97 (18)N1—C13—C18—C17178.57 (14)
C1—C2—C3—C455.5 (2)C14—C13—C18—C1755.56 (19)
C2—C3—C4—C553.4 (2)C16—C17—C18—C1356.7 (2)
C3—C4—C5—C653.4 (2)N4—C21—C22—C23177.38 (14)
N3—C1—C6—C5174.36 (14)C26—C21—C22—C2355.43 (19)
C2—C1—C6—C558.95 (19)C21—C22—C23—C2454.4 (2)
C4—C5—C6—C156.6 (2)C22—C23—C24—C2554.3 (2)
P1—N2—C7—C8152.71 (12)C23—C24—C25—C2655.5 (2)
P1—N2—C7—C1282.85 (17)C24—C25—C26—C2156.7 (2)
N2—C7—C8—C9177.01 (14)N4—C21—C26—C25179.20 (14)
C12—C7—C8—C956.22 (19)C22—C21—C26—C2556.6 (2)
C7—C8—C9—C1053.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.87 (1)2.14 (2)3.0049 (18)171 (2)
N3—H3N···O2ii0.84 (1)2.05 (2)2.8837 (18)173 (2)
N1—H1N···O30.86 (1)2.21 (2)3.0394 (18)163 (2)
N4—H4NC···O1iii0.89 (1)2.05 (2)2.9445 (18)178 (2)
N4—H4NB···O3iv0.89 (2)1.94 (2)2.7666 (19)155 (2)
N4—H4NA···O2v0.88 (2)1.83 (2)2.6992 (19)169 (2)
Symmetry codes: (i) x, y, z; (ii) x, y1/2, z+1/2; (iii) x+1, y+1, z; (iv) x+1, y+1/2, z+1/2; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H14N+·C2H3O2·C18H36N3OP
Mr500.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)90
a, b, c (Å)12.7663 (8), 10.9011 (7), 21.2791 (13)
β (°) 104.523 (3)
V3)2866.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.35 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.957, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
21979, 5898, 4702
Rint0.043
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.119, 0.97
No. of reflections5898
No. of parameters326
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.47

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.868 (14)2.144 (15)3.0049 (18)171.3 (17)
N3—H3N···O2ii0.841 (14)2.047 (15)2.8837 (18)173.3 (19)
N1—H1N···O30.857 (14)2.209 (15)3.0394 (18)163.3 (18)
N4—H4NC···O1iii0.894 (14)2.051 (15)2.9445 (18)178.2 (18)
N4—H4NB···O3iv0.888 (15)1.935 (16)2.7666 (19)155.2 (17)
N4—H4NA···O2v0.879 (15)1.831 (15)2.6992 (19)168.9 (18)
Symmetry codes: (i) x, y, z; (ii) x, y1/2, z+1/2; (iii) x+1, y+1, z; (iv) x+1, y+1/2, z+1/2; (v) x+1, y, z.
 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPourayoubi, M., Nečas, M. & Negari, M. (2012). Acta Cryst. C68, o51–o56.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Karimi Ahmadabad, F., Fejfarová, K., Lee, A. van der & Dušek, M. (2012). Acta Cryst. C68, o164–o169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSabbaghi, F., Pourayoubi, M., Karimi Ahmadabad, F., Azarkamanzad, Z. & Ebrahimi Valmoozi, A. A. (2011). Acta Cryst. E67, o502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVollhardt, K. P. C. & Schore, N. E. (1998). Organic Chemistry: Structure and Function, 3rd ed., ch. 19, p. 837. New York: W. H. Freeman Co.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds