organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10-(6-Hy­dr­oxy­hexa-2,4-diyn-1-yl)-10H-pheno­thia­zine 5-oxide

aDepartment of Material Science and Chemistry, Wakayama University, Sakaedani, Wakayama 640-8510, Japan
*Correspondence e-mail: okuno@center.wakayama-u.ac.jp

(Received 11 June 2012; accepted 18 June 2012; online 27 June 2012)

The title compound, C18H13NO2S, has two independent mol­ecules (A and B) with similar conformations in the asymmetric unit. Both phenothia­zine moieties have a butterfly structure [dihedral angles between benzene rings = 155.17 (7) and 161.71 (7)°, respectively], and the central six-membered rings have a boat form. In the crystal, the A and B mol­ecules stack alternately along the b axis. The A and B mol­ecules are linked by O—H⋯O=S hydrogen bonds, forming zigzag chains along [10-1].

Related literature

For related structures of phenothia­zine 5-oxide compounds, see: Chu et al. (1985[Chu, S. S. C., de Meester, P., Jovanovic, M. V. & Biehl, E. R. (1985). Acta Cryst. C41, 1111-1114.]); Dahl et al. (1982[Dahl, S. G., Hjorth, M. & Hough, E. (1982). Mol. Pharmacol. 21, 409-414.]); Hough et al. (1985a[Hough, E., Hjorth, M. & Dahl, S. G. (1985a). Acta Cryst. C41, 383-386.],b[Hough, E., Wold, E. & Dahl, S. G. (1985b). Acta Cryst. C41, 386-389.], 1982[Hough, E., Hjorth, M. & Dahl, S. G. (1982). Acta Cryst. B38, 2424-2428.]); Jin et al. (2010[Jin, R.-F., Yu, K., Yang, S.-Y. & Huang, R.-B. (2010). Acta Cryst. E66, o3267.]); Jovanovic et al. (1986[Jovanovic, M. V., de Meester, P., Biehl, E. R. & Chu, S. S. C. (1986). J. Heterocycl. Chem. 23, 801-807.]); Okuno et al. (2006[Okuno, T., Ikeda, S., Kubo, N. & Sandman, D. J. (2006). Mol. Cryst. Liq. Cryst. 456, 35-44.]); Wang et al. (2009[Wang, Q., Yang, L., Xu, Z. & Sun, Y. (2009). Acta Cryst. E65, o1978.]); Xu et al. (2009[Xu, Z., Sun, Y., Yang, L. & Wang, Q. (2009). Acta Cryst. E65, o1799.]). For the related preparation of 10-(6-hy­droxy­hexa-2,4-diyn-1-yl)-10H-pheno­thia­zine, see: Zaugg et al. (1958[Zaugg, H. E., Sweett, L. R. & Stone, G. R. (1958). J. Org. Chem. 23, 1389-1390.]) and for the preparation of the title compound, see: Gilman & Ranck (1958[Gilman, H. & Ranck, R. O. (1958). J. Org. Chem. 23, 1903-1906.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13NO2S

  • Mr = 307.37

  • Monoclinic, P 21 /c

  • a = 16.797 (5) Å

  • b = 10.197 (3) Å

  • c = 17.664 (5) Å

  • β = 94.934 (5)°

  • V = 3014.3 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 93 K

  • 0.15 × 0.15 × 0.05 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.969, Tmax = 0.989

  • 24445 measured reflections

  • 6932 independent reflections

  • 5523 reflections with F2 > 2σ(F2)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.135

  • S = 1.08

  • 6931 reflections

  • 404 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H13⋯O3i 0.82 (3) 1.85 (3) 2.663 (3) 172 (3)
O4—H26⋯O1ii 0.85 (2) 1.81 (2) 2.659 (3) 175 (3)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

Aromatic compounds that contain S-atom in a substituent and/or within an aromatic ring have attracted interest from the viewpoint of electronic property of the compounds. Oxidation of S-atom to form S=O bond enables to control its electronic condition without remarkable structural changes. S=O bonds have also been paid attention due to their ability to control the molecular arrangements.

In the title compound, there are two independent molecules (A and B) in the unit cell (Figure 1). The molecular structures of A and B are similar. The phenothiazine moieties have a butterfly structure, where the dihedral angles between two benzene rings (the C1—C6 plane: r.m.s. deviation = 0.0114 Å and the C7—C12 plane: r.m.s. deviation = 0.0020 Å in A, the C19—C24 plane: r.m.s. deviation = 0.0033 Å and the C25—C30 plane: r.m.s. deviation = 0.0052 Å in B) are 155.17 (7)° and 161.71 (7)°, respectively. The central six-membered rings (the N1/C1/C6/S1/C7/C12 and the N2/C19/C24/S2/C25/C30 rings) have a boat form. The S1—O1 and S2—O3 bonds showed longer bond lengths compared with the reported values (1.434 (13) Å - 1.511 (3) Å) of phenothiazine 5-oxide compounds. (Chu et al., 1985; Dahl et al., 1982; Hough et al., 1982; Hough et al., 1985a; Hough et al., 1985b; Jin et al., 2010; Jovanovic et al., 1986; Okuno et al., 2006; Wang et al., 2009; Xu et al., 2009). The elongation might be caused by the intermolecular hydrogen bonds.

The A and B stack alternately along the b axis. There are not any remarkable contacts within the stacks. The A and B molecules are connected by O—H···O=S hydrogen bonds, forming zig-zag chains along the [101] direction, where the distances of O2···O3i and O4···O1ii [Symmetry codes: (i) -x, y - 1/2, -z + 3/2; (ii) -x + 1, y + 1/2, -z + 1/2] are 2.663 (3) Å and 2.659 (3) Å, respectively (Figure 2). In this compound, S=O bonds play an important role to link the stacks by the intermolecular hydrogen bonds.

Related literature top

For related structures of phenothiazine 5-oxide compounds, see: Chu et al. (1985); Dahl et al. (1982); Hough et al. (1985a,b, 1982); Jin et al. (2010); Jovanovic et al. (1986); Okuno et al. (2006); Wang et al. (2009); Xu et al. (2009). For the preparation of 10-(6-hydroxyhexa-2,4-diyn-1-yl)-10H-phenothiazine, see: Zaugg et al. (1958) and for the preparation of the title compound, see: Gilman & Ranck (1958).

Experimental top

10-(6-Hydroxyhexa-2,4-diyn-1-yl)-10H-phenothiazine

N1,N1,N4,N4-Tetramethylethylenediamine (TMEDA; 30 µl, 0.20 mmol) was added to a suspension of copper(I) chloride (57 mg, 0.58 mmol) in degassed acetone (4 ml), and the suspension was stirred for 30 min. The supernatant solution containing the CuCl-TMEDA catalyst was transferred to a solution of 10-(prop-2-yn-1-yl)-10H-phenothiazine (0.67 g, 2.82 mmol) (Zaugg et al., 1958) and 2-propyn-1-ol (1.6 ml, 28 mmol) in acetone (3 ml). The solution was stirred for 6 days under an oxygen atmosphere. After the concentration of the solution, the residue was extracted with dichloromethane (20 ml). The solution was washed with 0.5 M aqueous hydrogen chloride (7 ml) and water (20 ml × 3) successively. The water layer was extracted twice with dichloromethane (200 ml). After the concentration of the combined solution, the residue was purified by a recrystallization from a n-hexane to give a 10-(6-hydroxyhexa-2,4-diyn-1-yl)-10H-phenothiazine as a white powder (0.60 g, yield 73%).

10-(6-Hydroxyhexa-2,4-diyn-1-yl)-10H-phenothiazine 5-oxide (Gilman & Ranck, 1958)

To a solution of 10-(6-hydroxyhexa-2,4-diyn-1-yl)-10H-phenothiazine (0.04 g, 0.14 mmol) in ethanol (30 ml), hydrogen peroxide (0.2 ml, 3.9 mmol × 2) was added successively. Then, the solution was refluxed for 5 h. After the solvent was evaporated, the residue was extracted with dichloromethane (20 ml × 3) and washed with water (20 ml). After the organic layer was concentrated, the residue was purified by a column chromatography with dichloromethane/ethanol (50:1 v/v) as an eluent to give 10-(6-hydroxyhexa-2,4-diyn-1-yl)-10H-phenothiazine 5-oxide (0.03 g, yield 71%). The single crystals with sufficient quality for X-ray analysis were obtained by concentration of a chloroform solution.

Refinement top

The C-bound H atoms were placed at ideal positions and were treated as riding on their parent C atoms. The Uiso(H) values of the H atoms were set at 1.2Ueq(parent C atom). The O-bound H atoms were obtained from a difference Fourier map. The H13 atom was refined isotropically without any restrictions. The position of the H26 atom was refined with the restraint of O—H range between 0.82 Å and 0.86 Å. The Uiso(H26) value was fixed at 1.5Ueq of O4.

Structure description top

Aromatic compounds that contain S-atom in a substituent and/or within an aromatic ring have attracted interest from the viewpoint of electronic property of the compounds. Oxidation of S-atom to form S=O bond enables to control its electronic condition without remarkable structural changes. S=O bonds have also been paid attention due to their ability to control the molecular arrangements.

In the title compound, there are two independent molecules (A and B) in the unit cell (Figure 1). The molecular structures of A and B are similar. The phenothiazine moieties have a butterfly structure, where the dihedral angles between two benzene rings (the C1—C6 plane: r.m.s. deviation = 0.0114 Å and the C7—C12 plane: r.m.s. deviation = 0.0020 Å in A, the C19—C24 plane: r.m.s. deviation = 0.0033 Å and the C25—C30 plane: r.m.s. deviation = 0.0052 Å in B) are 155.17 (7)° and 161.71 (7)°, respectively. The central six-membered rings (the N1/C1/C6/S1/C7/C12 and the N2/C19/C24/S2/C25/C30 rings) have a boat form. The S1—O1 and S2—O3 bonds showed longer bond lengths compared with the reported values (1.434 (13) Å - 1.511 (3) Å) of phenothiazine 5-oxide compounds. (Chu et al., 1985; Dahl et al., 1982; Hough et al., 1982; Hough et al., 1985a; Hough et al., 1985b; Jin et al., 2010; Jovanovic et al., 1986; Okuno et al., 2006; Wang et al., 2009; Xu et al., 2009). The elongation might be caused by the intermolecular hydrogen bonds.

The A and B stack alternately along the b axis. There are not any remarkable contacts within the stacks. The A and B molecules are connected by O—H···O=S hydrogen bonds, forming zig-zag chains along the [101] direction, where the distances of O2···O3i and O4···O1ii [Symmetry codes: (i) -x, y - 1/2, -z + 3/2; (ii) -x + 1, y + 1/2, -z + 1/2] are 2.663 (3) Å and 2.659 (3) Å, respectively (Figure 2). In this compound, S=O bonds play an important role to link the stacks by the intermolecular hydrogen bonds.

For related structures of phenothiazine 5-oxide compounds, see: Chu et al. (1985); Dahl et al. (1982); Hough et al. (1985a,b, 1982); Jin et al. (2010); Jovanovic et al. (1986); Okuno et al. (2006); Wang et al. (2009); Xu et al. (2009). For the preparation of 10-(6-hydroxyhexa-2,4-diyn-1-yl)-10H-phenothiazine, see: Zaugg et al. (1958) and for the preparation of the title compound, see: Gilman & Ranck (1958).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres.
[Figure 2] Fig. 2. A view of the two-dimensional array of the title compound on the (101) plane. Hydrogen bonds are shown as dashed lines, and hydrogen atoms are omitted for clarity. [Symmetry codes: (i) -x, y - 1/2, -z + 3/2; (ii) -x + 1, y + 1/2, -z + 1/2; (iii) -x, y + 1/2, -z + 3/2; (iv) -x + 1, y - 1/2, -z + 1/2; (v) x, y - 1, z].
10-(6-Hydroxyhexa-2,4-diyn-1-yl)-10H-phenothiazine 5-oxide top
Crystal data top
C18H13NO2SF(000) = 1280.00
Mr = 307.37Dx = 1.355 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 9306 reflections
a = 16.797 (5) Åθ = 2.3–31.2°
b = 10.197 (3) ŵ = 0.22 mm1
c = 17.664 (5) ÅT = 93 K
β = 94.934 (5)°Prism, colourless
V = 3014.3 (15) Å30.15 × 0.15 × 0.05 mm
Z = 8
Data collection top
Rigaku Saturn724+
diffractometer
5523 reflections with F2 > 2σ(F2)
Detector resolution: 7.111 pixels mm-1Rint = 0.033
ω scansθmax = 27.5°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 2121
Tmin = 0.969, Tmax = 0.989k = 1311
24445 measured reflectionsl = 2222
6932 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.9115P]
where P = (Fo2 + 2Fc2)/3
6931 reflections(Δ/σ)max = 0.001
404 parametersΔρmax = 0.88 e Å3
1 restraintΔρmin = 0.47 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C18H13NO2SV = 3014.3 (15) Å3
Mr = 307.37Z = 8
Monoclinic, P21/cMo Kα radiation
a = 16.797 (5) ŵ = 0.22 mm1
b = 10.197 (3) ÅT = 93 K
c = 17.664 (5) Å0.15 × 0.15 × 0.05 mm
β = 94.934 (5)°
Data collection top
Rigaku Saturn724+
diffractometer
6932 independent reflections
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
5523 reflections with F2 > 2σ(F2)
Tmin = 0.969, Tmax = 0.989Rint = 0.033
24445 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.88 e Å3
6931 reflectionsΔρmin = 0.47 e Å3
404 parameters
Special details top

Refinement. Refinement was performed using all reflections except for 1 with very negative F2. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.30626 (3)0.37416 (5)0.39495 (3)0.02511 (13)
S20.16339 (3)0.80322 (5)0.61113 (3)0.02991 (14)
O10.36361 (8)0.25896 (13)0.40014 (8)0.0299 (3)
O20.10191 (8)0.61158 (15)0.80031 (8)0.0280 (3)
O30.09579 (9)0.90034 (15)0.61077 (10)0.0420 (4)
O40.61087 (8)0.67228 (15)0.23764 (8)0.0326 (4)
N10.25753 (9)0.34698 (15)0.55932 (8)0.0206 (4)
N20.23463 (9)0.90242 (15)0.46339 (9)0.0249 (4)
C10.20387 (11)0.29706 (17)0.50186 (10)0.0212 (4)
C20.13522 (11)0.22802 (18)0.51913 (11)0.0255 (4)
C30.08004 (12)0.18508 (19)0.46171 (11)0.0292 (5)
C40.09045 (12)0.20915 (19)0.38558 (11)0.0298 (5)
C50.15870 (12)0.27348 (18)0.36725 (11)0.0278 (5)
C60.21564 (11)0.31566 (17)0.42466 (10)0.0233 (4)
C70.33286 (12)0.47585 (18)0.47324 (11)0.0251 (4)
C80.38433 (13)0.5795 (2)0.45994 (12)0.0341 (5)
C90.41471 (14)0.6578 (3)0.51915 (13)0.0388 (6)
C100.39262 (13)0.6322 (2)0.59173 (12)0.0346 (5)
C110.34146 (12)0.53097 (19)0.60589 (11)0.0274 (4)
C120.31011 (11)0.44917 (17)0.54639 (10)0.0221 (4)
C130.24625 (11)0.31145 (18)0.63824 (10)0.0224 (4)
C140.18691 (11)0.39347 (18)0.67257 (10)0.0234 (4)
C150.13874 (11)0.46074 (18)0.70120 (10)0.0234 (4)
C160.08236 (11)0.53360 (18)0.73504 (10)0.0246 (4)
C170.03417 (11)0.59378 (18)0.76754 (11)0.0251 (4)
C180.02351 (11)0.6651 (2)0.81011 (12)0.0286 (5)
C190.18737 (11)0.78941 (18)0.45680 (11)0.0244 (4)
C200.16976 (12)0.72862 (18)0.38549 (11)0.0273 (5)
C210.12277 (12)0.61690 (19)0.37921 (12)0.0286 (5)
C220.09196 (12)0.56089 (19)0.44271 (12)0.0294 (5)
C230.10966 (12)0.61816 (19)0.51256 (12)0.0286 (5)
C240.15653 (11)0.73151 (18)0.52011 (11)0.0255 (4)
C250.25119 (11)0.89494 (19)0.60253 (11)0.0266 (4)
C260.29188 (12)0.9335 (2)0.67147 (12)0.0298 (5)
C270.35514 (12)1.0200 (2)0.67242 (12)0.0328 (5)
C280.37838 (12)1.0661 (2)0.60378 (13)0.0327 (5)
C290.34015 (12)1.02790 (19)0.53504 (12)0.0290 (5)
C300.27439 (11)0.94121 (18)0.53302 (11)0.0248 (4)
C310.25409 (12)0.96831 (19)0.39337 (11)0.0278 (4)
C320.31969 (12)0.90391 (19)0.35750 (11)0.0282 (5)
C330.37120 (12)0.8436 (2)0.32972 (11)0.0280 (5)
C340.42881 (12)0.77033 (19)0.29766 (11)0.0277 (5)
C350.47657 (12)0.70260 (19)0.26922 (11)0.0272 (4)
C360.53335 (11)0.6173 (2)0.23356 (12)0.0287 (5)
H10.12660.21070.57060.0306*
H20.03420.13830.47450.0350*
H30.05130.18180.34680.0358*
H40.16700.28910.31550.0334*
H50.39840.59600.40990.0410*
H60.45010.72790.51050.0465*
H70.41330.68600.63270.0415*
H80.32730.51630.65610.0328*
H90.29810.31910.66910.0269*
H100.22910.21870.63980.0269*
H110.00490.66360.86480.0343*
H120.02540.75780.79340.0343*
H130.1010 (16)0.542 (3)0.8238 (16)0.050 (8)*
H140.19030.76460.34150.0328*
H150.11130.57760.33080.0344*
H160.05940.48470.43770.0353*
H170.08980.58020.55630.0343*
H180.27580.89980.71790.0357*
H190.38221.04750.71910.0394*
H200.42191.12570.60410.0393*
H210.35811.06000.48900.0348*
H220.26921.06030.40530.0333*
H230.20590.96970.35690.0333*
H240.53570.53100.25930.0344*
H250.51420.60290.17960.0344*
H260.6186 (16)0.695 (3)0.1926 (11)0.0489*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0337 (3)0.0229 (3)0.0194 (3)0.00180 (18)0.00666 (19)0.00054 (17)
S20.0313 (3)0.0278 (3)0.0311 (3)0.0024 (2)0.0052 (2)0.0050 (2)
O10.0342 (8)0.0273 (8)0.0292 (7)0.0066 (6)0.0081 (6)0.0021 (6)
O20.0261 (7)0.0278 (8)0.0304 (8)0.0005 (6)0.0040 (6)0.0057 (6)
O30.0294 (8)0.0407 (9)0.0559 (11)0.0002 (7)0.0047 (7)0.0241 (8)
O40.0266 (8)0.0436 (9)0.0273 (8)0.0095 (7)0.0008 (6)0.0045 (7)
N10.0240 (8)0.0213 (8)0.0168 (7)0.0002 (6)0.0031 (6)0.0001 (6)
N20.0271 (8)0.0201 (8)0.0273 (8)0.0003 (7)0.0015 (7)0.0018 (7)
C10.0260 (9)0.0176 (9)0.0198 (9)0.0040 (7)0.0010 (7)0.0010 (7)
C20.0289 (10)0.0254 (10)0.0225 (9)0.0017 (8)0.0039 (8)0.0012 (8)
C30.0273 (10)0.0264 (11)0.0334 (11)0.0005 (8)0.0002 (9)0.0041 (8)
C40.0326 (11)0.0275 (11)0.0280 (10)0.0022 (9)0.0059 (9)0.0067 (8)
C50.0382 (11)0.0230 (10)0.0216 (9)0.0084 (8)0.0010 (8)0.0037 (8)
C60.0307 (10)0.0176 (9)0.0216 (9)0.0062 (8)0.0029 (8)0.0004 (7)
C70.0315 (10)0.0196 (10)0.0246 (9)0.0011 (8)0.0052 (8)0.0013 (8)
C80.0474 (13)0.0270 (11)0.0294 (11)0.0044 (9)0.0110 (10)0.0041 (9)
C90.0478 (14)0.0278 (12)0.0414 (13)0.0128 (10)0.0075 (11)0.0005 (10)
C100.0398 (12)0.0298 (12)0.0336 (11)0.0058 (9)0.0003 (10)0.0047 (9)
C110.0304 (10)0.0276 (11)0.0239 (10)0.0011 (8)0.0018 (8)0.0020 (8)
C120.0234 (9)0.0190 (9)0.0242 (9)0.0022 (7)0.0031 (8)0.0000 (7)
C130.0242 (9)0.0266 (10)0.0166 (8)0.0022 (8)0.0021 (7)0.0020 (7)
C140.0256 (9)0.0262 (10)0.0182 (9)0.0027 (8)0.0009 (8)0.0013 (7)
C150.0286 (10)0.0233 (10)0.0184 (9)0.0027 (8)0.0030 (8)0.0003 (7)
C160.0277 (10)0.0245 (10)0.0217 (9)0.0012 (8)0.0029 (8)0.0015 (8)
C170.0286 (10)0.0225 (10)0.0244 (9)0.0015 (8)0.0040 (8)0.0021 (8)
C180.0275 (10)0.0269 (11)0.0324 (11)0.0007 (8)0.0089 (9)0.0027 (9)
C190.0223 (9)0.0191 (9)0.0313 (10)0.0035 (7)0.0009 (8)0.0023 (8)
C200.0300 (10)0.0230 (10)0.0284 (10)0.0052 (8)0.0010 (8)0.0006 (8)
C210.0312 (11)0.0215 (10)0.0324 (11)0.0036 (8)0.0022 (9)0.0062 (8)
C220.0273 (10)0.0185 (10)0.0420 (12)0.0001 (8)0.0002 (9)0.0032 (9)
C230.0268 (10)0.0238 (10)0.0355 (11)0.0002 (8)0.0036 (9)0.0013 (8)
C240.0242 (10)0.0227 (10)0.0296 (10)0.0033 (8)0.0013 (8)0.0037 (8)
C250.0259 (10)0.0219 (10)0.0317 (10)0.0029 (8)0.0001 (8)0.0034 (8)
C260.0306 (11)0.0282 (11)0.0302 (10)0.0071 (9)0.0002 (9)0.0032 (9)
C270.0294 (11)0.0300 (11)0.0371 (12)0.0065 (9)0.0087 (9)0.0051 (9)
C280.0268 (10)0.0239 (11)0.0461 (13)0.0006 (8)0.0048 (9)0.0044 (9)
C290.0263 (10)0.0236 (10)0.0364 (11)0.0019 (8)0.0009 (9)0.0002 (9)
C300.0252 (9)0.0185 (9)0.0298 (10)0.0043 (8)0.0027 (8)0.0032 (8)
C310.0331 (11)0.0193 (10)0.0304 (10)0.0027 (8)0.0000 (9)0.0022 (8)
C320.0335 (11)0.0228 (10)0.0280 (10)0.0026 (8)0.0012 (9)0.0030 (8)
C330.0324 (11)0.0256 (10)0.0257 (10)0.0044 (9)0.0016 (8)0.0046 (8)
C340.0313 (11)0.0273 (11)0.0245 (10)0.0044 (8)0.0022 (8)0.0013 (8)
C350.0289 (10)0.0270 (10)0.0254 (10)0.0055 (8)0.0009 (8)0.0038 (8)
C360.0250 (10)0.0285 (11)0.0328 (11)0.0044 (8)0.0040 (8)0.0010 (9)
Geometric parameters (Å, º) top
S1—O11.5169 (15)C25—C261.400 (3)
S1—C61.757 (2)C25—C301.402 (3)
S1—C71.755 (2)C26—C271.380 (3)
S2—O31.5063 (17)C27—C281.387 (4)
S2—C241.761 (2)C28—C291.380 (3)
S2—C251.764 (2)C29—C301.413 (3)
O2—C181.422 (3)C31—C321.472 (3)
O4—C361.414 (3)C32—C331.200 (3)
N1—C11.394 (3)C33—C341.382 (3)
N1—C121.397 (3)C34—C351.201 (3)
N1—C131.468 (3)C35—C361.472 (3)
N2—C191.398 (3)O2—H130.82 (3)
N2—C301.405 (3)O4—H260.85 (2)
N2—C311.469 (3)C2—H10.950
C1—C21.407 (3)C3—H20.950
C1—C61.407 (3)C4—H30.950
C2—C31.385 (3)C5—H40.950
C3—C41.393 (3)C8—H50.950
C4—C51.383 (3)C9—H60.950
C5—C61.400 (3)C10—H70.950
C7—C81.398 (3)C11—H80.950
C7—C121.405 (3)C13—H90.990
C8—C91.378 (3)C13—H100.990
C9—C101.390 (4)C18—H110.990
C10—C111.380 (3)C18—H120.990
C11—C121.408 (3)C20—H140.950
C13—C141.471 (3)C21—H150.950
C14—C151.205 (3)C22—H160.950
C15—C161.380 (3)C23—H170.950
C16—C171.201 (3)C26—H180.950
C17—C181.469 (3)C27—H190.950
C19—C201.412 (3)C28—H200.950
C19—C241.403 (3)C29—H210.950
C20—C211.385 (3)C31—H220.990
C21—C221.397 (3)C31—H230.990
C22—C231.374 (3)C36—H240.990
C23—C241.398 (3)C36—H250.990
O1—S1—C6106.32 (9)C31—C32—C33175.7 (2)
O1—S1—C7107.01 (9)C32—C33—C34178.0 (3)
C6—S1—C797.68 (10)C33—C34—C35177.3 (3)
O3—S2—C24106.20 (10)C34—C35—C36178.5 (2)
O3—S2—C25106.65 (10)O4—C36—C35111.80 (17)
C24—S2—C2597.53 (10)C18—O2—H13107.0 (18)
C1—N1—C12122.09 (15)C36—O4—H26106.0 (17)
C1—N1—C13118.22 (15)C1—C2—H1119.704
C12—N1—C13118.30 (14)C3—C2—H1119.707
C19—N2—C30121.91 (16)C2—C3—H2119.339
C19—N2—C31118.21 (16)C4—C3—H2119.344
C30—N2—C31119.01 (16)C3—C4—H3120.499
N1—C1—C2121.03 (17)C5—C4—H3120.487
N1—C1—C6121.34 (17)C4—C5—H4119.860
C2—C1—C6117.62 (16)C6—C5—H4119.855
C1—C2—C3120.59 (18)C7—C8—H5119.862
C2—C3—C4121.32 (19)C9—C8—H5119.853
C3—C4—C5119.01 (18)C8—C9—H6120.631
C4—C5—C6120.28 (18)C10—C9—H6120.638
S1—C6—C1122.19 (14)C9—C10—H7119.087
S1—C6—C5116.32 (15)C11—C10—H7119.090
C1—C6—C5121.07 (18)C10—C11—H8119.778
S1—C7—C8115.68 (16)C12—C11—H8119.773
S1—C7—C12122.63 (15)N1—C13—H9108.873
C8—C7—C12121.46 (18)N1—C13—H10108.869
C7—C8—C9120.3 (2)C14—C13—H9108.874
C8—C9—C10118.7 (2)C14—C13—H10108.874
C9—C10—C11121.8 (2)H9—C13—H10107.721
C10—C11—C12120.45 (19)O2—C18—H11108.960
N1—C12—C7121.36 (16)O2—C18—H12108.959
N1—C12—C11121.39 (17)C17—C18—H11108.953
C7—C12—C11117.25 (17)C17—C18—H12108.954
N1—C13—C14113.48 (15)H11—C18—H12107.770
C13—C14—C15179.47 (19)C19—C20—H14119.777
C14—C15—C16177.9 (2)C21—C20—H14119.778
C15—C16—C17177.0 (2)C20—C21—H15119.346
C16—C17—C18177.8 (2)C22—C21—H15119.332
O2—C18—C17113.11 (17)C21—C22—H16120.648
N2—C19—C20120.65 (18)C23—C22—H16120.628
N2—C19—C24121.76 (17)C22—C23—H17119.548
C20—C19—C24117.58 (17)C24—C23—H17119.561
C19—C20—C21120.45 (19)C25—C26—H18119.757
C20—C21—C22121.32 (19)C27—C26—H18119.744
C21—C22—C23118.72 (19)C26—C27—H19120.657
C22—C23—C24120.9 (2)C28—C27—H19120.645
S2—C24—C19123.61 (15)C27—C28—H20119.032
S2—C24—C23114.99 (16)C29—C28—H20119.052
C19—C24—C23121.02 (18)C28—C29—H21119.919
S2—C25—C26115.02 (16)C30—C29—H21119.915
S2—C25—C30123.47 (14)N2—C31—H22109.035
C26—C25—C30121.04 (18)N2—C31—H23109.035
C25—C26—C27120.5 (2)C32—C31—H22109.032
C26—C27—C28118.70 (19)C32—C31—H23109.027
C27—C28—C29121.92 (19)H22—C31—H23107.797
C28—C29—C30120.2 (2)O4—C36—H24109.253
N2—C30—C25121.68 (17)O4—C36—H25109.261
N2—C30—C29120.66 (18)C35—C36—H24109.256
C25—C30—C29117.66 (18)C35—C36—H25109.256
N2—C31—C32112.79 (16)H24—C36—H25107.939
O1—S1—C6—C177.83 (14)C2—C1—C6—C53.6 (3)
O1—S1—C6—C594.80 (13)C6—C1—C2—C32.6 (3)
O1—S1—C7—C894.67 (14)C1—C2—C3—C40.3 (3)
O1—S1—C7—C1279.86 (16)C2—C3—C4—C52.2 (3)
C6—S1—C7—C8155.59 (13)C3—C4—C5—C61.1 (3)
C6—S1—C7—C1229.88 (16)C4—C5—C6—S1170.93 (15)
C7—S1—C6—C132.48 (15)C4—C5—C6—C11.8 (3)
C7—S1—C6—C5154.89 (12)S1—C7—C8—C9174.02 (13)
O3—S2—C24—C1982.48 (15)S1—C7—C12—N16.9 (3)
O3—S2—C24—C2390.47 (14)S1—C7—C12—C11174.06 (12)
O3—S2—C25—C2690.62 (14)C8—C7—C12—N1178.84 (17)
O3—S2—C25—C3081.60 (16)C8—C7—C12—C110.2 (3)
C24—S2—C25—C26159.91 (13)C12—C7—C8—C90.6 (3)
C24—S2—C25—C3027.87 (16)C7—C8—C9—C100.5 (3)
C25—S2—C24—C1927.36 (16)C8—C9—C10—C110.1 (4)
C25—S2—C24—C23159.69 (12)C9—C10—C11—C120.3 (3)
C1—N1—C12—C723.1 (3)C10—C11—C12—N1179.29 (17)
C1—N1—C12—C11155.82 (15)C10—C11—C12—C70.3 (3)
C12—N1—C1—C2158.65 (15)N2—C19—C20—C21179.84 (15)
C12—N1—C1—C620.3 (3)N2—C19—C24—S27.7 (3)
C1—N1—C13—C1482.95 (19)N2—C19—C24—C23179.71 (15)
C13—N1—C1—C27.7 (3)C20—C19—C24—S2172.93 (15)
C13—N1—C1—C6173.35 (14)C20—C19—C24—C230.4 (3)
C12—N1—C13—C1483.93 (19)C24—C19—C20—C210.8 (3)
C13—N1—C12—C7170.51 (14)C19—C20—C21—C220.4 (3)
C13—N1—C12—C1110.5 (3)C20—C21—C22—C230.6 (3)
C19—N2—C30—C2519.6 (3)C21—C22—C23—C241.0 (3)
C19—N2—C30—C29159.75 (15)C22—C23—C24—S2172.62 (16)
C30—N2—C19—C20159.11 (15)C22—C23—C24—C190.5 (3)
C30—N2—C19—C2420.2 (3)S2—C25—C26—C27171.30 (13)
C19—N2—C31—C3279.65 (19)S2—C25—C30—N28.9 (3)
C31—N2—C19—C2010.0 (3)S2—C25—C30—C29171.77 (12)
C31—N2—C19—C24170.65 (15)C26—C25—C30—N2179.37 (16)
C30—N2—C31—C3289.82 (19)C26—C25—C30—C290.0 (3)
C31—N2—C30—C25171.34 (15)C30—C25—C26—C271.1 (3)
C31—N2—C30—C299.3 (3)C25—C26—C27—C281.1 (3)
N1—C1—C2—C3176.43 (15)C26—C27—C28—C290.0 (3)
N1—C1—C6—S112.3 (3)C27—C28—C29—C301.1 (3)
N1—C1—C6—C5175.40 (14)C28—C29—C30—N2179.52 (17)
C2—C1—C6—S1168.70 (14)C28—C29—C30—C251.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H13···O3i0.82 (3)1.85 (3)2.663 (3)172 (3)
O4—H26···O1ii0.85 (2)1.81 (2)2.659 (3)175 (3)
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H13NO2S
Mr307.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)93
a, b, c (Å)16.797 (5), 10.197 (3), 17.664 (5)
β (°) 94.934 (5)
V3)3014.3 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.15 × 0.15 × 0.05
Data collection
DiffractometerRigaku Saturn724+
Absorption correctionNumerical
(NUMABS; Rigaku, 1999)
Tmin, Tmax0.969, 0.989
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
24445, 6932, 5523
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.135, 1.08
No. of reflections6931
No. of parameters404
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.88, 0.47

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H13···O3i0.82 (3)1.85 (3)2.663 (3)172 (3)
O4—H26···O1ii0.85 (2)1.81 (2)2.659 (3)175 (3)
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by Research for Promoting Technological Seeds of the Japan Science and Technology Agency (JST).

References

First citationChu, S. S. C., de Meester, P., Jovanovic, M. V. & Biehl, E. R. (1985). Acta Cryst. C41, 1111–1114.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDahl, S. G., Hjorth, M. & Hough, E. (1982). Mol. Pharmacol. 21, 409–414.  CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGilman, H. & Ranck, R. O. (1958). J. Org. Chem. 23, 1903–1906.  CrossRef CAS Google Scholar
First citationHough, E., Hjorth, M. & Dahl, S. G. (1982). Acta Cryst. B38, 2424–2428.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHough, E., Hjorth, M. & Dahl, S. G. (1985a). Acta Cryst. C41, 383–386.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHough, E., Wold, E. & Dahl, S. G. (1985b). Acta Cryst. C41, 386–389.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJin, R.-F., Yu, K., Yang, S.-Y. & Huang, R.-B. (2010). Acta Cryst. E66, o3267.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJovanovic, M. V., de Meester, P., Biehl, E. R. & Chu, S. S. C. (1986). J. Heterocycl. Chem. 23, 801–807.  CrossRef CAS Google Scholar
First citationOkuno, T., Ikeda, S., Kubo, N. & Sandman, D. J. (2006). Mol. Cryst. Liq. Cryst. 456, 35–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q., Yang, L., Xu, Z. & Sun, Y. (2009). Acta Cryst. E65, o1978.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, Z., Sun, Y., Yang, L. & Wang, Q. (2009). Acta Cryst. E65, o1799.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZaugg, H. E., Sweett, L. R. & Stone, G. R. (1958). J. Org. Chem. 23, 1389–1390.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds