organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′,6,6′-Tetra-tert-butyl-2,2′-[1,3-diazinane-1,3-diylbis(methyl­ene)]diphenol 0.25-hydrate

aSchool of Chemistry and Biochemistry, University of Science and Technology of Suzhou 215009, People's Republic of China
*Correspondence e-mail: yuanfugensuzhou@163.com

(Received 16 May 2012; accepted 12 June 2012; online 16 June 2012)

The title compound, C34H54N2O2·0.25H2O, the organic mol­ecule, a potential tetra­dentate ligand with a bulky phenolic donor, has overall mirror symmetry. A partially occupied water mol­ecule of solvation is present in the lattice. The six-membered 1,3-diazinane ring displays a chair conformation. An intra­molecular O—H⋯N hydrogen bond ocurs. In the crystal, mol­ecules are linked by O—H⋯O inter­actions.

Related literature

For amino­bis­phenolato ligands in coordination chemistry, see: Wichmann et al. (2012[Wichmann, O., Sillanpää, R. & Lehtonen, A. (2012). Coord. Chem. Rev. 256, 371-392.]). For applications of their metal complexes, see: Barroso et al. (2010[Barroso, S., Adão, P., Madeira, F., Duarte, M. T., Pessoa, J. C. & Martins, A. M. (2010). Inorg. Chem. 49, 7452-7463.]); Wong et al. (2010[Wong, Y.-L., Tong, L. H., Dilworth, J. R., Ng, D. K. P. & Lee, H. K. (2010). Dalton Trans. 39, 4602-4611.]); Kannan et al. (2008[Kannan, S., Kumar, K. N. & Ramesh, R. (2008). Polyhedron, 27, 701-708.]); Pang et al. (2008[Pang, M. L., Yao, Y. M., Zhang, Y. & Shen, Q. (2008). Chin. Sci. Bull. 53, 1978-1982.]); Tshuva et al. (2001[Tshuva, E. Y., Goldberg, I., Kol, M. & Goldschmidt, Z. (2001). Chem. Commun. pp. 2120-2121.]). For background to the synthetic procedure and related structures, see: Hancock et al. (2011[Hancock, S. L., Mahon, M. F., Kociok-Köhn, G. & Jones, M. D. (2011). Eur. J. Inorg. Chem. pp. 4596-4602.]); Manna et al. (2008[Manna, C. M., Shavit, M. & Tshuva, E. Y. (2008). J. Organomet. Chem. 693, 3947-3950.]); Mohanty et al. (2008[Mohanty, S., Suresh, D., Balakrishna, M. S. & Mague, J. T. (2008). Tetrahedron, 64, 240-247.]); Guo et al. (2003[Guo, Y.-M., Du, M. & Bu, X.-H. (2003). J. Mol. Struct. 646, 191-196.]).

[Scheme 1]

Experimental

Crystal data
  • C34H54N2O2·0.25H2O

  • Mr = 527.30

  • Orthorhombic, P n m a

  • a = 8.7292 (8) Å

  • b = 37.428 (3) Å

  • c = 10.1806 (9) Å

  • V = 3326.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.33 × 0.24 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • 29196 measured reflections

  • 3908 independent reflections

  • 3411 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.130

  • S = 1.05

  • 3908 reflections

  • 180 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 2.00 2.6880 (13) 142
O2—H2⋯O1i 0.85 2.22 3.036 (5) 161
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In coordination chemistry, various ligands are used to control the environment of the metal. Especially, the electronic and steric properties of ligands are used to control the reactivity of metal species. Aminobisphenolato ligand is attractive, because its substituents at the phenolate rings as well as the position and nature of the side chain donor are easily tuneable features; thus different electronic and steric properties are available (Wichmann et al. 2012). Such metal complexes have been found to display catalytic activity for polymerization of cyclic esters (Hancock et al., 2011) (biodegradable polymers) and polymerization of olefins (Tshuva et al., 2001). They can also catalyse Tischenko reactions (Pang et al., 2008), sulfoxidations (Barroso et al., 2010), olefin epoxidation (Wong et al., 2010), hydrogenation of ketones (Kannan et al., 2008) and Mizorokie-Heck coupling reaction (Mohanty et al., 2008). Generally, aminobisphenolato ligands are prepared by Mannich condensation from formaldehyde, phenol and a primary amine (Manna et al., 2008; Guo et al., 2003). Herein we present a new ligand, in which two substituted phenols are bridge-linked by a tetrahydropyrimidine ring. The molecules form a mirror symmetric structure, as illustrated in Scheme 1.

In the title compound, the C—N bond distances are between 1.4580 (14) to 1.4763 (15) Å whereas the bond length of C—O is 1.3763 (15) Å. The bond angles around the nitrogen atoms range from 110.35 (12)o to 112.08 (10)o, which is in agreement with those in similar structure (Guo et al., 2003). Two phenolate groups are linked by a tetrahydropyrimidine ring. The overall geometry is mirror-symmetric (Fig.1). The six-member 1,3-diazacyclohexane ring displays in a chair-configuration. Compound molecules were stabilized by hydrogen bonds including intra-molecular O—H···N interaction and inter-molecular O—H···O interaction (Fig. 2).

Related literature top

For aminobisphenolato ligands in coordination chemistry, see: Wichmann et al. (2012). For applications of their metal complexes, see: Barroso et al. (2010); Wong et al. (2010); Kannan et al. (2008); Pang et al. (2008); Tshuva et al. (2001). For background to the synthetic procedure and related structures, see: Hancock et al. (2011); Manna et al. (2008); Mohanty et al. (2008); Guo et al. (2003).

Experimental top

The title compound was prepared as follows. To a solution of 2,4-di-butylphenol (24.77 g, 0.12 mol) in 20 ml of methanol was added 7 ml of formaldehyde(0.08 mol) and 2.0 ml 1,3-propanediamine. The mixture was refluxed for 3 d at 65 oC. In the process white precipitates were produced gradually. After being filtered and washed with methanol for 3 times, white product of C136H218N8O9 was obtained in a yield of 90.7% (based on diamine). Single crystals were grown from ethyl acetate, m.p. = 185 °C, Anal. calcd for C136H218N8O9: C, 77.44; H, 10.42; N, 5.31; Found: C, 77.02; H, 10.55; N, 5.27. IR(KBr, cm-1) 3434(w), 2956(s), 2906(s), 2870(s), 2806(s), 2726(m), 2680(m), 1607(m), 1480(s), 1459(s), 1442(s), 1392(m), 1362(s), 1307(s), 1286(w), 1235(s), 1204(m), 1189(m), 1167(m), 1123(w), 1110(m), 1095(m), 989(m), 883(m), 822(w), 797(w), 761(w), 724(w), 682(w), 460(w).

Refinement top

Tertiary Carbon H atoms were constrained to ideal geometry, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C), All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 (aromatic and alkenyl) Uiso(H) = 1.2Ueq(C). The dispalcement parameters for the water O atom were very large at full occupancy. When refined, its fractional occupancy converged to close to 0.25 and was then set at this value.

Structure description top

In coordination chemistry, various ligands are used to control the environment of the metal. Especially, the electronic and steric properties of ligands are used to control the reactivity of metal species. Aminobisphenolato ligand is attractive, because its substituents at the phenolate rings as well as the position and nature of the side chain donor are easily tuneable features; thus different electronic and steric properties are available (Wichmann et al. 2012). Such metal complexes have been found to display catalytic activity for polymerization of cyclic esters (Hancock et al., 2011) (biodegradable polymers) and polymerization of olefins (Tshuva et al., 2001). They can also catalyse Tischenko reactions (Pang et al., 2008), sulfoxidations (Barroso et al., 2010), olefin epoxidation (Wong et al., 2010), hydrogenation of ketones (Kannan et al., 2008) and Mizorokie-Heck coupling reaction (Mohanty et al., 2008). Generally, aminobisphenolato ligands are prepared by Mannich condensation from formaldehyde, phenol and a primary amine (Manna et al., 2008; Guo et al., 2003). Herein we present a new ligand, in which two substituted phenols are bridge-linked by a tetrahydropyrimidine ring. The molecules form a mirror symmetric structure, as illustrated in Scheme 1.

In the title compound, the C—N bond distances are between 1.4580 (14) to 1.4763 (15) Å whereas the bond length of C—O is 1.3763 (15) Å. The bond angles around the nitrogen atoms range from 110.35 (12)o to 112.08 (10)o, which is in agreement with those in similar structure (Guo et al., 2003). Two phenolate groups are linked by a tetrahydropyrimidine ring. The overall geometry is mirror-symmetric (Fig.1). The six-member 1,3-diazacyclohexane ring displays in a chair-configuration. Compound molecules were stabilized by hydrogen bonds including intra-molecular O—H···N interaction and inter-molecular O—H···O interaction (Fig. 2).

For aminobisphenolato ligands in coordination chemistry, see: Wichmann et al. (2012). For applications of their metal complexes, see: Barroso et al. (2010); Wong et al. (2010); Kannan et al. (2008); Pang et al. (2008); Tshuva et al. (2001). For background to the synthetic procedure and related structures, see: Hancock et al. (2011); Manna et al. (2008); Mohanty et al. (2008); Guo et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids scaled to 30% probability.
[Figure 2] Fig. 2. intra and inter molecular contacts (dashed line) as well as molecular packing of the title compound along c axis.
4,4',6,6'-Tetra-tert-butyl-2,2'-[1,3-diazinane-1,3- diylbis(methylene)]diphenol 0.25-hydrate top
Crystal data top
C34H54N2O2·0.25H2OF(000) = 1162
Mr = 527.30Dx = 1.053 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 9920 reflections
a = 8.7292 (8) Åθ = 2.6–27.6°
b = 37.428 (3) ŵ = 0.07 mm1
c = 10.1806 (9) ÅT = 296 K
V = 3326.1 (5) Å3Prism, colorless
Z = 40.33 × 0.24 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3411 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 27.6°, θmin = 1.6°
phi and ω scansh = 1111
29196 measured reflectionsk = 4848
3908 independent reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0634P)2 + 1.2767P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.038
3908 reflectionsΔρmax = 0.38 e Å3
180 parametersΔρmin = 0.31 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0034 (7)
Crystal data top
C34H54N2O2·0.25H2OV = 3326.1 (5) Å3
Mr = 527.30Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 8.7292 (8) ŵ = 0.07 mm1
b = 37.428 (3) ÅT = 296 K
c = 10.1806 (9) Å0.33 × 0.24 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3411 reflections with I > 2σ(I)
29196 measured reflectionsRint = 0.031
3908 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.130H-atom parameters constrained
S = 1.05Δρmax = 0.38 e Å3
3908 reflectionsΔρmin = 0.31 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.24037 (12)0.78185 (2)0.40084 (10)0.0226 (2)
O10.50878 (10)0.81077 (2)0.47464 (9)0.0290 (2)
H10.45720.79560.43690.044*
O20.7322 (8)0.75000.5233 (7)0.0500 (15)*0.25
H20.68800.72990.51330.075*0.25
C10.44073 (13)0.84373 (3)0.46035 (11)0.0218 (2)
C20.30352 (13)0.84657 (3)0.38874 (11)0.0224 (2)
C30.23273 (13)0.87966 (3)0.37546 (12)0.0228 (2)
H3A0.14080.88120.32970.027*
C40.29645 (13)0.91060 (3)0.42917 (11)0.0215 (2)
C50.43413 (13)0.90681 (3)0.49783 (11)0.0220 (2)
H5A0.47830.92720.53350.026*
C60.50974 (13)0.87414 (3)0.51622 (11)0.0211 (2)
C70.21487 (13)0.94668 (3)0.41266 (12)0.0248 (3)
C80.05775 (16)0.94463 (4)0.47962 (16)0.0397 (3)
H8A0.00560.96710.46970.060*
H8B0.07120.93950.57130.060*
H8C0.00190.92600.43970.060*
C90.19124 (19)0.95464 (4)0.26617 (16)0.0429 (4)
H9A0.28900.95600.22320.064*
H9B0.13860.97700.25650.064*
H9C0.13140.93590.22720.064*
C100.30511 (17)0.97759 (4)0.4729 (2)0.0484 (4)
H10A0.40380.97920.43170.073*
H10B0.31800.97350.56540.073*
H10C0.25030.99950.45960.073*
C110.66220 (13)0.87198 (3)0.59218 (11)0.0240 (3)
C120.71429 (15)0.90887 (4)0.64144 (14)0.0334 (3)
H12A0.63750.91870.69850.050*
H12B0.72900.92450.56780.050*
H12C0.80890.90650.68870.050*
C130.64494 (16)0.84776 (4)0.71373 (13)0.0365 (3)
H13A0.56610.85710.76980.055*
H13B0.74010.84700.76090.055*
H13C0.61780.82410.68620.055*
C140.78871 (14)0.85726 (4)0.50186 (12)0.0299 (3)
H14A0.79920.87250.42650.045*
H14B0.76190.83360.47380.045*
H14C0.88400.85650.54890.045*
C150.23842 (15)0.81429 (3)0.31813 (12)0.0261 (3)
H15A0.13380.81930.29190.031*
H15B0.29760.80990.23910.031*
C160.2173 (2)0.75000.32086 (16)0.0228 (3)
H16A0.28910.75000.24810.027*
H16B0.11430.75000.28510.027*
C170.12559 (16)0.78340 (3)0.50660 (13)0.0310 (3)
H17A0.02370.78500.46900.037*
H17B0.14260.80450.56010.037*
C180.1380 (3)0.75000.59142 (19)0.0369 (4)
H18A0.23540.75000.63730.044*
H18B0.05690.75000.65650.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0289 (5)0.0148 (4)0.0242 (5)0.0005 (3)0.0016 (4)0.0007 (3)
O10.0287 (4)0.0196 (4)0.0387 (5)0.0034 (3)0.0068 (4)0.0017 (3)
C10.0231 (5)0.0188 (5)0.0234 (5)0.0019 (4)0.0001 (4)0.0021 (4)
C20.0261 (6)0.0176 (5)0.0235 (5)0.0020 (4)0.0028 (4)0.0005 (4)
C30.0220 (5)0.0199 (5)0.0265 (6)0.0006 (4)0.0044 (4)0.0013 (4)
C40.0203 (5)0.0189 (5)0.0252 (6)0.0002 (4)0.0010 (4)0.0002 (4)
C50.0211 (5)0.0205 (5)0.0242 (5)0.0030 (4)0.0009 (4)0.0028 (4)
C60.0195 (5)0.0244 (5)0.0195 (5)0.0009 (4)0.0000 (4)0.0006 (4)
C70.0225 (5)0.0167 (5)0.0352 (6)0.0008 (4)0.0001 (5)0.0008 (4)
C80.0311 (7)0.0340 (7)0.0540 (9)0.0073 (5)0.0090 (6)0.0041 (6)
C90.0556 (9)0.0304 (6)0.0429 (8)0.0106 (6)0.0013 (7)0.0108 (6)
C100.0369 (8)0.0217 (6)0.0866 (13)0.0031 (5)0.0134 (8)0.0140 (7)
C110.0202 (5)0.0308 (6)0.0210 (5)0.0006 (4)0.0017 (4)0.0005 (4)
C120.0252 (6)0.0406 (7)0.0345 (7)0.0015 (5)0.0065 (5)0.0092 (6)
C130.0314 (7)0.0525 (8)0.0257 (6)0.0013 (6)0.0032 (5)0.0105 (6)
C140.0218 (6)0.0394 (7)0.0285 (6)0.0023 (5)0.0008 (5)0.0026 (5)
C150.0343 (6)0.0166 (5)0.0274 (6)0.0020 (4)0.0081 (5)0.0016 (4)
C160.0291 (8)0.0159 (7)0.0233 (8)0.0000.0030 (6)0.000
C170.0370 (7)0.0227 (6)0.0333 (7)0.0019 (5)0.0059 (5)0.0046 (5)
C180.0523 (12)0.0298 (9)0.0286 (9)0.0000.0117 (9)0.000
Geometric parameters (Å, º) top
N1—C161.4575 (13)C10—H10A0.9600
N1—C171.4719 (16)C10—H10B0.9600
N1—C151.4777 (14)C10—H10C0.9600
O1—C11.3770 (13)C11—C141.5390 (17)
O1—H10.8200C11—C121.5379 (17)
O2—H20.8500C11—C131.5414 (17)
C1—C21.4062 (16)C12—H12A0.9600
C1—C61.4078 (15)C12—H12B0.9600
C2—C31.3909 (15)C12—H12C0.9600
C2—C151.5162 (15)C13—H13A0.9600
C3—C41.3962 (15)C13—H13B0.9600
C3—H3A0.9300C13—H13C0.9600
C4—C51.3975 (16)C14—H14A0.9600
C4—C71.5359 (15)C14—H14B0.9600
C5—C61.4023 (16)C14—H14C0.9600
C5—H5A0.9300C15—H15A0.9700
C6—C111.5414 (15)C15—H15B0.9700
C7—C101.5283 (17)C16—N1i1.4575 (13)
C7—C91.535 (2)C16—H16A0.9700
C7—C81.5335 (18)C16—H16B0.9700
C8—H8A0.9600C17—C181.5231 (16)
C8—H8B0.9600C17—H17A0.9700
C8—H8C0.9600C17—H17B0.9700
C9—H9A0.9600C18—C17i1.5231 (16)
C9—H9B0.9600C18—H18A0.9700
C9—H9C0.9600C18—H18B0.9700
C16—N1—C17110.29 (10)C14—C11—C13109.83 (10)
C16—N1—C15110.62 (9)C12—C11—C13107.17 (10)
C17—N1—C15112.13 (9)C14—C11—C6109.79 (9)
C1—O1—H1109.5C12—C11—C6111.83 (10)
O1—C1—C2119.33 (10)C13—C11—C6110.44 (10)
O1—C1—C6119.81 (10)C11—C12—H12A109.5
C2—C1—C6120.85 (10)C11—C12—H12B109.5
C3—C2—C1119.74 (10)H12A—C12—H12B109.5
C3—C2—C15119.80 (10)C11—C12—H12C109.5
C1—C2—C15120.32 (10)H12A—C12—H12C109.5
C2—C3—C4121.57 (10)H12B—C12—H12C109.5
C2—C3—H3A119.2C11—C13—H13A109.5
C4—C3—H3A119.2C11—C13—H13B109.5
C3—C4—C5117.02 (10)H13A—C13—H13B109.5
C3—C4—C7120.11 (10)C11—C13—H13C109.5
C5—C4—C7122.87 (10)H13A—C13—H13C109.5
C4—C5—C6124.06 (10)H13B—C13—H13C109.5
C4—C5—H5A118.0C11—C14—H14A109.5
C6—C5—H5A118.0C11—C14—H14B109.5
C5—C6—C1116.73 (10)H14A—C14—H14B109.5
C5—C6—C11121.28 (10)C11—C14—H14C109.5
C1—C6—C11121.99 (10)H14A—C14—H14C109.5
C10—C7—C9108.21 (12)H14B—C14—H14C109.5
C10—C7—C8108.69 (11)N1—C15—C2112.34 (9)
C9—C7—C8108.76 (11)N1—C15—H15A109.1
C10—C7—C4112.50 (10)C2—C15—H15A109.1
C9—C7—C4109.83 (10)N1—C15—H15B109.1
C8—C7—C4108.78 (10)C2—C15—H15B109.1
C7—C8—H8A109.5H15A—C15—H15B107.9
C7—C8—H8B109.5N1—C16—N1i109.75 (13)
H8A—C8—H8B109.5N1—C16—H16A109.7
C7—C8—H8C109.5N1i—C16—H16A109.7
H8A—C8—H8C109.5N1—C16—H16B109.7
H8B—C8—H8C109.5N1i—C16—H16B109.7
C7—C9—H9A109.5H16A—C16—H16B108.2
C7—C9—H9B109.5N1—C17—C18109.51 (11)
H9A—C9—H9B109.5N1—C17—H17A109.8
C7—C9—H9C109.5C18—C17—H17A109.8
H9A—C9—H9C109.5N1—C17—H17B109.8
H9B—C9—H9C109.5C18—C17—H17B109.8
C7—C10—H10A109.5H17A—C17—H17B108.2
C7—C10—H10B109.5C17i—C18—C17110.30 (15)
H10A—C10—H10B109.5C17i—C18—H18A109.6
C7—C10—H10C109.5C17—C18—H18A109.6
H10A—C10—H10C109.5C17i—C18—H18B109.6
H10B—C10—H10C109.5C17—C18—H18B109.6
C14—C11—C12107.71 (10)H18A—C18—H18B108.1
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.822.002.6880 (13)142
O2—H2···O1i0.852.223.036 (5)161
Symmetry code: (i) x, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC34H54N2O2·0.25H2O
Mr527.30
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)296
a, b, c (Å)8.7292 (8), 37.428 (3), 10.1806 (9)
V3)3326.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.33 × 0.24 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
29196, 3908, 3411
Rint0.031
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.130, 1.05
No. of reflections3908
No. of parameters180
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.31

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.822.002.6880 (13)142
O2—H2···O1i0.852.223.036 (5)161
Symmetry code: (i) x, y+3/2, z.
 

Acknowledgements

Financial support from the Jiangsu Key Laboratory for Environment Functional Materials, a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Innovation Program for graduate students of USTS is gratefully acknowledged.

References

First citationBarroso, S., Adão, P., Madeira, F., Duarte, M. T., Pessoa, J. C. & Martins, A. M. (2010). Inorg. Chem. 49, 7452–7463.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, Y.-M., Du, M. & Bu, X.-H. (2003). J. Mol. Struct. 646, 191–196.  Web of Science CSD CrossRef CAS Google Scholar
First citationHancock, S. L., Mahon, M. F., Kociok-Köhn, G. & Jones, M. D. (2011). Eur. J. Inorg. Chem. pp. 4596–4602.  Web of Science CSD CrossRef Google Scholar
First citationKannan, S., Kumar, K. N. & Ramesh, R. (2008). Polyhedron, 27, 701–708.  Web of Science CrossRef CAS Google Scholar
First citationManna, C. M., Shavit, M. & Tshuva, E. Y. (2008). J. Organomet. Chem. 693, 3947–3950.  Web of Science CSD CrossRef CAS Google Scholar
First citationMohanty, S., Suresh, D., Balakrishna, M. S. & Mague, J. T. (2008). Tetrahedron, 64, 240–247.  Web of Science CSD CrossRef CAS Google Scholar
First citationPang, M. L., Yao, Y. M., Zhang, Y. & Shen, Q. (2008). Chin. Sci. Bull. 53, 1978–1982.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTshuva, E. Y., Goldberg, I., Kol, M. & Goldschmidt, Z. (2001). Chem. Commun. pp. 2120–2121.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWichmann, O., Sillanpää, R. & Lehtonen, A. (2012). Coord. Chem. Rev. 256, 371–392.  Web of Science CrossRef CAS Google Scholar
First citationWong, Y.-L., Tong, L. H., Dilworth, J. R., Ng, D. K. P. & Lee, H. K. (2010). Dalton Trans. 39, 4602–4611.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds