organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,2-Di­phenyl­eth­yl)-1H-tetra­zole

aVienna University of Technology, Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 1060 Vienna, Austria, bVienna University of Technology, Institute of Chemical Technologies and Analytics, Getreidemarkt 9, 1060 Vienna, Austria, and cTallinn University of Technology, Department of Chemistry, Akadeemia tee 15, 12618 Tallinn, Estonia
*Correspondence e-mail: fwerner@chemnet.ee

(Received 22 May 2012; accepted 18 June 2012; online 27 June 2012)

The crystal structure of the title compound, C15H14N4, contains chains of coplanar tetra­zole rings with the chain direction along b. These are formed through weak hydrogen bonds, donated by the tetra­zole H atoms and by one of the H atoms of the methyl­ene group, and accepted by two neighbouring N atoms of the adjacent tetra­zole ring. The chains are connected to each other in a staircase-like manner via weak hydrogen bonds, donated from the second H atom of the methyl­ene group and accepted by the N atom next to the C atom in the tetra­zole ring. The resulting layers are parallel to the bc plane.

Related literature

For the synthesis, see Kamiya & Saito (1973[Kamiya, T. & Saito, Y. (1973). Offenlegungsschrift 2147023 (Patent).]). For crystal structure studies of 1H-tetra­zol-1-yl compounds, see Absmeier et al. (2006[Absmeier, A., Bartel, M., Carbonera, C., Jameson, G. N. L., Weinberger, P., Caneschi, A., Mereiter, K., Letard, J.-F. & Linert, W. (2006). Chem. Eur. J. 12, 2235-2243.]); Grunert et al. (2005[Grunert, C. M., Weinberger, P., Schweifer, J., Hampel, C., Stassen, A. F., Mereiter, K. & Linert, W. (2005). J. Mol. Struct. 733, 41-52.]); Werner et al. (2009[Werner, F., Mereiter, K., Tokuno, K., Inagaki, Y. & Hasegawa, M. (2009). Acta Cryst. E65, o2726-o2727.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N4

  • Mr = 250.30

  • Monoclinic, P 21 /c

  • a = 12.5289 (6) Å

  • b = 10.4157 (5) Å

  • c = 11.0085 (5) Å

  • β = 107.906 (1)°

  • V = 1366.99 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.45 × 0.40 × 0.35 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008b[Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.]) Tmin = 0.89, Tmax = 0.97

  • 18385 measured reflections

  • 3984 independent reflections

  • 3230 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.148

  • S = 1.04

  • 3984 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N3i 0.93 2.61 3.4690 (19) 153
C2—H2B⋯N4i 0.97 2.50 3.4622 (17) 174
C2—H2A⋯N4ii 0.97 2.56 3.5155 (17) 169
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); molecular graphics: ATOMS (Dowty, 2006[Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and VESTA (Momma & Izumi, 2008[Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653-658.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of the crystallographic characterization of 1H–tetrazol–1–yl compounds, intended as potential ligands for Fe(II) spin crossover complexes (Absmeier et al., 2006; Grunert et al., 2005; Werner et al., 2009), the title compound was prepared.

At 296 K the title compound crystallizes in the monoclinic space group P21/c (No. 14), with one molecule in the asymmetric unit (Fig. 1). Bond lenghts and bond angles in the molecule adopt typical values. The point group symmetry of the free molecule is Cs. Owing to intermolecular interactions this symmetry is lowered to C1 in the crystalline solid, which can be readily seen from the (+)-synclinal arrangement of the tetrazolyl ring and the phenyl ring C10···C15 [N1—C2—C3—C10 = 60.68 (12)°] and the out–of–plane (plane defined by N1, C2 and C3) twist of the tetrazolyl ring [N2—N1—C2—C3 = 63.98 (14)°].

In the crystal the main type of interaction are three sets of weak hydrogen bonds between the tetrazolyl rings (C1—H1···N3) and the tetrazolyl rings and the methylenic H atoms (C2—H2A···N4 and C2—H2B···N4). Through the coplanar interactions C1—H1···N3 and C2—H2B···N4 chains of tetrazolyl rings are formed parallel to the b-axis (Fig. 2), whereas C2—H2A···N4 connects these chains in a staircase-like manner (Fig. 3) resulting in the formation of layers parallel to the bc-plane with the phenyl rings pointing outwards. The layers are loosely held together by C—H···π interactions (Fig. 4).

Related literature top

For the synthesis, see Kamiya & Saito (1973). For crystal structure studies of 1H-tetrazol-1-yl compounds, see Absmeier et al. (2006); Grunert et al. (2005); Werner et al. (2009).

Experimental top

The title compound was prepared according to the general procedure given by Kamiya & Saito (1973). All chemicals were used as supplied without further purification. Elemental analyses were performed on a Perkin Elmer 2400 CHN Elemental Analyzer. NMR-spectra were measured in DMSO-d6 with a Bruker DPX-200 spectrometer at 200 MHz (1H) and 50 MHz (13C) respectively. The chemical shifts (see Fig. 5 for the atom assignment) are calibrated to the solvent.

2,2-Diphenylethylamine (4.93 g, 25 mmol, Aldrich, 96%), NaN3 (3.25 g, 50 mmol, Fluka, 99%) and triethyl orthoformate (7.42 g, 50 mmol, Acros, 98%) were dissolved in 60 ml of acetic acid (Fluka, 99.8%) and heated to 85–90°C for 24 h. After evaporation of acetic acid under reduced pressure, 70 ml of 2 N hydrochloric acid was added to the residue. The solution was extracted three times with dichloromethane, the combined organic layers were washed with water and saturated aqueous solutions of NaHCO3 and NaCl. The organic phase was dried with Na2SO4, filtered and the solvent was evaporated under reduced pressure. The raw product was recrystallized from methanol. Yield 2.88 g (46%), m.p. 115°C. Single crystals were grown by slow evaporation from a solution of the tetrazole in methanol at room temperature over two days.

Elemental analysis C15H14N4 Calc.: C 71.98, H 5.64, N 22.38. Found: C 72.10, H 5.38, N 21.91%. 1H-NMR (DMSO-d6) δ [p.p.m.]: 4.73 (t, 3J=8.4 Hz, 1H, Hc), 5.21 (d, 3J=8.5 Hz, 2H, Hb), 7.15, 7.19, 7.22, 7.25, 7.29, 7.32, 7.36, 7.40 (m, 10H, Heg), 9.24 (s, 1H, Ha). 13C-NMR (DMSO-d6) δ [p.p.m.]: 50.5, 50.8 (Cbc), 127.0 (Cg), 127.8 (Ce), 128.7 (Cf), 140.7 (Cd), 144.0 (Ca).

Refinement top

Hydrogen atoms were included at calculated positions and treated as riding on their base atoms with d(C—H)= 0.97 (CH2), 0.98 (CH) or 0.93 Å (CHarom) and Uiso(H)=1.2Ueq(C). Reflection 020 was omitted because of its large Δ(F2)/e.s.d. value.

Structure description top

In continuation of the crystallographic characterization of 1H–tetrazol–1–yl compounds, intended as potential ligands for Fe(II) spin crossover complexes (Absmeier et al., 2006; Grunert et al., 2005; Werner et al., 2009), the title compound was prepared.

At 296 K the title compound crystallizes in the monoclinic space group P21/c (No. 14), with one molecule in the asymmetric unit (Fig. 1). Bond lenghts and bond angles in the molecule adopt typical values. The point group symmetry of the free molecule is Cs. Owing to intermolecular interactions this symmetry is lowered to C1 in the crystalline solid, which can be readily seen from the (+)-synclinal arrangement of the tetrazolyl ring and the phenyl ring C10···C15 [N1—C2—C3—C10 = 60.68 (12)°] and the out–of–plane (plane defined by N1, C2 and C3) twist of the tetrazolyl ring [N2—N1—C2—C3 = 63.98 (14)°].

In the crystal the main type of interaction are three sets of weak hydrogen bonds between the tetrazolyl rings (C1—H1···N3) and the tetrazolyl rings and the methylenic H atoms (C2—H2A···N4 and C2—H2B···N4). Through the coplanar interactions C1—H1···N3 and C2—H2B···N4 chains of tetrazolyl rings are formed parallel to the b-axis (Fig. 2), whereas C2—H2A···N4 connects these chains in a staircase-like manner (Fig. 3) resulting in the formation of layers parallel to the bc-plane with the phenyl rings pointing outwards. The layers are loosely held together by C—H···π interactions (Fig. 4).

For the synthesis, see Kamiya & Saito (1973). For crystal structure studies of 1H-tetrazol-1-yl compounds, see Absmeier et al. (2006); Grunert et al. (2005); Werner et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a); molecular graphics: ATOMS (Dowty, 2006), Mercury (Macrae et al., 2006) and VESTA (Momma & Izumi, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008a).

Figures top
[Figure 1] Fig. 1. Molecular moiety in the crystal structure of the title compound. Displacement ellipsoids for non–H atoms are drawn at the 33% probability level. Hydrogen atoms involved in weak hydrogen bonding are labelled.
[Figure 2] Fig. 2. Weak hydrogen bonds in the crystal structure of the title compound, viewed perpedicular to the layers formed by adjacent tetrazolyl rings (yellow C1—H1···N3, red C2—H2B···N4, orange C2—H2A···N4; phenyl rings are omitted for clarity).
[Figure 3] Fig. 3. View of the weak hydrogen bonds in the crystal structure of the title compound, showing the staircase-like arrangement (yellow C1—H1···N3, red C2—H2B···N4, orange C2—H2A···N4; phenyl rings are omitted for clarity).
[Figure 4] Fig. 4. Packing diagram of the title compound. Weak hydrogen bonds are drawn with cyan dashed lines, only those hydrogen atoms involved in weak interactions are shown and the unit cell is outlined.
[Figure 5] Fig. 5. Labelling scheme for the assignment of the NMR chemical shifts.
1-(2,2-Diphenylethyl)-1H-tetrazole top
Crystal data top
C15H14N4F(000) = 528
Mr = 250.30Dx = 1.216 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8429 reflections
a = 12.5289 (6) Åθ = 2.6–30.0°
b = 10.4157 (5) ŵ = 0.08 mm1
c = 11.0085 (5) ÅT = 296 K
β = 107.906 (1)°Block, colourless
V = 1366.99 (11) Å30.45 × 0.40 × 0.35 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3984 independent reflections
Radiation source: fine-focus sealed tube3230 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 30.1°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
h = 1717
Tmin = 0.89, Tmax = 0.97k = 1414
18385 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0655P)2 + 0.2149P]
where P = (Fo2 + 2Fc2)/3
3984 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C15H14N4V = 1366.99 (11) Å3
Mr = 250.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5289 (6) ŵ = 0.08 mm1
b = 10.4157 (5) ÅT = 296 K
c = 11.0085 (5) Å0.45 × 0.40 × 0.35 mm
β = 107.906 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3984 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
3230 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 0.97Rint = 0.019
18385 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
3984 reflectionsΔρmin = 0.16 e Å3
172 parameters
Special details top

Experimental. Bruker Kappa APEX2 CCD diffractometer, full-sphere data collection.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.06288 (8)0.25473 (9)0.39090 (9)0.0503 (2)
N20.07582 (12)0.13614 (12)0.43964 (12)0.0755 (4)
N30.03463 (12)0.05898 (12)0.34413 (14)0.0804 (4)
N40.00552 (11)0.12529 (13)0.23470 (12)0.0724 (3)
C10.01312 (12)0.24583 (14)0.26661 (13)0.0630 (3)
H10.00570.31490.21050.076*
C20.09677 (9)0.36869 (11)0.47103 (11)0.0493 (2)
H2A0.05810.36930.53510.059*
H2B0.07400.44480.41860.059*
C30.22336 (9)0.37415 (10)0.53767 (10)0.0464 (2)
H30.24430.29650.58990.056*
C40.24642 (9)0.48874 (12)0.62769 (11)0.0506 (3)
C50.29138 (12)0.47133 (17)0.75794 (13)0.0707 (4)
H50.30810.38920.79150.085*
C60.31156 (15)0.5784 (2)0.83910 (16)0.0925 (6)
H60.34220.56700.92680.111*
C70.28658 (15)0.6999 (2)0.7905 (2)0.0903 (6)
H70.30070.77030.84510.108*
C80.24121 (13)0.71720 (16)0.66276 (19)0.0804 (5)
H80.22350.79950.63000.096*
C90.22120 (11)0.61269 (12)0.58099 (14)0.0617 (3)
H90.19040.62570.49360.074*
C100.29411 (8)0.37823 (10)0.44771 (10)0.0458 (2)
C110.40353 (11)0.33206 (17)0.49185 (14)0.0722 (4)
H110.42980.29660.57320.087*
C120.47312 (12)0.3379 (2)0.41749 (19)0.0919 (6)
H120.54600.30680.44900.110*
C130.43670 (13)0.38890 (17)0.29785 (18)0.0805 (5)
H130.48480.39370.24830.097*
C140.32823 (14)0.43332 (14)0.25067 (15)0.0701 (4)
H140.30240.46660.16840.084*
C150.25730 (11)0.42836 (12)0.32603 (12)0.0563 (3)
H150.18430.45920.29400.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0485 (5)0.0525 (5)0.0533 (5)0.0114 (4)0.0206 (4)0.0081 (4)
N20.0969 (9)0.0575 (6)0.0699 (7)0.0239 (6)0.0225 (6)0.0022 (5)
N30.0952 (9)0.0597 (7)0.0895 (9)0.0277 (6)0.0329 (7)0.0172 (6)
N40.0727 (7)0.0758 (8)0.0703 (7)0.0213 (6)0.0242 (6)0.0241 (6)
C10.0632 (7)0.0674 (8)0.0556 (7)0.0093 (6)0.0141 (5)0.0115 (6)
C20.0484 (5)0.0522 (6)0.0515 (6)0.0071 (4)0.0214 (4)0.0102 (4)
C30.0499 (5)0.0438 (5)0.0453 (5)0.0031 (4)0.0146 (4)0.0017 (4)
C40.0465 (5)0.0573 (6)0.0506 (5)0.0084 (4)0.0189 (4)0.0114 (5)
C50.0712 (8)0.0886 (10)0.0520 (7)0.0096 (7)0.0186 (6)0.0095 (7)
C60.0856 (11)0.1339 (18)0.0576 (8)0.0170 (11)0.0215 (7)0.0333 (10)
C70.0762 (9)0.0991 (13)0.0996 (13)0.0139 (9)0.0326 (9)0.0541 (11)
C80.0698 (8)0.0656 (8)0.1080 (13)0.0083 (7)0.0306 (8)0.0332 (8)
C90.0611 (7)0.0550 (7)0.0701 (8)0.0065 (5)0.0217 (6)0.0131 (6)
C100.0442 (5)0.0420 (5)0.0521 (5)0.0029 (4)0.0164 (4)0.0079 (4)
C110.0502 (6)0.0951 (11)0.0667 (8)0.0103 (6)0.0110 (6)0.0048 (7)
C120.0472 (7)0.1337 (16)0.0969 (12)0.0088 (8)0.0253 (7)0.0167 (11)
C130.0695 (8)0.0884 (11)0.1028 (12)0.0155 (7)0.0549 (9)0.0259 (9)
C140.0884 (10)0.0626 (8)0.0741 (8)0.0027 (7)0.0470 (7)0.0009 (6)
C150.0588 (6)0.0527 (6)0.0641 (7)0.0081 (5)0.0285 (5)0.0063 (5)
Geometric parameters (Å, º) top
N1—C11.3209 (16)C6—H60.9300
N1—N21.3365 (15)C7—C81.357 (3)
N1—C21.4619 (13)C7—H70.9300
N2—N31.2978 (17)C8—C91.3854 (18)
N3—N41.3449 (19)C8—H80.9300
N4—C11.3054 (17)C9—H90.9300
C1—H10.9300C10—C151.3783 (17)
C2—C31.5301 (15)C10—C111.3918 (16)
C2—H2A0.9700C11—C121.368 (2)
C2—H2B0.9700C11—H110.9300
C3—C101.5193 (14)C12—C131.362 (3)
C3—C41.5212 (15)C12—H120.9300
C3—H30.9800C13—C141.377 (2)
C4—C51.3818 (18)C13—H130.9300
C4—C91.3896 (18)C14—C151.3906 (17)
C5—C61.403 (2)C14—H140.9300
C5—H50.9300C15—H150.9300
C6—C71.372 (3)
C1—N1—N2108.14 (11)C5—C6—H6119.7
C1—N1—C2129.72 (11)C8—C7—C6119.97 (15)
N2—N1—C2122.09 (10)C8—C7—H7120.0
N3—N2—N1106.15 (12)C6—C7—H7120.0
N2—N3—N4110.72 (12)C7—C8—C9120.21 (17)
C1—N4—N3105.44 (11)C7—C8—H8119.9
N4—C1—N1109.55 (13)C9—C8—H8119.9
N4—C1—H1125.2C8—C9—C4120.96 (14)
N1—C1—H1125.2C8—C9—H9119.5
N1—C2—C3112.67 (9)C4—C9—H9119.5
N1—C2—H2A109.1C15—C10—C11118.00 (11)
C3—C2—H2A109.1C15—C10—C3123.79 (10)
N1—C2—H2B109.1C11—C10—C3118.18 (11)
C3—C2—H2B109.1C12—C11—C10121.06 (15)
H2A—C2—H2B107.8C12—C11—H11119.5
C10—C3—C4111.76 (8)C10—C11—H11119.5
C10—C3—C2114.52 (9)C13—C12—C11120.68 (14)
C4—C3—C2107.62 (9)C13—C12—H12119.7
C10—C3—H3107.6C11—C12—H12119.7
C4—C3—H3107.6C12—C13—C14119.61 (13)
C2—C3—H3107.6C12—C13—H13120.2
C5—C4—C9118.66 (12)C14—C13—H13120.2
C5—C4—C3120.54 (12)C13—C14—C15120.00 (14)
C9—C4—C3120.79 (11)C13—C14—H14120.0
C4—C5—C6119.52 (16)C15—C14—H14120.0
C4—C5—H5120.2C10—C15—C14120.64 (12)
C6—C5—H5120.2C10—C15—H15119.7
C7—C6—C5120.67 (16)C14—C15—H15119.7
C7—C6—H6119.7
C1—N1—N2—N30.47 (16)C5—C6—C7—C80.4 (3)
C2—N1—N2—N3178.18 (11)C6—C7—C8—C90.7 (2)
N1—N2—N3—N40.49 (16)C7—C8—C9—C40.3 (2)
N2—N3—N4—C10.32 (17)C5—C4—C9—C80.42 (19)
N3—N4—C1—N10.01 (16)C3—C4—C9—C8179.46 (12)
N2—N1—C1—N40.28 (16)C4—C3—C10—C1595.17 (13)
C2—N1—C1—N4177.76 (11)C2—C3—C10—C1527.54 (15)
C1—N1—C2—C3118.85 (13)C4—C3—C10—C1182.93 (13)
N2—N1—C2—C363.98 (14)C2—C3—C10—C11154.37 (11)
N1—C2—C3—C1060.68 (12)C15—C10—C11—C121.0 (2)
N1—C2—C3—C4174.40 (9)C3—C10—C11—C12177.25 (15)
C10—C3—C4—C5116.60 (12)C10—C11—C12—C130.2 (3)
C2—C3—C4—C5116.84 (12)C11—C12—C13—C140.9 (3)
C10—C3—C4—C964.38 (13)C12—C13—C14—C151.3 (2)
C2—C3—C4—C962.18 (13)C11—C10—C15—C140.55 (19)
C9—C4—C5—C60.7 (2)C3—C10—C15—C14177.55 (11)
C3—C4—C5—C6179.78 (12)C13—C14—C15—C100.6 (2)
C4—C5—C6—C70.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N3i0.932.613.4690 (19)153
C2—H2B···N4i0.972.503.4622 (17)174
C2—H2A···N4ii0.972.563.5155 (17)169
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H14N4
Mr250.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.5289 (6), 10.4157 (5), 11.0085 (5)
β (°) 107.906 (1)
V3)1366.99 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.40 × 0.35
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008b)
Tmin, Tmax0.89, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
18385, 3984, 3230
Rint0.019
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.148, 1.04
No. of reflections3984
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.16

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008a), SHELXL97 (Sheldrick, 2008a), ATOMS (Dowty, 2006), Mercury (Macrae et al., 2006) and VESTA (Momma & Izumi, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N3i0.932.613.4690 (19)153
C2—H2B···N4i0.972.503.4622 (17)174
C2—H2A···N4ii0.972.563.5155 (17)169
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

Thanks for financial support are due to the "Fonds zur Förderung der Wissenschaftlichen Forschung in Österreich" (project 19335-N17).

References

First citationAbsmeier, A., Bartel, M., Carbonera, C., Jameson, G. N. L., Weinberger, P., Caneschi, A., Mereiter, K., Letard, J.-F. & Linert, W. (2006). Chem. Eur. J. 12, 2235–2243.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationGrunert, C. M., Weinberger, P., Schweifer, J., Hampel, C., Stassen, A. F., Mereiter, K. & Linert, W. (2005). J. Mol. Struct. 733, 41–52.  Web of Science CSD CrossRef CAS Google Scholar
First citationKamiya, T. & Saito, Y. (1973). Offenlegungsschrift 2147023 (Patent).  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMomma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.  Google Scholar
First citationWerner, F., Mereiter, K., Tokuno, K., Inagaki, Y. & Hasegawa, M. (2009). Acta Cryst. E65, o2726–o2727.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds