metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dicarbon­yl(η5-cyclo­penta­dien­yl)(2,3-di­bromo­propanamine-κN)iron(II) tetra­fluoridoborate

aSchool of Chemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa, bChemistry Department, Kenyatta University, PO Box 43844, Nairobi, Kenya, and cSchool of Chemistry, University of the Witwatersrand, PO Wits, 2050 Johannesburg, South Africa
*Correspondence e-mail: friedric@ukzn.ac.za

(Received 5 June 2012; accepted 7 June 2012; online 16 June 2012)

The title compound, [Fe(η5-C5H5)(NH2CH2CHBrCH2Br)(CO)2](BF4) contains an FeII cation with a three-legged piano-stool coordination. The NH2CH2CHBrCH2Br ligand contains a chiral carbon atom. The Fe—N bond length is 2.011 (3) Å and the Fe—Cp centroid distance is 1.7189 (5) Å. In the crystal, the ions are linked via two N—H⋯F inter­actions and a weak N—H⋯Br inter­action.

Related literature

For the synthesis of the title compound and our previous work in this area, see: M'thiruaine et al. (2012b[M'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Omondi, B. (2012b). Polyhedron, 40, 81-92.]). For related amino complexes, see: M'thiruaine et al. (2011a[M'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Bala, M. D. (2011a). Inorg. Chim. Acta, 366, 105-115.],b[M'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Omondi, B. (2011b). Acta Cryst. E67, m485.], 2012a[M'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Bala, M. D. (2012a). Inorg. Chim. Acta, 382, 27-34.],b[M'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Omondi, B. (2012b). Polyhedron, 40, 81-92.]). For piano-stool bromo­alkyl complex structures, see: Friedrich et al. (2001[Friedrich, H. B., Onani, M. O. & Munro, O. Q. (2001). J. Organomet. Chem. 633, 39-50.], 2004[Friedrich, H. B., Onani, M. O. & Rademeyer, M. (2004). Acta Cryst. E60, m551-m553.]). For some applications of halogenated compounds, see: Gerebtzoff et al. (2004[Gerebtzoff, G., Li-Blatter, X., Fischer, H., Frentzel, A. & Seeling, A. (2004). ChemBioChem, 5, 676-684.]); Butler & Sandy (2009[Butler, A. & Sandy, M. (2009). Nature (London), 460, 848-854.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C3H7Br2N)(CO)2]·(BF4)

  • Mr = 480.69

  • Monoclinic, P c

  • a = 12.9385 (4) Å

  • b = 6.7123 (2) Å

  • c = 13.2959 (4) Å

  • β = 138.664 (2)°

  • V = 762.65 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.27 mm−1

  • T = 173 K

  • 0.54 × 0.48 × 0.29 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: integration (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.133, Tmax = 0.264

  • 8733 measured reflections

  • 2944 independent reflections

  • 2751 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.076

  • S = 1.10

  • 2944 reflections

  • 190 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.64 e Å−3

  • Absolute structure: (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: −0.003 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯F4 0.92 2.15 2.951 (4) 145
N1—H1A⋯Br1 0.92 2.79 3.238 (3) 111
N1—H1B⋯F1i 0.92 2.06 2.935 (4) 158
Symmetry code: (i) [x, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 Farrugia (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Halogenated compounds are of particular importance in pharmaceuticals and agrochemicals (Butler and Sandy 2009). A significant number of drugs and drug candidates in clinical development have halogenated structures because halogenation enhances membrane binding and permeation of drugs to the target sites (Gerebtzoff et al., 2004). Thus, structural determination of halogenated molecules, particularly the chiral compounds, is warranted.

The title compound (I) has been previously reported by us as the product of the bromination of the allylamino compound [Cp(CO)2Fe{NH2CH2CH=CH2}]BF4 (M'thiruaine et al., 2012b). However, its molecular structure has not been previously reported. The compound is an enantiomerically pure chiral compound that crystallizes as the (S) enantiomer only. The unit cell of the title compound consisted of two molecular cations and two counteranions. The molecular cation displays a piano-stool geometry around the FeII ion with cyclopentadienyl coordinated to the metal centre in a pentahapto fashion, thus occupying the apical position, while two carbonyl ligands and the 2,3-dibromopropyl-1-amino ligand occupy the basal positions (Fig.1). The 2,3-dibromopropyl-1-amino ligand is coordinated to iron via the amino group, with an Fe—N bond length of 2.011 Å. This is within the reported Fe—N bond length range (M'thiruaine et al., 2011a,b; M'thiruaine et al., 2012a). The two Br atoms on the dibromopropylamino chain are in anti stereochemistry with a torsion angle Br1—C9—C10—Br2 =173.08 (19)°. The C—Br bond lengths are 1.942 (5) and 1.978 (4) Å, which are close to the 1.946 (17) and 1.971 (3) Å reported for [Cp(CO)3W{(CH2)3Br}] (Friedrich et al., 2001) and Cp*(CO)2Fe{(CH2)3Br}] (Friedrich et al., 2004), respectively. The molecules are linked by three hydrogen bonds namely N1—H1A—F4, N1—H1A—Br1 and N1—H1B—F1 (Table 1).

Related literature top

For the synthesis of the title compound and our previous work in this area, see: M'thiruaine et al. (2012b). For related amino complexes, see: M'thiruaine et al.(2011a,b, 2012a,b). For piano-stool bromoalkyl complex structures, see: Friedrich et al. (2001, 2004). For some applications of halogenated compounds, see: Gerebtzoff et al. (2004); Butler & Sandy (2009).

Experimental top

The title compound was prepared according to a reported procedure (M'thiruaine et al., 2012b) and crystals were grown by layering a concentrated solution of the compound in CH2Cl2 with Et2O and the mixture was kept undisturbed in the dark for four days.

Refinement top

Non-hydrogen atoms were first refined isotropically followed by anisotropic refinement by full matrix least-square calculations on F2 using SHEXTL. Hydrogen atoms were first located in the difference map then positioned geometrically and allowed to ride on their respective parent atoms.

Structure description top

Halogenated compounds are of particular importance in pharmaceuticals and agrochemicals (Butler and Sandy 2009). A significant number of drugs and drug candidates in clinical development have halogenated structures because halogenation enhances membrane binding and permeation of drugs to the target sites (Gerebtzoff et al., 2004). Thus, structural determination of halogenated molecules, particularly the chiral compounds, is warranted.

The title compound (I) has been previously reported by us as the product of the bromination of the allylamino compound [Cp(CO)2Fe{NH2CH2CH=CH2}]BF4 (M'thiruaine et al., 2012b). However, its molecular structure has not been previously reported. The compound is an enantiomerically pure chiral compound that crystallizes as the (S) enantiomer only. The unit cell of the title compound consisted of two molecular cations and two counteranions. The molecular cation displays a piano-stool geometry around the FeII ion with cyclopentadienyl coordinated to the metal centre in a pentahapto fashion, thus occupying the apical position, while two carbonyl ligands and the 2,3-dibromopropyl-1-amino ligand occupy the basal positions (Fig.1). The 2,3-dibromopropyl-1-amino ligand is coordinated to iron via the amino group, with an Fe—N bond length of 2.011 Å. This is within the reported Fe—N bond length range (M'thiruaine et al., 2011a,b; M'thiruaine et al., 2012a). The two Br atoms on the dibromopropylamino chain are in anti stereochemistry with a torsion angle Br1—C9—C10—Br2 =173.08 (19)°. The C—Br bond lengths are 1.942 (5) and 1.978 (4) Å, which are close to the 1.946 (17) and 1.971 (3) Å reported for [Cp(CO)3W{(CH2)3Br}] (Friedrich et al., 2001) and Cp*(CO)2Fe{(CH2)3Br}] (Friedrich et al., 2004), respectively. The molecules are linked by three hydrogen bonds namely N1—H1A—F4, N1—H1A—Br1 and N1—H1B—F1 (Table 1).

For the synthesis of the title compound and our previous work in this area, see: M'thiruaine et al. (2012b). For related amino complexes, see: M'thiruaine et al.(2011a,b, 2012a,b). For piano-stool bromoalkyl complex structures, see: Friedrich et al. (2001, 2004). For some applications of halogenated compounds, see: Gerebtzoff et al. (2004); Butler & Sandy (2009).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus and XPREP (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex with the atom labeling scheme. Ellipsoids are drawn at 50% probability level.
Dicarbonyl(η5-cyclopentadienyl)(2,3-dibromopropanamine- κN)iron(II) tetrafluoridoborate top
Crystal data top
[Fe(C5H5)(C3H7Br2N)(CO)2]·(BF4)F(000) = 464
Mr = 480.69Dx = 2.093 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 5868 reflections
a = 12.9385 (4) Åθ = 2.3–28.3°
b = 6.7123 (2) ŵ = 6.27 mm1
c = 13.2959 (4) ÅT = 173 K
β = 138.664 (2)°Prismic, brown
V = 762.65 (4) Å30.54 × 0.48 × 0.29 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2944 independent reflections
Radiation source: fine-focus sealed tube2751 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 28.0°, θmin = 2.4°
Absorption correction: integration
(SADABS; Bruker, 2005)
h = 1716
Tmin = 0.133, Tmax = 0.264k = 88
8733 measured reflectionsl = 1317
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.1443P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2944 reflectionsΔρmax = 0.76 e Å3
190 parametersΔρmin = 0.64 e Å3
2 restraintsAbsolute structure: (Flack, 1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (9)
Crystal data top
[Fe(C5H5)(C3H7Br2N)(CO)2]·(BF4)V = 762.65 (4) Å3
Mr = 480.69Z = 2
Monoclinic, PcMo Kα radiation
a = 12.9385 (4) ŵ = 6.27 mm1
b = 6.7123 (2) ÅT = 173 K
c = 13.2959 (4) Å0.54 × 0.48 × 0.29 mm
β = 138.664 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2944 independent reflections
Absorption correction: integration
(SADABS; Bruker, 2005)
2751 reflections with I > 2σ(I)
Tmin = 0.133, Tmax = 0.264Rint = 0.036
8733 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.076Δρmax = 0.76 e Å3
S = 1.10Δρmin = 0.64 e Å3
2944 reflectionsAbsolute structure: (Flack, 1983)
190 parametersAbsolute structure parameter: 0.003 (9)
2 restraints
Special details top

Experimental. Face indexed absorption corrections carried out with XPREP

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2328 (5)0.2525 (6)0.2879 (5)0.0312 (9)
H10.32790.24860.32030.037*
C20.1334 (5)0.4194 (7)0.2262 (4)0.0341 (9)
H20.15040.54800.21070.041*
C30.0032 (5)0.3607 (7)0.1912 (4)0.0344 (9)
H30.08210.44300.14820.041*
C40.0241 (5)0.1576 (7)0.2321 (5)0.0315 (8)
H40.04540.07910.22060.038*
C50.1659 (4)0.0924 (6)0.2929 (4)0.0275 (7)
H50.20920.03740.33090.033*
C60.2019 (4)0.5752 (6)0.4680 (5)0.0273 (8)
C70.1693 (4)0.2165 (6)0.5155 (4)0.0234 (7)
C80.5160 (4)0.1184 (5)0.6589 (4)0.0242 (7)
H8A0.49960.06500.57840.029*
H8B0.46360.02710.66850.029*
C90.6893 (4)0.1202 (7)0.8079 (4)0.0278 (8)
H90.70690.17770.88920.033*
C100.7653 (5)0.0805 (7)0.8575 (5)0.0372 (10)
H10A0.88020.06560.94740.045*
H10B0.74210.14210.77460.045*
N10.4412 (3)0.3170 (5)0.6112 (3)0.0193 (6)
H1A0.48520.39760.59510.023*
H1B0.46580.37080.69080.023*
O10.1941 (5)0.7331 (5)0.4917 (5)0.0451 (9)
O20.1334 (3)0.1479 (5)0.5640 (3)0.0363 (7)
Fe10.20737 (5)0.32704 (7)0.42396 (5)0.01774 (11)
Br10.79524 (5)0.28916 (9)0.78419 (5)0.04641 (14)
Br20.68883 (6)0.25147 (7)0.90878 (6)0.04643 (14)
B10.5163 (5)0.7167 (7)0.4432 (5)0.0256 (8)
F10.4496 (4)0.5759 (4)0.3313 (3)0.0449 (6)
F20.4611 (3)0.9035 (4)0.3751 (3)0.0465 (7)
F30.6762 (3)0.7131 (5)0.5531 (4)0.0514 (7)
F40.4694 (3)0.6791 (4)0.5072 (3)0.0390 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0288 (19)0.051 (3)0.0181 (17)0.0010 (17)0.0188 (16)0.0024 (16)
C20.036 (2)0.042 (2)0.0227 (19)0.0036 (17)0.0213 (18)0.0101 (16)
C30.0237 (18)0.047 (3)0.0176 (17)0.0083 (18)0.0110 (15)0.0071 (18)
C40.0272 (18)0.036 (2)0.0233 (18)0.0081 (16)0.0166 (16)0.0079 (16)
C50.0300 (17)0.0252 (18)0.0212 (17)0.0020 (15)0.0174 (15)0.0047 (14)
C60.0273 (17)0.0250 (19)0.0333 (19)0.0037 (15)0.0239 (16)0.0025 (16)
C70.0203 (16)0.0263 (17)0.0195 (17)0.0052 (14)0.0138 (16)0.0037 (14)
C80.0209 (16)0.0234 (18)0.0207 (16)0.0011 (14)0.0134 (15)0.0019 (15)
C90.0226 (17)0.039 (2)0.0222 (17)0.0034 (16)0.0171 (16)0.0009 (17)
C100.0245 (18)0.057 (3)0.0250 (19)0.0150 (19)0.0170 (17)0.009 (2)
N10.0135 (12)0.0198 (14)0.0190 (14)0.0032 (10)0.0106 (12)0.0026 (11)
O10.054 (2)0.0288 (17)0.062 (2)0.0017 (14)0.046 (2)0.0012 (15)
O20.0341 (15)0.0485 (18)0.0330 (15)0.0088 (13)0.0272 (14)0.0020 (13)
Fe10.0162 (2)0.0201 (2)0.0159 (2)0.00138 (18)0.01175 (18)0.00273 (19)
Br10.0292 (2)0.0668 (3)0.0469 (3)0.0055 (2)0.0296 (2)0.0008 (3)
Br20.0550 (3)0.0445 (3)0.0469 (3)0.0230 (2)0.0404 (3)0.0209 (2)
B10.0239 (19)0.032 (2)0.0242 (19)0.0033 (16)0.0190 (18)0.0062 (17)
F10.0642 (17)0.0442 (15)0.0465 (15)0.0069 (14)0.0474 (15)0.0093 (13)
F20.0506 (16)0.0380 (15)0.0519 (17)0.0035 (13)0.0387 (15)0.0123 (13)
F30.0291 (13)0.071 (2)0.0494 (17)0.0058 (13)0.0282 (13)0.0121 (15)
F40.0508 (16)0.0424 (14)0.0471 (15)0.0083 (12)0.0436 (15)0.0048 (12)
Geometric parameters (Å, º) top
C1—C51.413 (6)C7—Fe11.781 (4)
C1—C21.414 (6)C8—N11.481 (5)
C1—Fe12.128 (4)C8—C91.511 (5)
C1—H10.9500C8—H8A0.9900
C2—C31.426 (6)C8—H8B0.9900
C2—Fe12.107 (4)C9—C101.497 (6)
C2—H20.9500C9—Br11.978 (4)
C3—C41.417 (7)C9—H91.0000
C3—Fe12.081 (4)C10—Br21.942 (5)
C3—H30.9500C10—H10A0.9900
C4—C51.408 (6)C10—H10B0.9900
C4—Fe12.083 (4)N1—Fe12.011 (3)
C4—H40.9500N1—H1A0.9200
C5—Fe12.098 (4)N1—H1B0.9200
C5—H50.9500B1—F31.370 (5)
C6—O11.132 (5)B1—F11.387 (5)
C6—Fe11.784 (4)B1—F21.389 (5)
C7—O21.138 (5)B1—F41.391 (5)
C5—C1—C2107.9 (4)C9—C10—H10A109.6
C5—C1—Fe169.3 (2)Br2—C10—H10A109.6
C2—C1—Fe169.7 (2)C9—C10—H10B109.6
C5—C1—H1126.0Br2—C10—H10B109.6
C2—C1—H1126.0H10A—C10—H10B108.1
Fe1—C1—H1126.5C8—N1—Fe1116.9 (2)
C1—C2—C3107.9 (4)C8—N1—H1A108.1
C1—C2—Fe171.3 (2)Fe1—N1—H1A108.1
C3—C2—Fe169.1 (2)C8—N1—H1B108.1
C1—C2—H2126.1Fe1—N1—H1B108.1
C3—C2—H2126.1H1A—N1—H1B107.3
Fe1—C2—H2125.1C7—Fe1—C693.75 (18)
C4—C3—C2107.6 (4)C7—Fe1—N194.06 (15)
C4—C3—Fe170.2 (2)C6—Fe1—N191.07 (15)
C2—C3—Fe171.1 (2)C7—Fe1—C3111.59 (17)
C4—C3—H3126.2C6—Fe1—C393.88 (19)
C2—C3—H3126.2N1—Fe1—C3153.45 (15)
Fe1—C3—H3124.2C7—Fe1—C487.97 (17)
C5—C4—C3108.1 (4)C6—Fe1—C4128.48 (17)
C5—C4—Fe170.9 (2)N1—Fe1—C4140.23 (15)
C3—C4—Fe170.0 (2)C3—Fe1—C439.79 (19)
C5—C4—H4126.0C7—Fe1—C5103.00 (16)
C3—C4—H4126.0C6—Fe1—C5157.66 (17)
Fe1—C4—H4124.7N1—Fe1—C5102.23 (14)
C4—C5—C1108.5 (4)C3—Fe1—C566.36 (17)
C4—C5—Fe169.8 (2)C4—Fe1—C539.37 (16)
C1—C5—Fe171.6 (2)C7—Fe1—C2151.17 (16)
C4—C5—H5125.8C6—Fe1—C292.41 (19)
C1—C5—H5125.8N1—Fe1—C2113.97 (14)
Fe1—C5—H5124.5C3—Fe1—C239.82 (16)
O1—C6—Fe1178.0 (4)C4—Fe1—C266.40 (17)
O2—C7—Fe1174.9 (3)C5—Fe1—C265.86 (17)
N1—C8—C9113.8 (3)C7—Fe1—C1141.39 (18)
N1—C8—H8A108.8C6—Fe1—C1124.63 (17)
C9—C8—H8A108.8N1—Fe1—C189.72 (14)
N1—C8—H8B108.8C3—Fe1—C166.12 (17)
C9—C8—H8B108.8C4—Fe1—C165.86 (16)
H8A—C8—H8B107.7C5—Fe1—C139.06 (16)
C10—C9—C8114.1 (3)C2—Fe1—C139.00 (17)
C10—C9—Br1106.4 (5)F3—B1—F1110.9 (4)
C8—C9—Br1108.7 (3)F3—B1—F2109.7 (4)
C10—C9—H9109.2F1—B1—F2108.4 (3)
C8—C9—H9109.2F3—B1—F4110.3 (4)
Br1—C9—H9109.2F1—B1—F4109.1 (3)
C9—C10—Br2110.3 (3)F2—B1—F4108.4 (3)
C5—C1—C2—C30.7 (4)C3—C4—Fe1—N1137.9 (3)
Fe1—C1—C2—C359.7 (3)C5—C4—Fe1—C3118.4 (3)
C5—C1—C2—Fe159.0 (3)C3—C4—Fe1—C5118.4 (3)
C1—C2—C3—C40.1 (5)C5—C4—Fe1—C280.1 (3)
Fe1—C2—C3—C461.0 (3)C3—C4—Fe1—C238.3 (2)
C1—C2—C3—Fe161.1 (3)C5—C4—Fe1—C137.3 (2)
C2—C3—C4—C50.6 (5)C3—C4—Fe1—C181.1 (3)
Fe1—C3—C4—C561.0 (3)C4—C5—Fe1—C770.2 (3)
C2—C3—C4—Fe161.6 (3)C1—C5—Fe1—C7171.2 (2)
C3—C4—C5—C11.0 (5)C4—C5—Fe1—C667.4 (5)
Fe1—C4—C5—C161.5 (3)C1—C5—Fe1—C651.2 (5)
C3—C4—C5—Fe160.4 (3)C4—C5—Fe1—N1167.4 (2)
C2—C1—C5—C41.1 (4)C1—C5—Fe1—N174.0 (2)
Fe1—C1—C5—C460.3 (3)C4—C5—Fe1—C337.9 (3)
C2—C1—C5—Fe159.2 (3)C1—C5—Fe1—C380.7 (3)
N1—C8—C9—C10179.4 (3)C1—C5—Fe1—C4118.6 (3)
N1—C8—C9—Br162.1 (3)C4—C5—Fe1—C281.6 (3)
C8—C9—C10—Br267.2 (4)C1—C5—Fe1—C237.0 (2)
Br1—C9—C10—Br2173.08 (19)C4—C5—Fe1—C1118.6 (3)
C9—C8—N1—Fe1174.8 (2)C1—C2—Fe1—C7109.4 (4)
C8—N1—Fe1—C772.1 (3)C3—C2—Fe1—C79.1 (5)
C8—N1—Fe1—C6166.0 (3)C1—C2—Fe1—C6148.4 (3)
C8—N1—Fe1—C393.2 (4)C3—C2—Fe1—C693.2 (3)
C8—N1—Fe1—C419.6 (4)C1—C2—Fe1—N156.1 (3)
C8—N1—Fe1—C532.1 (3)C3—C2—Fe1—N1174.6 (2)
C8—N1—Fe1—C2100.9 (3)C1—C2—Fe1—C3118.5 (4)
C8—N1—Fe1—C169.4 (3)C1—C2—Fe1—C480.2 (3)
C4—C3—Fe1—C757.7 (3)C3—C2—Fe1—C438.2 (3)
C2—C3—Fe1—C7175.3 (3)C1—C2—Fe1—C537.0 (2)
C4—C3—Fe1—C6153.3 (3)C3—C2—Fe1—C581.5 (3)
C2—C3—Fe1—C689.1 (3)C3—C2—Fe1—C1118.5 (4)
C4—C3—Fe1—N1106.5 (4)C5—C1—Fe1—C713.8 (4)
C2—C3—Fe1—N111.1 (5)C2—C1—Fe1—C7133.2 (3)
C2—C3—Fe1—C4117.6 (4)C5—C1—Fe1—C6158.9 (2)
C4—C3—Fe1—C537.5 (2)C2—C1—Fe1—C639.5 (3)
C2—C3—Fe1—C580.1 (3)C5—C1—Fe1—N1110.0 (2)
C4—C3—Fe1—C2117.6 (4)C2—C1—Fe1—N1130.6 (3)
C4—C3—Fe1—C180.4 (3)C5—C1—Fe1—C381.4 (3)
C2—C3—Fe1—C137.2 (3)C2—C1—Fe1—C338.0 (3)
C5—C4—Fe1—C7113.5 (3)C5—C1—Fe1—C437.6 (2)
C3—C4—Fe1—C7128.2 (3)C2—C1—Fe1—C481.7 (3)
C5—C4—Fe1—C6153.4 (2)C2—C1—Fe1—C5119.4 (4)
C3—C4—Fe1—C635.0 (3)C5—C1—Fe1—C2119.4 (4)
C5—C4—Fe1—N119.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F40.922.152.951 (4)145
N1—H1A···Br10.922.793.238 (3)111
N1—H1B···F1i0.922.062.935 (4)158
Symmetry code: (i) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C3H7Br2N)(CO)2]·(BF4)
Mr480.69
Crystal system, space groupMonoclinic, Pc
Temperature (K)173
a, b, c (Å)12.9385 (4), 6.7123 (2), 13.2959 (4)
β (°) 138.664 (2)
V3)762.65 (4)
Z2
Radiation typeMo Kα
µ (mm1)6.27
Crystal size (mm)0.54 × 0.48 × 0.29
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionIntegration
(SADABS; Bruker, 2005)
Tmin, Tmax0.133, 0.264
No. of measured, independent and
observed [I > 2σ(I)] reflections
8733, 2944, 2751
Rint0.036
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.076, 1.10
No. of reflections2944
No. of parameters190
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.64
Absolute structure(Flack, 1983)
Absolute structure parameter0.003 (9)

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SAINT-Plus and XPREP (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 Farrugia (1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F40.922.152.951 (4)145
N1—H1A···Br10.922.793.238 (3)111
N1—H1B···F1i0.922.062.935 (4)158
Symmetry code: (i) x, y+1, z+1/2.
 

Acknowledgements

We thank the University of KwaZulu-Natal for facilities and financial support.

References

First citationBruker (2005). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButler, A. & Sandy, M. (2009). Nature (London), 460, 848–854.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFriedrich, H. B., Onani, M. O. & Munro, O. Q. (2001). J. Organomet. Chem. 633, 39–50.  Web of Science CSD CrossRef CAS Google Scholar
First citationFriedrich, H. B., Onani, M. O. & Rademeyer, M. (2004). Acta Cryst. E60, m551–m553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGerebtzoff, G., Li-Blatter, X., Fischer, H., Frentzel, A. & Seeling, A. (2004). ChemBioChem, 5, 676–684.  Web of Science CrossRef PubMed CAS Google Scholar
First citationM'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Bala, M. D. (2011a). Inorg. Chim. Acta, 366, 105–115.  CAS Google Scholar
First citationM'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Bala, M. D. (2012a). Inorg. Chim. Acta, 382, 27–34.  CAS Google Scholar
First citationM'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Omondi, B. (2011b). Acta Cryst. E67, m485.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationM'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Omondi, B. (2012b). Polyhedron, 40, 81–92.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds