organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(5-Bromo-2-hy­dr­oxy-3-meth­­oxy­benzyl­­idene)-2-hy­dr­oxy­benzohydrazide monohydrate

aCollege of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, People's Republic of China, and bCollege of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
*Correspondence e-mail: shshzhao@xust.edu.cn

(Received 21 May 2012; accepted 31 May 2012; online 13 June 2012)

The organic molecule of the title hydrate, C15H13BrN2O4·H2O, is roughly planar, with a mean deviation of 0.0939 (2) Å. The dihedral angle between the two aromatic rings is 8.2 (3)°. Intra­molecular O—H⋯N and O—H⋯O hydrogen bonds are observed. In the crystal, N—H⋯O(water) and O(water)—H⋯O hydrogen bonds lead to a three-dimensional network.

Related literature

For related structures, see: Lu (2008[Lu, J.-F. (2008). Acta Cryst. E64, o2048.]); Nie (2008[Nie, Y. (2008). Acta Cryst. E64, o471.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13BrN2O4·H2O

  • Mr = 383.20

  • Orthorhombic, P 21 21 21

  • a = 6.3822 (13) Å

  • b = 14.142 (3) Å

  • c = 17.470 (4) Å

  • V = 1576.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.63 mm−1

  • T = 296 K

  • 0.38 × 0.26 × 0.20 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.444, Tmax = 0.590

  • 9336 measured reflections

  • 3658 independent reflections

  • 2060 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.131

  • S = 0.90

  • 3658 reflections

  • 217 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.48 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1411 Friedel pairs

  • Flack parameter: 0.008 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1 0.82 1.95 2.657 (5) 144
N2—H2B⋯O1Wi 0.86 2.09 2.921 (5) 164
O4—H4A⋯O3 0.82 1.80 2.527 (5) 147
O1W—H2W⋯O4ii 0.84 2.05 2.855 (6) 161
O1W—H1W⋯O3iii 0.85 2.06 2.823 (5) 148
Symmetry codes: (i) x+1, y+1, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Hydrazones attract the interest of researchers due to their various biological activities viz. anticancer, anti-HIV, anthelmintic, antimycobacterial, anti-inflammatory, antidiabetic, antimicrobial, trypanocidal as well antimalarial activities. Here we report the crystal structure of the novel hydrazone title compound (Fig. 1). Bond lengths are in the range of expected values (Allen et al., 1987) and are comparable to those observed from similar compounds (Lu, 2008; Nie, 2008). Intramolecular as well as intermolecular N—H···O and O—H···O hydrogen bonds are observed (Table 1), the intermolecular ones lead to a three-dimensional network of the hydrazone with water molecules (Fig. 2). The latter stems from non-dried acetonitrile.

Related literature top

For related structures, see: Lu (2008); Nie (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

2-Hydroxybenzohydrazide (152.2 mg, 1.0 mmol) was added to a solution of 5-bromo-2-hydroxy-3-methoxybenzaldehyde (231.5 mg, 1.0 mmol) in absolute ethanol (10 ml) and heated to reflux for 2 h. A pale yellow solid that precipitated from the reaction mixture was collected by filtration, dried on open air and then recrystallized from acetonitrile to give pale yellow crystals, yield 69.3%.

Refinement top

Hydroxy H atoms were located in a difference-Fourier synthesis and were refined as idealized rotating hydroxyl groups, with O—H = 0.82 Å and Uiso(H) = 1.5 Ueq(O). Water H atoms were located in a difference-Fourier synthesis and refined with constraint O—H = 0.82 Å, H···H distance 1.35 Å and Uiso(H) = 1.5 Ueq(O). Other H atoms were positioned geometrically and refined using a riding model with N—H = 0.86 Å, C—H = 0.93–0.96 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C/N).

Structure description top

Hydrazones attract the interest of researchers due to their various biological activities viz. anticancer, anti-HIV, anthelmintic, antimycobacterial, anti-inflammatory, antidiabetic, antimicrobial, trypanocidal as well antimalarial activities. Here we report the crystal structure of the novel hydrazone title compound (Fig. 1). Bond lengths are in the range of expected values (Allen et al., 1987) and are comparable to those observed from similar compounds (Lu, 2008; Nie, 2008). Intramolecular as well as intermolecular N—H···O and O—H···O hydrogen bonds are observed (Table 1), the intermolecular ones lead to a three-dimensional network of the hydrazone with water molecules (Fig. 2). The latter stems from non-dried acetonitrile.

For related structures, see: Lu (2008); Nie (2008). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing, viewed along the a axis, showing the hydrogen bonds as dashed lines.
(E)-N'-(5-Bromo-2-hydroxy-3-methoxybenzylidene)-2- hydroxybenzohydrazide monohydrate top
Crystal data top
C15H13BrN2O4·H2OF(000) = 776
Mr = 383.20Dx = 1.614 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2451 reflections
a = 6.3822 (13) Åθ = 1.9–26.6°
b = 14.142 (3) ŵ = 2.63 mm1
c = 17.470 (4) ÅT = 296 K
V = 1576.8 (6) Å3Stick, colourless
Z = 40.38 × 0.26 × 0.20 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3658 independent reflections
Radiation source: fine-focus sealed tube2060 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
thin–slice ω scansθmax = 28.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 85
Tmin = 0.444, Tmax = 0.590k = 1818
9336 measured reflectionsl = 2119
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0557P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max = 0.001
3658 reflectionsΔρmax = 0.33 e Å3
217 parametersΔρmin = 0.48 e Å3
3 restraintsAbsolute structure: Flack (1983), 1411 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.008 (15)
Crystal data top
C15H13BrN2O4·H2OV = 1576.8 (6) Å3
Mr = 383.20Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.3822 (13) ŵ = 2.63 mm1
b = 14.142 (3) ÅT = 296 K
c = 17.470 (4) Å0.38 × 0.26 × 0.20 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3658 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2060 reflections with I > 2σ(I)
Tmin = 0.444, Tmax = 0.590Rint = 0.066
9336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.131Δρmax = 0.33 e Å3
S = 0.90Δρmin = 0.48 e Å3
3658 reflectionsAbsolute structure: Flack (1983), 1411 Friedel pairs
217 parametersAbsolute structure parameter: 0.008 (15)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.17855 (11)1.17225 (4)0.99142 (4)0.0780 (3)
O10.2998 (5)0.8130 (2)0.9293 (2)0.0454 (9)
O31.1945 (6)0.8459 (2)0.7425 (2)0.0524 (10)
O20.6469 (5)0.8437 (2)0.8561 (2)0.0476 (9)
H2A0.75790.85960.83620.071*
C60.6271 (8)1.0123 (4)0.8788 (3)0.0370 (12)
C101.4183 (7)0.9660 (3)0.6933 (3)0.0343 (12)
C30.2568 (8)0.9790 (4)0.9594 (3)0.0392 (12)
H3A0.13570.96840.98780.047*
N10.9280 (6)0.9674 (3)0.8055 (2)0.0394 (11)
C111.4638 (8)1.0619 (4)0.6803 (3)0.0463 (14)
H11A1.37131.10750.69830.056*
C80.8180 (8)1.0329 (4)0.8369 (3)0.0431 (13)
H8A0.86211.09530.83270.052*
C151.5614 (8)0.9000 (4)0.6654 (3)0.0410 (13)
C20.3633 (7)0.9045 (4)0.9263 (3)0.0355 (11)
C91.2306 (8)0.9322 (4)0.7355 (3)0.0387 (12)
N21.1036 (6)0.9967 (3)0.7668 (2)0.0397 (11)
H2B1.13151.05600.76270.048*
C141.7394 (8)0.9297 (4)0.6256 (3)0.0521 (15)
H14A1.83420.88520.60710.063*
O41.5336 (6)0.8046 (2)0.6757 (2)0.0526 (10)
H4A1.42340.79530.69860.079*
C40.3336 (9)1.0699 (4)0.9496 (3)0.0431 (13)
C70.5520 (8)0.9207 (4)0.8869 (3)0.0377 (12)
C131.7743 (9)1.0233 (4)0.6138 (3)0.0546 (16)
H13A1.89161.04240.58630.066*
C50.5154 (9)1.0869 (4)0.9111 (3)0.0463 (14)
H5A0.56501.14840.90630.056*
C10.1150 (8)0.7915 (4)0.9715 (4)0.0597 (17)
H1B0.08800.72480.96880.090*
H1C0.00150.82540.95010.090*
H1D0.13380.80981.02400.090*
C121.6383 (9)1.0900 (4)0.6421 (3)0.0520 (15)
H12A1.66561.15400.63510.062*
O1W0.1142 (6)0.2032 (3)0.7660 (3)0.0683 (13)
H2W0.22150.23680.77230.102*
H1W0.02250.23900.74510.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0908 (5)0.0470 (3)0.0962 (6)0.0036 (3)0.0521 (4)0.0121 (4)
O10.040 (2)0.039 (2)0.057 (2)0.0034 (18)0.0170 (18)0.0032 (17)
O30.041 (2)0.041 (2)0.075 (3)0.0072 (18)0.0064 (19)0.0060 (18)
O20.038 (2)0.046 (2)0.059 (2)0.0063 (18)0.0169 (18)0.0016 (18)
C60.030 (3)0.047 (3)0.034 (3)0.004 (2)0.002 (2)0.000 (2)
C100.023 (3)0.041 (3)0.039 (3)0.000 (2)0.001 (2)0.002 (2)
C30.035 (3)0.044 (3)0.039 (3)0.001 (2)0.009 (2)0.002 (2)
N10.026 (2)0.050 (3)0.042 (3)0.005 (2)0.0054 (19)0.007 (2)
C110.041 (3)0.045 (3)0.053 (4)0.004 (3)0.008 (3)0.004 (3)
C80.035 (3)0.047 (3)0.047 (3)0.007 (3)0.003 (3)0.005 (2)
C150.034 (3)0.043 (3)0.046 (3)0.001 (3)0.001 (2)0.006 (3)
C20.031 (3)0.040 (3)0.036 (3)0.001 (2)0.003 (2)0.003 (2)
C90.032 (3)0.045 (3)0.038 (3)0.001 (2)0.002 (2)0.003 (2)
N20.031 (2)0.042 (3)0.046 (3)0.003 (2)0.010 (2)0.004 (2)
C140.036 (3)0.074 (5)0.046 (3)0.008 (3)0.009 (3)0.003 (3)
O40.049 (2)0.043 (2)0.065 (3)0.0035 (18)0.0088 (19)0.0034 (19)
C40.045 (3)0.043 (3)0.041 (3)0.005 (3)0.008 (3)0.006 (2)
C70.035 (3)0.044 (3)0.034 (3)0.004 (2)0.002 (2)0.001 (2)
C130.043 (4)0.068 (4)0.053 (4)0.007 (3)0.013 (3)0.016 (3)
C50.054 (4)0.034 (3)0.051 (4)0.006 (3)0.012 (3)0.005 (3)
C10.044 (3)0.055 (4)0.080 (4)0.007 (3)0.018 (3)0.007 (3)
C120.042 (3)0.057 (4)0.057 (4)0.002 (3)0.013 (3)0.013 (3)
O1W0.046 (2)0.040 (2)0.119 (4)0.0026 (18)0.003 (2)0.005 (2)
Geometric parameters (Å, º) top
Br1—C41.899 (5)C8—H8A0.9300
O1—C21.356 (6)C15—O41.372 (6)
O1—C11.424 (6)C15—C141.396 (7)
O3—C91.249 (6)C2—C71.406 (7)
O2—C71.357 (6)C9—N21.337 (6)
O2—H2A0.8200N2—H2B0.8600
C6—C71.389 (7)C14—C131.358 (8)
C6—C51.392 (7)C14—H14A0.9300
C6—C81.451 (7)O4—H4A0.8200
C10—C151.394 (7)C4—C51.363 (7)
C10—C111.405 (7)C13—C121.374 (8)
C10—C91.486 (7)C13—H13A0.9300
C3—C21.381 (7)C5—H5A0.9300
C3—C41.386 (7)C1—H1B0.9600
C3—H3A0.9300C1—H1C0.9600
N1—C81.286 (6)C1—H1D0.9600
N1—N21.373 (5)C12—H12A0.9300
C11—C121.357 (7)O1W—H2W0.8409
C11—H11A0.9300O1W—H1W0.8548
C2—O1—C1118.1 (4)C9—N2—H2B120.3
C7—O2—H2A109.5N1—N2—H2B120.3
C7—C6—C5119.3 (5)C13—C14—C15120.1 (5)
C7—C6—C8121.9 (5)C13—C14—H14A120.0
C5—C6—C8118.8 (5)C15—C14—H14A120.0
C15—C10—C11117.0 (5)C15—O4—H4A109.5
C15—C10—C9119.1 (5)C5—C4—C3121.7 (5)
C11—C10—C9123.9 (5)C5—C4—Br1119.9 (4)
C2—C3—C4118.8 (5)C3—C4—Br1118.4 (4)
C2—C3—H3A120.6O2—C7—C6123.6 (5)
C4—C3—H3A120.6O2—C7—C2116.5 (5)
C8—N1—N2116.0 (4)C6—C7—C2119.8 (5)
C12—C11—C10122.1 (5)C14—C13—C12120.7 (5)
C12—C11—H11A118.9C14—C13—H13A119.6
C10—C11—H11A118.9C12—C13—H13A119.6
N1—C8—C6122.0 (5)C4—C5—C6120.2 (5)
N1—C8—H8A119.0C4—C5—H5A119.9
C6—C8—H8A119.0C6—C5—H5A119.9
O4—C15—C10121.8 (5)O1—C1—H1B109.5
O4—C15—C14117.7 (5)O1—C1—H1C109.5
C10—C15—C14120.4 (5)H1B—C1—H1C109.5
O1—C2—C3124.4 (4)O1—C1—H1D109.5
O1—C2—C7115.4 (4)H1B—C1—H1D109.5
C3—C2—C7120.2 (5)H1C—C1—H1D109.5
O3—C9—N2121.0 (5)C11—C12—C13119.6 (6)
O3—C9—C10120.8 (5)C11—C12—H12A120.2
N2—C9—C10118.2 (4)C13—C12—H12A120.2
C9—N2—N1119.3 (4)H2W—O1W—H1W106.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.821.952.657 (5)144
N2—H2B···O1Wi0.862.092.921 (5)164
O4—H4A···O30.821.802.527 (5)147
O1W—H2W···O4ii0.842.052.855 (6)161
O1W—H1W···O3iii0.852.062.823 (5)148
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y1/2, z+3/2; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H13BrN2O4·H2O
Mr383.20
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)6.3822 (13), 14.142 (3), 17.470 (4)
V3)1576.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.63
Crystal size (mm)0.38 × 0.26 × 0.20
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.444, 0.590
No. of measured, independent and
observed [I > 2σ(I)] reflections
9336, 3658, 2060
Rint0.066
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.131, 0.90
No. of reflections3658
No. of parameters217
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.48
Absolute structureFlack (1983), 1411 Friedel pairs
Absolute structure parameter0.008 (15)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.821.952.657 (5)144.4
N2—H2B···O1Wi0.862.092.921 (5)163.7
O4—H4A···O30.821.802.527 (5)147.2
O1W—H2W···O4ii0.842.052.855 (6)160.9
O1W—H1W···O3iii0.852.062.823 (5)148.1
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y1/2, z+3/2; (iii) x+1, y1/2, z+3/2.
 

Acknowledgements

The project was supported by the National Natural Science Foundation of China (program Nos. 21103135, 21073139), the Natural Science Basic Research Plan in Shaanxi Province of China (program No. 2011JQ2011), the Cultivation Foundation of Xi'an University of Science and Technology (program No. 2010023), the Scientific Research Program Funded by Shaanxi Provincial Education Department (program No.12 J K0622) and the Open Foundation of the Ministry of Education Key Laboratory of Synthetic and Natural Functional Mol­ecular Chemistry at Northwest University (grant No. 2010025).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLu, J.-F. (2008). Acta Cryst. E64, o2048.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNie, Y. (2008). Acta Cryst. E64, o471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds