organic compounds
rac-Dimethyl 5-oxo-2-[(2,4,4-trimethylpentan-2-yl)amino]-4,5-dihydropyrano[3,2-c]chromene-3,4-dicarboxylate
aSri Ram Engineering College, Chennai 602 024, India, bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India
*Correspondence e-mail: ksethusankar@yahoo.co.in
The title compound, C24H29NO7, is asymmetric with a chiral centre located in the pyran ring and crystallizes as a racemate. The coumarin ring system and the fused pyran ring make a dihedral angle of 10.46 (8)°. A short intramolecular N—H⋯O hydrogen bond between the amino group and the vicinal carbonyl group generates an S(6) ring. Intermolecular C—H⋯O interactions contribute to the stability of the crystal structure.
Related literature
For the biological activity of pyranocoumarin compounds, see: Kawaii et al. (2001); Goel et al. (1997); Xu et al. (2006). For a similar compound, see: Inglebert et al. (2011). For bond-angle distortions, see: Chinnakali et al. (1998); Kumar et al. (1997). For graph-set notation, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536812027596/fy2059sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812027596/fy2059Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812027596/fy2059Isup3.cml
To a magnetically stirred solution of 4-hydroxy coumarin (0.162 g, 1.0 mmol) and dimethyl acetylenedicarboxylate (0.142 g, 1.0 mmol) in CH3CN (10 ml) was added a solution of 1,1,3,3-tetra methylbutyl isocynaide (0.139 g, 1.0 mmol) at room temperature over 5 min. The mixture was then stirred for 24 h. After completion of the reaction, the solvent was removed under vacuum and the solid residue was washed with n-hexane and crystallized from CH2Cl2 – n-hexane (1/2) to give the product as white crystals (0.368 g, 83%).
The H atoms bound to the C and N atoms were placed geometrically and treated as riding atoms, with d(N—H) = 0.86 Å and Uiso(H) = 1.2Ueq(N) for the amino group, with d(C—H) = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, d(C—H) = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene and d(C—H) = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl groups. The rotation angles for methyl groups were optimised by least squares.
Coumarins are natural or synthetic compounds used as pharmaceuticals and herbicides. They exhibit fluorescent properties due to the presence of the benzopyrone moiety. Pyranocoumarin and its derivatives show strong activity against cancer cell lines (Kawaii et al., 2001). Some naturally occurring pyranocoumarins show antiulcer activity, anti-hepatitis B virus activity, cytotoxic activities and anti-TB activity (Goel et al., 1997 and Xu et al., 2006). Outside the biological applications of coumarin and its derivatives, there are also applications as cosmetics, optical brightening agents and laser dyes.
Fused benzene and pyranoid rings form the benzopyran system, which can be described as planar, with the dihedral angle between the best planes of the rings being 2.07 (11)°. The coumarin ring system, consisting of atoms C1–C6, C7–C9 and O1 and O2 is almost planar with maximum deviation from the mean plane of 0.033 (2) Å for C8. The coumarin ring system (O1/C1–C9) makes a dihedral angle of 10.46 (8)° with pyran ring (O3/C7–C12). The coumarin ring system and pyran ring make the dihedral angles of 77.56 (10)°, 17.74 (7)°, 87.03 (10)° and 9.74 (6)° with the two methyl carboxylates (C13/O4/O5/C14) and (C15/O6/O7/C16), respectively. The methyl carboxylates are almost perpendicular to each other because the dihedral angle between them is 88.84 (15)°.
In the benzopyran ring, the bond distances of O1–C9 and C9–C8 are 1.372 (3) Å and 1.448 (3) Å, respectively, indicating that the electrons are delocalized in the ring with the carbonyl group acting as an electron-withdrawing group. This is corroborated by the fact that the benzopyran ring is planar. The title structure exhibits the structural similarities with our previously reported structure (Inglebert et al., 2011). As observed in other coumarin derivatives, the C5–C6 and C7–C8 bonds in the coumarin moiety show double-bond character and steric interactions cause the widening of angles C8–C9–O2 (125.0 (2)°) and C7–C6–C5 (125.24 (19)°), and the narrowing of angles O1–C9–O2 (117.22 (18)°) and O1–C1–C2 (116.82 (19)°) from 120° (Chinnakali et al., 1998; Kumar et al., 1997).
The carbonyl oxygen atom O6 acts as a bifurcated acceptor, accepting both the intramoleclar N1—H1···O6 and the intermolecular C23—H23A···O6 hydrogen bonds. The intramolecular bond generates an S(6) ring motif (Bernstein et al., 1995). The crystal packing is stabilized by intermolecular C—H···O interactions (Table 1).
For the biological activity of pyranocoumarin compounds, see: Kawaii et al. (2001); Goel et al. (1997); Xu et al. (2006). For a similar compound, see: Inglebert et al. (2011). For bond-angle distortions, see: Chinnakali et al. (1998); Kumar et al. (1997). For graph-set notation, see: Bernstein et al. (1995).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C24H29NO7 | F(000) = 1888 |
Mr = 443.48 | Dx = 1.281 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3384 reflections |
a = 22.0329 (17) Å | θ = 2.1–23.5° |
b = 11.8675 (8) Å | µ = 0.09 mm−1 |
c = 18.4861 (14) Å | T = 293 K |
β = 107.946 (4)° | Block, colourless |
V = 4598.5 (6) Å3 | 0.35 × 0.25 × 0.20 mm |
Z = 8 |
Bruker Kappa APEXII CCD diffractometer | 3384 independent reflections |
Radiation source: fine-focus sealed tube | 2623 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
ω and φ scan | θmax = 23.5°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −24→24 |
Tmin = 0.972, Tmax = 0.981 | k = −13→13 |
17657 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0745P)2 + 2.5421P] where P = (Fo2 + 2Fc2)/3 |
3384 reflections | (Δ/σ)max < 0.001 |
296 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C24H29NO7 | V = 4598.5 (6) Å3 |
Mr = 443.48 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 22.0329 (17) Å | µ = 0.09 mm−1 |
b = 11.8675 (8) Å | T = 293 K |
c = 18.4861 (14) Å | 0.35 × 0.25 × 0.20 mm |
β = 107.946 (4)° |
Bruker Kappa APEXII CCD diffractometer | 3384 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2623 reflections with I > 2σ(I) |
Tmin = 0.972, Tmax = 0.981 | Rint = 0.035 |
17657 measured reflections | θmax = 23.5° |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.24 e Å−3 |
3384 reflections | Δρmin = −0.24 e Å−3 |
296 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.07781 (10) | 0.65241 (18) | 0.08539 (12) | 0.0434 (5) | |
C2 | 0.01923 (11) | 0.6706 (2) | 0.09593 (14) | 0.0580 (6) | |
H2 | −0.0163 | 0.6291 | 0.0690 | 0.070* | |
C3 | 0.01469 (13) | 0.7514 (3) | 0.14700 (16) | 0.0707 (8) | |
H3 | −0.0245 | 0.7649 | 0.1545 | 0.085* | |
C4 | 0.06739 (12) | 0.8128 (2) | 0.18737 (15) | 0.0666 (7) | |
H4 | 0.0634 | 0.8669 | 0.2220 | 0.080* | |
C5 | 0.12543 (11) | 0.7948 (2) | 0.17689 (13) | 0.0538 (6) | |
H5 | 0.1607 | 0.8367 | 0.2042 | 0.065* | |
C6 | 0.13161 (10) | 0.71310 (18) | 0.12499 (12) | 0.0411 (5) | |
C7 | 0.18985 (9) | 0.68570 (17) | 0.10922 (11) | 0.0362 (5) | |
C8 | 0.19380 (9) | 0.60197 (16) | 0.06255 (11) | 0.0356 (5) | |
C9 | 0.13680 (10) | 0.54036 (18) | 0.02177 (12) | 0.0408 (5) | |
C10 | 0.25577 (9) | 0.56956 (16) | 0.05062 (11) | 0.0359 (5) | |
H10 | 0.2486 | 0.5539 | −0.0034 | 0.043* | |
C11 | 0.30259 (9) | 0.66519 (16) | 0.07534 (10) | 0.0347 (5) | |
C12 | 0.29355 (9) | 0.74938 (16) | 0.12167 (11) | 0.0348 (5) | |
C13 | 0.28234 (10) | 0.46404 (17) | 0.09713 (13) | 0.0413 (5) | |
C14 | 0.31163 (16) | 0.2746 (2) | 0.09316 (18) | 0.0842 (9) | |
H14A | 0.3533 | 0.2905 | 0.1276 | 0.126* | |
H14B | 0.3150 | 0.2190 | 0.0569 | 0.126* | |
H14C | 0.2847 | 0.2465 | 0.1212 | 0.126* | |
C15 | 0.36146 (10) | 0.66180 (18) | 0.05798 (11) | 0.0412 (5) | |
C16 | 0.42747 (14) | 0.5498 (2) | 0.0079 (2) | 0.0802 (9) | |
H16A | 0.4391 | 0.6164 | −0.0141 | 0.120* | |
H16B | 0.4244 | 0.4873 | −0.0260 | 0.120* | |
H16C | 0.4594 | 0.5341 | 0.0555 | 0.120* | |
C17 | 0.33589 (10) | 0.91740 (17) | 0.20939 (12) | 0.0419 (5) | |
C18 | 0.27751 (13) | 0.99465 (19) | 0.18546 (14) | 0.0598 (7) | |
H18A | 0.2732 | 1.0257 | 0.1362 | 0.090* | |
H18B | 0.2827 | 1.0546 | 0.2217 | 0.090* | |
H18C | 0.2400 | 0.9521 | 0.1835 | 0.090* | |
C19 | 0.39446 (13) | 0.9891 (2) | 0.21481 (15) | 0.0643 (7) | |
H19A | 0.4314 | 0.9415 | 0.2250 | 0.096* | |
H19B | 0.4005 | 1.0429 | 0.2552 | 0.096* | |
H19C | 0.3885 | 1.0282 | 0.1676 | 0.096* | |
C20 | 0.33782 (10) | 0.85921 (18) | 0.28459 (11) | 0.0442 (5) | |
H20A | 0.3367 | 0.9190 | 0.3199 | 0.053* | |
H20B | 0.2979 | 0.8186 | 0.2746 | 0.053* | |
C21 | 0.39048 (12) | 0.7775 (2) | 0.32812 (13) | 0.0598 (7) | |
C22 | 0.4003 (2) | 0.6793 (3) | 0.28107 (18) | 0.1349 (19) | |
H22A | 0.3602 | 0.6425 | 0.2579 | 0.202* | |
H22B | 0.4296 | 0.6268 | 0.3132 | 0.202* | |
H22C | 0.4173 | 0.7060 | 0.2422 | 0.202* | |
C23 | 0.45323 (14) | 0.8378 (3) | 0.36641 (19) | 0.1006 (11) | |
H23A | 0.4809 | 0.7889 | 0.4035 | 0.151* | |
H23B | 0.4451 | 0.9049 | 0.3909 | 0.151* | |
H23C | 0.4733 | 0.8577 | 0.3289 | 0.151* | |
C24 | 0.3680 (2) | 0.7316 (3) | 0.39292 (19) | 0.1155 (13) | |
H24A | 0.3293 | 0.6894 | 0.3721 | 0.173* | |
H24B | 0.3602 | 0.7932 | 0.4225 | 0.173* | |
H24C | 0.4003 | 0.6834 | 0.4247 | 0.173* | |
N1 | 0.33318 (8) | 0.83453 (14) | 0.14823 (9) | 0.0427 (4) | |
H1 | 0.3621 | 0.8432 | 0.1264 | 0.051* | |
O1 | 0.08075 (6) | 0.56951 (12) | 0.03460 (8) | 0.0464 (4) | |
O2 | 0.13476 (7) | 0.46490 (13) | −0.02235 (9) | 0.0550 (4) | |
O3 | 0.24034 (6) | 0.75349 (12) | 0.14530 (8) | 0.0416 (4) | |
O4 | 0.29947 (10) | 0.46127 (14) | 0.16463 (10) | 0.0717 (6) | |
O5 | 0.28442 (8) | 0.37646 (12) | 0.05382 (9) | 0.0620 (5) | |
O6 | 0.40352 (7) | 0.73256 (13) | 0.07379 (9) | 0.0530 (4) | |
O7 | 0.36707 (8) | 0.56715 (13) | 0.02049 (10) | 0.0614 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0370 (13) | 0.0505 (13) | 0.0409 (12) | −0.0018 (10) | 0.0096 (9) | 0.0054 (11) |
C2 | 0.0359 (13) | 0.0777 (17) | 0.0587 (15) | −0.0055 (12) | 0.0120 (11) | 0.0052 (14) |
C3 | 0.0436 (15) | 0.099 (2) | 0.0752 (18) | 0.0093 (15) | 0.0270 (13) | −0.0021 (17) |
C4 | 0.0557 (17) | 0.0817 (18) | 0.0679 (17) | 0.0057 (14) | 0.0272 (14) | −0.0140 (14) |
C5 | 0.0436 (14) | 0.0648 (15) | 0.0543 (14) | −0.0019 (12) | 0.0168 (11) | −0.0102 (12) |
C6 | 0.0349 (12) | 0.0460 (12) | 0.0417 (12) | 0.0010 (10) | 0.0108 (9) | 0.0014 (10) |
C7 | 0.0315 (11) | 0.0392 (11) | 0.0345 (11) | −0.0039 (9) | 0.0052 (8) | 0.0002 (9) |
C8 | 0.0345 (12) | 0.0339 (11) | 0.0355 (11) | −0.0043 (9) | 0.0067 (9) | 0.0021 (9) |
C9 | 0.0393 (13) | 0.0406 (12) | 0.0399 (12) | −0.0048 (10) | 0.0086 (9) | 0.0051 (10) |
C10 | 0.0366 (11) | 0.0358 (11) | 0.0345 (11) | −0.0039 (9) | 0.0098 (9) | −0.0032 (9) |
C11 | 0.0337 (11) | 0.0332 (11) | 0.0358 (10) | −0.0038 (9) | 0.0087 (9) | −0.0006 (9) |
C12 | 0.0318 (11) | 0.0360 (11) | 0.0346 (11) | −0.0026 (9) | 0.0075 (9) | 0.0006 (9) |
C13 | 0.0381 (12) | 0.0374 (12) | 0.0474 (14) | −0.0037 (9) | 0.0117 (10) | −0.0030 (10) |
C14 | 0.096 (2) | 0.0413 (14) | 0.102 (2) | 0.0201 (15) | 0.0102 (18) | −0.0025 (14) |
C15 | 0.0416 (13) | 0.0395 (12) | 0.0424 (12) | −0.0045 (11) | 0.0128 (10) | −0.0022 (10) |
C16 | 0.0652 (18) | 0.0710 (18) | 0.123 (3) | −0.0001 (15) | 0.0564 (18) | −0.0253 (17) |
C17 | 0.0446 (13) | 0.0368 (11) | 0.0428 (12) | −0.0036 (10) | 0.0111 (10) | −0.0089 (9) |
C18 | 0.0705 (17) | 0.0421 (13) | 0.0578 (14) | 0.0103 (12) | 0.0064 (12) | −0.0015 (11) |
C19 | 0.0749 (18) | 0.0552 (15) | 0.0645 (15) | −0.0293 (13) | 0.0243 (14) | −0.0208 (12) |
C20 | 0.0428 (13) | 0.0444 (12) | 0.0423 (12) | 0.0008 (10) | 0.0086 (10) | −0.0074 (10) |
C21 | 0.0651 (17) | 0.0523 (14) | 0.0490 (14) | 0.0163 (12) | −0.0016 (12) | −0.0029 (11) |
C22 | 0.192 (4) | 0.088 (2) | 0.079 (2) | 0.089 (3) | −0.025 (2) | −0.0216 (19) |
C23 | 0.060 (2) | 0.117 (3) | 0.101 (2) | 0.0290 (18) | −0.0102 (17) | −0.010 (2) |
C24 | 0.153 (4) | 0.099 (3) | 0.079 (2) | 0.022 (2) | 0.014 (2) | 0.038 (2) |
N1 | 0.0449 (11) | 0.0427 (10) | 0.0434 (10) | −0.0124 (9) | 0.0178 (8) | −0.0107 (8) |
O1 | 0.0352 (9) | 0.0525 (9) | 0.0489 (9) | −0.0083 (7) | 0.0090 (7) | −0.0021 (7) |
O2 | 0.0519 (10) | 0.0524 (10) | 0.0580 (10) | −0.0149 (8) | 0.0129 (8) | −0.0181 (8) |
O3 | 0.0341 (8) | 0.0466 (8) | 0.0442 (8) | −0.0070 (7) | 0.0125 (6) | −0.0120 (7) |
O4 | 0.1079 (15) | 0.0542 (10) | 0.0471 (11) | 0.0141 (10) | 0.0153 (10) | 0.0083 (8) |
O5 | 0.0769 (12) | 0.0363 (9) | 0.0641 (10) | 0.0097 (8) | 0.0087 (9) | −0.0089 (8) |
O6 | 0.0446 (9) | 0.0528 (9) | 0.0674 (10) | −0.0145 (8) | 0.0259 (8) | −0.0139 (8) |
O7 | 0.0536 (10) | 0.0524 (10) | 0.0898 (12) | −0.0100 (8) | 0.0391 (9) | −0.0266 (9) |
C1—O1 | 1.375 (3) | C15—O7 | 1.345 (3) |
C1—C2 | 1.380 (3) | C16—O7 | 1.434 (3) |
C1—C6 | 1.388 (3) | C16—H16A | 0.9600 |
C2—C3 | 1.370 (4) | C16—H16B | 0.9600 |
C2—H2 | 0.9300 | C16—H16C | 0.9600 |
C3—C4 | 1.379 (4) | C17—N1 | 1.486 (3) |
C3—H3 | 0.9300 | C17—C19 | 1.523 (3) |
C4—C5 | 1.368 (3) | C17—C18 | 1.530 (3) |
C4—H4 | 0.9300 | C17—C20 | 1.541 (3) |
C5—C6 | 1.400 (3) | C18—H18A | 0.9600 |
C5—H5 | 0.9300 | C18—H18B | 0.9600 |
C6—C7 | 1.438 (3) | C18—H18C | 0.9600 |
C7—C8 | 1.336 (3) | C19—H19A | 0.9600 |
C7—O3 | 1.368 (2) | C19—H19B | 0.9600 |
C8—C9 | 1.448 (3) | C19—H19C | 0.9600 |
C8—C10 | 1.499 (3) | C20—C21 | 1.535 (3) |
C9—O2 | 1.203 (2) | C20—H20A | 0.9700 |
C9—O1 | 1.372 (3) | C20—H20B | 0.9700 |
C10—C11 | 1.507 (3) | C21—C22 | 1.510 (4) |
C10—C13 | 1.530 (3) | C21—C23 | 1.524 (4) |
C10—H10 | 0.9800 | C21—C24 | 1.531 (4) |
C11—C12 | 1.370 (3) | C22—H22A | 0.9600 |
C11—C15 | 1.429 (3) | C22—H22B | 0.9600 |
C12—N1 | 1.327 (2) | C22—H22C | 0.9600 |
C12—O3 | 1.372 (2) | C23—H23A | 0.9600 |
C13—O4 | 1.188 (3) | C23—H23B | 0.9600 |
C13—O5 | 1.321 (2) | C23—H23C | 0.9600 |
C14—O5 | 1.443 (3) | C24—H24A | 0.9600 |
C14—H14A | 0.9600 | C24—H24B | 0.9600 |
C14—H14B | 0.9600 | C24—H24C | 0.9600 |
C14—H14C | 0.9600 | N1—H1 | 0.8600 |
C15—O6 | 1.217 (2) | ||
O1—C1—C2 | 116.82 (19) | H16B—C16—H16C | 109.5 |
O1—C1—C6 | 121.28 (18) | N1—C17—C19 | 104.75 (17) |
C2—C1—C6 | 121.9 (2) | N1—C17—C18 | 110.10 (17) |
C3—C2—C1 | 118.5 (2) | C19—C17—C18 | 107.69 (19) |
C3—C2—H2 | 120.8 | N1—C17—C20 | 111.92 (16) |
C1—C2—H2 | 120.8 | C19—C17—C20 | 113.81 (18) |
C2—C3—C4 | 121.0 (2) | C18—C17—C20 | 108.45 (18) |
C2—C3—H3 | 119.5 | C17—C18—H18A | 109.5 |
C4—C3—H3 | 119.5 | C17—C18—H18B | 109.5 |
C5—C4—C3 | 120.6 (2) | H18A—C18—H18B | 109.5 |
C5—C4—H4 | 119.7 | C17—C18—H18C | 109.5 |
C3—C4—H4 | 119.7 | H18A—C18—H18C | 109.5 |
C4—C5—C6 | 119.9 (2) | H18B—C18—H18C | 109.5 |
C4—C5—H5 | 120.1 | C17—C19—H19A | 109.5 |
C6—C5—H5 | 120.1 | C17—C19—H19B | 109.5 |
C1—C6—C5 | 118.2 (2) | H19A—C19—H19B | 109.5 |
C1—C6—C7 | 116.52 (19) | C17—C19—H19C | 109.5 |
C5—C6—C7 | 125.24 (19) | H19A—C19—H19C | 109.5 |
C8—C7—O3 | 123.17 (18) | H19B—C19—H19C | 109.5 |
C8—C7—C6 | 122.59 (18) | C21—C20—C17 | 124.20 (19) |
O3—C7—C6 | 114.24 (17) | C21—C20—H20A | 106.3 |
C7—C8—C9 | 119.55 (19) | C17—C20—H20A | 106.3 |
C7—C8—C10 | 121.96 (17) | C21—C20—H20B | 106.3 |
C9—C8—C10 | 118.50 (17) | C17—C20—H20B | 106.3 |
O2—C9—O1 | 117.22 (18) | H20A—C20—H20B | 106.4 |
O2—C9—C8 | 125.0 (2) | C22—C21—C23 | 111.1 (3) |
O1—C9—C8 | 117.73 (19) | C22—C21—C24 | 108.3 (3) |
C8—C10—C11 | 109.38 (16) | C23—C21—C24 | 105.7 (3) |
C8—C10—C13 | 109.61 (16) | C22—C21—C20 | 113.9 (2) |
C11—C10—C13 | 109.78 (16) | C23—C21—C20 | 112.2 (2) |
C8—C10—H10 | 109.4 | C24—C21—C20 | 105.1 (2) |
C11—C10—H10 | 109.4 | C21—C22—H22A | 109.5 |
C13—C10—H10 | 109.4 | C21—C22—H22B | 109.5 |
C12—C11—C15 | 118.54 (17) | H22A—C22—H22B | 109.5 |
C12—C11—C10 | 121.39 (17) | C21—C22—H22C | 109.5 |
C15—C11—C10 | 119.64 (17) | H22A—C22—H22C | 109.5 |
N1—C12—C11 | 125.51 (18) | H22B—C22—H22C | 109.5 |
N1—C12—O3 | 112.61 (16) | C21—C23—H23A | 109.5 |
C11—C12—O3 | 121.87 (17) | C21—C23—H23B | 109.5 |
O4—C13—O5 | 123.8 (2) | H23A—C23—H23B | 109.5 |
O4—C13—C10 | 123.77 (19) | C21—C23—H23C | 109.5 |
O5—C13—C10 | 112.47 (18) | H23A—C23—H23C | 109.5 |
O5—C14—H14A | 109.5 | H23B—C23—H23C | 109.5 |
O5—C14—H14B | 109.5 | C21—C24—H24A | 109.5 |
H14A—C14—H14B | 109.5 | C21—C24—H24B | 109.5 |
O5—C14—H14C | 109.5 | H24A—C24—H24B | 109.5 |
H14A—C14—H14C | 109.5 | C21—C24—H24C | 109.5 |
H14B—C14—H14C | 109.5 | H24A—C24—H24C | 109.5 |
O6—C15—O7 | 121.03 (19) | H24B—C24—H24C | 109.5 |
O6—C15—C11 | 127.07 (19) | C12—N1—C17 | 130.79 (17) |
O7—C15—C11 | 111.89 (18) | C12—N1—H1 | 114.6 |
O7—C16—H16A | 109.5 | C17—N1—H1 | 114.6 |
O7—C16—H16B | 109.5 | C9—O1—C1 | 122.20 (16) |
H16A—C16—H16B | 109.5 | C7—O3—C12 | 118.03 (15) |
O7—C16—H16C | 109.5 | C13—O5—C14 | 116.13 (19) |
H16A—C16—H16C | 109.5 | C15—O7—C16 | 116.12 (18) |
O1—C1—C2—C3 | 179.0 (2) | C15—C11—C12—O3 | −175.20 (17) |
C6—C1—C2—C3 | 0.1 (3) | C10—C11—C12—O3 | −2.7 (3) |
C1—C2—C3—C4 | −0.4 (4) | C8—C10—C13—O4 | −65.5 (3) |
C2—C3—C4—C5 | 0.4 (4) | C11—C10—C13—O4 | 54.7 (3) |
C3—C4—C5—C6 | −0.2 (4) | C8—C10—C13—O5 | 114.86 (19) |
O1—C1—C6—C5 | −178.78 (19) | C11—C10—C13—O5 | −124.98 (18) |
C2—C1—C6—C5 | 0.0 (3) | C12—C11—C15—O6 | −7.8 (3) |
O1—C1—C6—C7 | 0.8 (3) | C10—C11—C15—O6 | 179.6 (2) |
C2—C1—C6—C7 | 179.6 (2) | C12—C11—C15—O7 | 171.88 (18) |
C4—C5—C6—C1 | 0.0 (3) | C10—C11—C15—O7 | −0.7 (3) |
C4—C5—C6—C7 | −179.6 (2) | N1—C17—C20—C21 | 60.1 (3) |
C1—C6—C7—C8 | −3.9 (3) | C19—C17—C20—C21 | −58.4 (3) |
C5—C6—C7—C8 | 175.7 (2) | C18—C17—C20—C21 | −178.2 (2) |
C1—C6—C7—O3 | 175.31 (17) | C17—C20—C21—C22 | −55.2 (4) |
C5—C6—C7—O3 | −5.1 (3) | C17—C20—C21—C23 | 72.1 (3) |
O3—C7—C8—C9 | −174.87 (17) | C17—C20—C21—C24 | −173.5 (2) |
C6—C7—C8—C9 | 4.3 (3) | C11—C12—N1—C17 | −166.6 (2) |
O3—C7—C8—C10 | 4.9 (3) | O3—C12—N1—C17 | 13.7 (3) |
C6—C7—C8—C10 | −175.94 (18) | C19—C17—N1—C12 | 177.1 (2) |
C7—C8—C9—O2 | 178.8 (2) | C18—C17—N1—C12 | −67.3 (3) |
C10—C8—C9—O2 | −0.9 (3) | C20—C17—N1—C12 | 53.4 (3) |
C7—C8—C9—O1 | −1.6 (3) | O2—C9—O1—C1 | 178.21 (18) |
C10—C8—C9—O1 | 178.63 (16) | C8—C9—O1—C1 | −1.4 (3) |
C7—C8—C10—C11 | −19.0 (2) | C2—C1—O1—C9 | −177.13 (18) |
C9—C8—C10—C11 | 160.78 (17) | C6—C1—O1—C9 | 1.7 (3) |
C7—C8—C10—C13 | 101.4 (2) | C8—C7—O3—C12 | 12.7 (3) |
C9—C8—C10—C13 | −78.8 (2) | C6—C7—O3—C12 | −166.56 (16) |
C8—C10—C11—C12 | 17.8 (2) | N1—C12—O3—C7 | 166.09 (16) |
C13—C10—C11—C12 | −102.5 (2) | C11—C12—O3—C7 | −13.6 (3) |
C8—C10—C11—C15 | −169.79 (17) | O4—C13—O5—C14 | −2.4 (3) |
C13—C10—C11—C15 | 69.9 (2) | C10—C13—O5—C14 | 177.3 (2) |
C15—C11—C12—N1 | 5.2 (3) | O6—C15—O7—C16 | 6.4 (3) |
C10—C11—C12—N1 | 177.64 (18) | C11—C15—O7—C16 | −173.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C19—H19C···O2i | 0.96 | 2.58 | 3.458 (3) | 153 |
C23—H23A···O6ii | 0.96 | 2.54 | 3.255 (4) | 131 |
C23—H23B···O1iii | 0.96 | 2.55 | 3.509 (4) | 174 |
N1—H1···O6 | 0.86 | 2.01 | 2.660 (2) | 131 |
Symmetry codes: (i) −x+1/2, −y+3/2, −z; (ii) −x+1, y, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C24H29NO7 |
Mr | 443.48 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 22.0329 (17), 11.8675 (8), 18.4861 (14) |
β (°) | 107.946 (4) |
V (Å3) | 4598.5 (6) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.35 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.972, 0.981 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17657, 3384, 2623 |
Rint | 0.035 |
θmax (°) | 23.5 |
(sin θ/λ)max (Å−1) | 0.560 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.130, 1.01 |
No. of reflections | 3384 |
No. of parameters | 296 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.24 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C19—H19C···O2i | 0.96 | 2.58 | 3.458 (3) | 153 |
C23—H23A···O6ii | 0.96 | 2.54 | 3.255 (4) | 131 |
C23—H23B···O1iii | 0.96 | 2.55 | 3.509 (4) | 174 |
N1—H1···O6 | 0.86 | 2.01 | 2.660 (2) | 131 |
Symmetry codes: (i) −x+1/2, −y+3/2, −z; (ii) −x+1, y, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2. |
Acknowledgements
The authors gratefully acknowledge Dr Babu Varghese, SAIF, IIT, Chennai, India, for the
data collection and Dr V. Murugan, Head of Physics Department, RKM Vivekananda College, Chennai, India, for providing facilities in the department to carry out this work.References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chinnakali, K., Fun, H.-K., Sriraghavan, K. & Ramakrishnan, V. T. (1998). Acta Cryst. C54, 367–368. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Goel, R. K., Maiti, R. N., Manickam, M. & Ray, A. B. (1997). Indian J. Exp. Biol. 35, 1080–1083. CAS PubMed Google Scholar
Inglebert, S. A., Sethusankar, K., Arun, Y. & Perumal, P. T. (2011). Acta Cryst. E67, o2955. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kawaii, S., Tomono, Y., Ogawa, K., Sugiura, M., Yanao, M., Yoshizawa, Y., Ito, C. & Furukawa, H. (2001). Anticancer Res. 21, 1905–1911. Web of Science PubMed CAS Google Scholar
Kumar, S., Chinnakali, K., Sivakumar, K., Fun, H.-K. & Sriraghavan, K. (1997). Acta Cryst. C53, 1854–1855. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, Z. Q., Pupek, K., Suling, W. J., Enache, L. & Flavin, M. T. (2006). Bioorg. Med. Chem. 14, 4610–4626. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coumarins are natural or synthetic compounds used as pharmaceuticals and herbicides. They exhibit fluorescent properties due to the presence of the benzopyrone moiety. Pyranocoumarin and its derivatives show strong activity against cancer cell lines (Kawaii et al., 2001). Some naturally occurring pyranocoumarins show antiulcer activity, anti-hepatitis B virus activity, cytotoxic activities and anti-TB activity (Goel et al., 1997 and Xu et al., 2006). Outside the biological applications of coumarin and its derivatives, there are also applications as cosmetics, optical brightening agents and laser dyes.
Fused benzene and pyranoid rings form the benzopyran system, which can be described as planar, with the dihedral angle between the best planes of the rings being 2.07 (11)°. The coumarin ring system, consisting of atoms C1–C6, C7–C9 and O1 and O2 is almost planar with maximum deviation from the mean plane of 0.033 (2) Å for C8. The coumarin ring system (O1/C1–C9) makes a dihedral angle of 10.46 (8)° with pyran ring (O3/C7–C12). The coumarin ring system and pyran ring make the dihedral angles of 77.56 (10)°, 17.74 (7)°, 87.03 (10)° and 9.74 (6)° with the two methyl carboxylates (C13/O4/O5/C14) and (C15/O6/O7/C16), respectively. The methyl carboxylates are almost perpendicular to each other because the dihedral angle between them is 88.84 (15)°.
In the benzopyran ring, the bond distances of O1–C9 and C9–C8 are 1.372 (3) Å and 1.448 (3) Å, respectively, indicating that the electrons are delocalized in the ring with the carbonyl group acting as an electron-withdrawing group. This is corroborated by the fact that the benzopyran ring is planar. The title structure exhibits the structural similarities with our previously reported structure (Inglebert et al., 2011). As observed in other coumarin derivatives, the C5–C6 and C7–C8 bonds in the coumarin moiety show double-bond character and steric interactions cause the widening of angles C8–C9–O2 (125.0 (2)°) and C7–C6–C5 (125.24 (19)°), and the narrowing of angles O1–C9–O2 (117.22 (18)°) and O1–C1–C2 (116.82 (19)°) from 120° (Chinnakali et al., 1998; Kumar et al., 1997).
The carbonyl oxygen atom O6 acts as a bifurcated acceptor, accepting both the intramoleclar N1—H1···O6 and the intermolecular C23—H23A···O6 hydrogen bonds. The intramolecular bond generates an S(6) ring motif (Bernstein et al., 1995). The crystal packing is stabilized by intermolecular C—H···O interactions (Table 1).