metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido[methyl 2-(quinolin-8-yl­­oxy-κ2N,O)acetic acid-κO]mercury(II)

aSchool of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
*Correspondence e-mail: wangyuhong@mail.usts.edu.cn

(Received 29 May 2012; accepted 20 June 2012; online 23 June 2012)

In the title complex, [HgBr2(C12H11NO3)], the HgII ion has a distorted core trigonal–planar geometry comprising two Br atoms and one quinoline N atom of the methyl 2-(quinolin-8-yl­oxy)acetic acid ligand. The angles around the Hg atom vary from 100.31 (15) to 152.65 (4)°. Two additional Hg⋯O inter­actions [2.739 (1) and 2.905 (1) Å] complete the coordination sphere about the HgII atom.

Related literature

For quinoline derivatives, see: Ghedini et al. (2002[Ghedini, M., Deda, M. L., Aiello, I. & Grisolia, A. (2002). J. Chem. Soc. Dalton Trans. pp. 3406-3409.]); Inomata et al. (1999[Inomata, Y., Haneda, T. F. S. & Howell, F. S. (1999). J. Inorg. Biochem. 76, 13-17.]); Jotterand et al. (2001[Jotterand, N., Pearce, D. A. & Imperiali, B. (2001). J. Org. Chem. 66, 3224-3228.]). For transition metal coord­ination compounds with 8-quinolinyloxyacetic acid and its derivatives as ligands, see: Cheng et al. (2007[Cheng, X. N., Zhang, W. X. & Chen, X. M. (2007). J. Am. Chem. Soc. 129, 15738-15739.]); Song et al. (2004[Song, R.-F., Wang, Y.-H. & Jiang, F. (2004). Acta Cryst. E60, m1695-m1696.]); Wang, Song et al. (2005[Wang, Y. H., Song, R. F. & Zhang, F. Y. (2005). J. Mol. Struct. 752, 104-109.]); Wang, Fan et al. (2008[Wang, Z., Fan, J., Zhang, W. & Wang, J. (2008). Acta Cryst. E64, m1446.]).

[Scheme 1]

Experimental

Crystal data
  • [HgBr2(C12H11NO3)]

  • Mr = 577.63

  • Triclinic, [P \overline 1]

  • a = 7.3132 (8) Å

  • b = 9.9385 (10) Å

  • c = 10.9902 (10) Å

  • α = 72.102 (11)°

  • β = 74.966 (12)°

  • γ = 70.740 (11)°

  • V = 706.40 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 16.55 mm−1

  • T = 223 K

  • 0.50 × 0.40 × 0.20 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.044, Tmax = 0.137

  • 6021 measured reflections

  • 2599 independent reflections

  • 1949 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.074

  • S = 0.80

  • 2599 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 2.41 e Å−3

  • Δρmin = −2.04 e Å−3

Table 1
Selected bond lengths (Å)

Hg1—Br1 2.4667 (9)
Hg1—Br2 2.4569 (10)
Hg1—N1 2.451 (8)

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku/MSC, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 2004[Rigaku (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of quinoline have received much attention in coordination chemistry (Ghedini et al., 2002; Inomata et al., 1999; Jotterand et al., 2001). 8-quinolinyloxyacetic acid and their derivatives exhibit rich structural variety, and reports of metal complexes with such ligands have increased in recent years (Cheng et al., 2007; Song et al., 2004; Wang, Song et al., 2005; Wang, Fan et al., 2008). In the light of this interest, we have prepared the title HgII complex with the 8-(methoxycarbonylmethoxy)quinoline ligand, (I).

The title HgBr2 adduct, (I), is a mononuclear compound. The HgII atom exists in a trigonal planar geometry formed by two Br atoms and one quinoline N atom of the 8-(methoxycarbonylmethoxy)quinoline ligand (Fig. 1). The Hg—Br bond lengths are 2.4569 (10) and 2.4667 (9) ° and Hg—N bond length is 2.451 (8) Å. The angles around the Hg atom vary from 100.31 (15) to 152.65 (4) ° (Table 1). There are weak Hg···O interactions with distances of 2.739 (1) Å and 2.905 (1) Å present (Fig. 1). Intermolecular face-to-face π-π interaction stacking is also observed between the parallel quinoline rings of neighbouring complex molecules, with a separation of approximately 3.521 (1) Å (Fig. 2).

Related literature top

For quinoline derivatives, see: Ghedini et al. (2002); Inomata et al. (1999); Jotterand et al.,(2001). For transition metal coordination compounds with 8-quinolinyloxyacetic acid and its derivatives as ligands, see: Cheng et al. (2007); Song et al. (2004); Wang, Song et al. (2005); Wang, Fan et al. (2008).

Experimental top

Triethylamine (0.0101 g, 0.1 mmol) was added to 8-quinolinyloxyacetic acid (0.0203 g, 0.1 mmol) dissolved in methanol (3 ml). The mixture was stirred for 2 min, Then, the mixture and HgBr2 (0.0361 g, 0.1 mmol) were placed in a thick Pyrex tube and heated at 150°C for 3 days. After cooling at a rate of 5 °C per hour to ambient, colorless prism crystals were collected, washed with anhydrous ethanol, and dried at room temperature. The yield is 46% based on 8-quinolinyloxyacetic acid. Analysis found: C, 25.36; H, 1.97; N, 2.42%; calculated for C12H11Br2HgNO3: C, 24.95; H, 1.92; N, 2.42%.

Refinement top

H atoms were included in calculated positions and refined as riding, with C—H distances of 0.94 (aromatic), 0.98 (methylene) and 0.97 Å (methyl), and with Uiso(aromatic and methylene) = 1.2Ueq(C) and Uiso(methyl) = 1.5Ueq(C).

Structure description top

Derivatives of quinoline have received much attention in coordination chemistry (Ghedini et al., 2002; Inomata et al., 1999; Jotterand et al., 2001). 8-quinolinyloxyacetic acid and their derivatives exhibit rich structural variety, and reports of metal complexes with such ligands have increased in recent years (Cheng et al., 2007; Song et al., 2004; Wang, Song et al., 2005; Wang, Fan et al., 2008). In the light of this interest, we have prepared the title HgII complex with the 8-(methoxycarbonylmethoxy)quinoline ligand, (I).

The title HgBr2 adduct, (I), is a mononuclear compound. The HgII atom exists in a trigonal planar geometry formed by two Br atoms and one quinoline N atom of the 8-(methoxycarbonylmethoxy)quinoline ligand (Fig. 1). The Hg—Br bond lengths are 2.4569 (10) and 2.4667 (9) ° and Hg—N bond length is 2.451 (8) Å. The angles around the Hg atom vary from 100.31 (15) to 152.65 (4) ° (Table 1). There are weak Hg···O interactions with distances of 2.739 (1) Å and 2.905 (1) Å present (Fig. 1). Intermolecular face-to-face π-π interaction stacking is also observed between the parallel quinoline rings of neighbouring complex molecules, with a separation of approximately 3.521 (1) Å (Fig. 2).

For quinoline derivatives, see: Ghedini et al. (2002); Inomata et al. (1999); Jotterand et al.,(2001). For transition metal coordination compounds with 8-quinolinyloxyacetic acid and its derivatives as ligands, see: Cheng et al. (2007); Song et al. (2004); Wang, Song et al. (2005); Wang, Fan et al. (2008).

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalStructure (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids. The dashed line indicates the weak Hg···O interaction.
[Figure 2] Fig. 2. A view of intermolecular π-π interactions, interactions between the parallel quinoline rings of neighbouring complexes [symmetry codes: (i)2 - x, 1 - y, 1 - z].
Dibromido[methyl 2-(quinolin-8-yloxy-κ2N,O)acetic acid-κO]mercury(II) top
Crystal data top
[HgBr2(C12H11NO3)]Z = 2
Mr = 577.63F(000) = 528
Triclinic, P1Dx = 2.716 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.3132 (8) ÅCell parameters from 3544 reflections
b = 9.9385 (10) Åθ = 3.2–27.5°
c = 10.9902 (10) ŵ = 16.55 mm1
α = 72.102 (11)°T = 223 K
β = 74.966 (12)°Prism, colorless
γ = 70.740 (11)°0.50 × 0.40 × 0.20 mm
V = 706.40 (14) Å3
Data collection top
Rigaku Saturn
diffractometer
2599 independent reflections
Radiation source: fine-focus sealed tube1949 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 14.63 pixels mm-1θmax = 25.5°, θmin = 3.2°
ω scansh = 88
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1112
Tmin = 0.044, Tmax = 0.137l = 1213
6021 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 0.80 w = 1/[σ2(Fo2) + (0.0232P)2]
where P = (Fo2 + 2Fc2)/3
2599 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 2.41 e Å3
0 restraintsΔρmin = 2.04 e Å3
Crystal data top
[HgBr2(C12H11NO3)]γ = 70.740 (11)°
Mr = 577.63V = 706.40 (14) Å3
Triclinic, P1Z = 2
a = 7.3132 (8) ÅMo Kα radiation
b = 9.9385 (10) ŵ = 16.55 mm1
c = 10.9902 (10) ÅT = 223 K
α = 72.102 (11)°0.50 × 0.40 × 0.20 mm
β = 74.966 (12)°
Data collection top
Rigaku Saturn
diffractometer
2599 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1949 reflections with I > 2σ(I)
Tmin = 0.044, Tmax = 0.137Rint = 0.068
6021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 0.80Δρmax = 2.41 e Å3
2599 reflectionsΔρmin = 2.04 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg11.01854 (5)0.82765 (4)0.67755 (3)0.02656 (13)
Br11.28595 (13)0.77673 (12)0.79728 (8)0.0324 (3)
Br20.72668 (13)0.98864 (11)0.58446 (8)0.0316 (3)
O10.9081 (8)0.5789 (7)0.8222 (5)0.0260 (15)
O20.5235 (8)0.7032 (7)1.0669 (5)0.0303 (16)
O30.7280 (9)0.8198 (7)0.9145 (6)0.0311 (16)
N11.1332 (9)0.6134 (8)0.5841 (6)0.0211 (17)
C11.2348 (12)0.6300 (10)0.4657 (8)0.023 (2)
H11.24280.72520.41930.028*
C21.3332 (12)0.5136 (11)0.4032 (8)0.029 (2)
H21.40030.53210.31700.035*
C31.3281 (12)0.3746 (11)0.4709 (8)0.026 (2)
H31.39520.29470.43300.032*
C41.2191 (11)0.3517 (10)0.6005 (7)0.020 (2)
C51.2060 (12)0.2104 (10)0.6737 (9)0.029 (2)
H51.27220.12800.63920.035*
C61.0952 (13)0.1947 (11)0.7963 (9)0.033 (3)
H61.08710.10050.84610.040*
C70.9956 (12)0.3148 (11)0.8475 (8)0.026 (2)
H70.91820.30070.93090.031*
C81.0058 (11)0.4532 (10)0.7809 (8)0.021 (2)
C91.1234 (11)0.4738 (10)0.6524 (8)0.019 (2)
C100.7609 (12)0.5656 (11)0.9358 (8)0.027 (2)
H10A0.81960.49301.00830.033*
H10B0.65880.53200.92050.033*
C110.6734 (13)0.7084 (12)0.9681 (8)0.031 (3)
C120.4182 (13)0.8376 (12)1.1065 (9)0.041 (3)
H12A0.50580.86921.13780.062*
H12B0.30830.82121.17540.062*
H12C0.36960.91301.03310.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0287 (2)0.0224 (2)0.02744 (19)0.00666 (15)0.00615 (14)0.00383 (15)
Br10.0335 (5)0.0360 (7)0.0283 (5)0.0116 (5)0.0083 (4)0.0042 (4)
Br20.0288 (5)0.0271 (6)0.0362 (5)0.0052 (4)0.0077 (4)0.0051 (4)
O10.031 (3)0.021 (4)0.022 (3)0.012 (3)0.010 (3)0.008 (3)
O20.036 (3)0.029 (4)0.023 (3)0.013 (3)0.014 (3)0.014 (3)
O30.040 (4)0.017 (4)0.032 (3)0.009 (3)0.005 (3)0.008 (3)
N10.020 (4)0.028 (5)0.018 (4)0.012 (3)0.003 (3)0.008 (3)
C10.027 (5)0.019 (6)0.028 (5)0.010 (4)0.012 (4)0.001 (4)
C20.025 (5)0.036 (7)0.028 (5)0.013 (5)0.002 (4)0.007 (5)
C30.019 (4)0.031 (6)0.034 (5)0.000 (4)0.009 (4)0.018 (5)
C40.014 (4)0.021 (6)0.022 (4)0.002 (4)0.001 (3)0.005 (4)
C50.033 (5)0.014 (6)0.043 (5)0.000 (4)0.010 (4)0.014 (4)
C60.040 (6)0.023 (6)0.033 (5)0.014 (5)0.005 (4)0.002 (5)
C70.024 (5)0.025 (6)0.025 (5)0.002 (4)0.001 (4)0.010 (4)
C80.018 (4)0.021 (6)0.026 (4)0.006 (4)0.003 (3)0.010 (4)
C90.016 (4)0.019 (6)0.024 (4)0.003 (4)0.006 (3)0.007 (4)
C100.025 (5)0.028 (6)0.027 (5)0.006 (4)0.000 (4)0.009 (4)
C110.029 (5)0.046 (8)0.017 (4)0.013 (5)0.007 (4)0.000 (5)
C120.034 (5)0.038 (8)0.047 (6)0.012 (5)0.009 (5)0.015 (5)
Geometric parameters (Å, º) top
Hg1—Br12.4667 (9)C4—C91.396 (13)
Hg1—Br22.4569 (10)C4—C51.409 (12)
Hg1—N12.451 (8)C5—C61.372 (12)
O1—C81.367 (11)C5—H50.9400
O1—C101.425 (9)C6—C71.378 (14)
O2—C111.330 (10)C6—H60.9400
O2—C121.440 (12)C7—C81.362 (12)
O3—C111.225 (11)C7—H70.9400
N1—C11.312 (10)C8—C91.444 (11)
N1—C91.375 (11)C10—C111.463 (14)
C1—C21.418 (14)C10—H10A0.9800
C1—H10.9400C10—H10B0.9800
C2—C31.361 (12)C12—H12A0.9700
C2—H20.9400C12—H12B0.9700
C3—C41.431 (11)C12—H12C0.9700
C3—H30.9400
N1—Hg1—Br2106.34 (15)C7—C6—H6119.5
N1—Hg1—Br1100.31 (15)C8—C7—C6122.0 (8)
Br2—Hg1—Br1152.65 (4)C8—C7—H7119.0
C8—O1—C10116.2 (7)C6—C7—H7119.0
C11—O2—C12117.3 (8)C7—C8—O1126.1 (8)
C1—N1—C9117.8 (8)C7—C8—C9118.6 (9)
C1—N1—Hg1116.8 (6)O1—C8—C9115.3 (7)
C9—N1—Hg1124.7 (5)N1—C9—C4122.2 (7)
N1—C1—C2124.2 (8)N1—C9—C8119.0 (8)
N1—C1—H1117.9C4—C9—C8118.8 (8)
C2—C1—H1117.9O1—C10—C11109.4 (7)
C3—C2—C1118.5 (9)O1—C10—H10A109.8
C3—C2—H2120.8C11—C10—H10A109.8
C1—C2—H2120.8O1—C10—H10B109.8
C2—C3—C4119.0 (10)C11—C10—H10B109.8
C2—C3—H3120.5H10A—C10—H10B108.2
C4—C3—H3120.5O3—C11—O2122.8 (10)
C9—C4—C5120.5 (8)O3—C11—C10126.2 (8)
C9—C4—C3118.2 (8)O2—C11—C10111.0 (8)
C5—C4—C3121.3 (9)O2—C12—H12A109.5
C6—C5—C4119.1 (9)O2—C12—H12B109.5
C6—C5—H5120.5H12A—C12—H12B109.5
C4—C5—H5120.5O2—C12—H12C109.5
C5—C6—C7121.0 (9)H12A—C12—H12C109.5
C5—C6—H6119.5H12B—C12—H12C109.5
Br2—Hg1—N1—C179.0 (6)C1—N1—C9—C40.9 (11)
Br1—Hg1—N1—C194.8 (6)Hg1—N1—C9—C4169.3 (6)
Br2—Hg1—N1—C9110.8 (6)C1—N1—C9—C8177.4 (7)
Br1—Hg1—N1—C975.4 (6)Hg1—N1—C9—C812.4 (10)
C9—N1—C1—C20.7 (12)C5—C4—C9—N1179.8 (7)
Hg1—N1—C1—C2171.6 (6)C3—C4—C9—N11.0 (11)
N1—C1—C2—C32.1 (13)C5—C4—C9—C81.9 (12)
C1—C2—C3—C41.9 (12)C3—C4—C9—C8177.3 (7)
C2—C3—C4—C90.5 (11)C7—C8—C9—N1179.5 (7)
C2—C3—C4—C5178.7 (7)O1—C8—C9—N11.8 (11)
C9—C4—C5—C61.0 (12)C7—C8—C9—C41.1 (11)
C3—C4—C5—C6178.2 (8)O1—C8—C9—C4176.5 (7)
C4—C5—C6—C70.8 (14)C8—O1—C10—C11179.0 (7)
C5—C6—C7—C81.6 (14)C12—O2—C11—O32.8 (12)
C6—C7—C8—O1178.0 (8)C12—O2—C11—C10177.8 (7)
C6—C7—C8—C90.6 (13)O1—C10—C11—O36.2 (12)
C10—O1—C8—C79.9 (12)O1—C10—C11—O2174.5 (6)
C10—O1—C8—C9167.5 (7)

Experimental details

Crystal data
Chemical formula[HgBr2(C12H11NO3)]
Mr577.63
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)7.3132 (8), 9.9385 (10), 10.9902 (10)
α, β, γ (°)72.102 (11), 74.966 (12), 70.740 (11)
V3)706.40 (14)
Z2
Radiation typeMo Kα
µ (mm1)16.55
Crystal size (mm)0.50 × 0.40 × 0.20
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.044, 0.137
No. of measured, independent and
observed [I > 2σ(I)] reflections
6021, 2599, 1949
Rint0.068
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.074, 0.80
No. of reflections2599
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.41, 2.04

Computer programs: CrystalClear (Rigaku, 2001), CrystalStructure (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Hg1—Br12.4667 (9)Hg1—N12.451 (8)
Hg1—Br22.4569 (10)
 

Acknowledgements

This work was supported by the Science and Technology Foundation of the Ministry of Development of China (2010-K6–8).

References

First citationCheng, X. N., Zhang, W. X. & Chen, X. M. (2007). J. Am. Chem. Soc. 129, 15738–15739.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGhedini, M., Deda, M. L., Aiello, I. & Grisolia, A. (2002). J. Chem. Soc. Dalton Trans. pp. 3406–3409.  Web of Science CrossRef Google Scholar
First citationInomata, Y., Haneda, T. F. S. & Howell, F. S. (1999). J. Inorg. Biochem. 76, 13–17.  Web of Science CSD CrossRef CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJotterand, N., Pearce, D. A. & Imperiali, B. (2001). J. Org. Chem. 66, 3224–3228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2001). CrystalClear. Rigaku/MSC, Tokyo, Japan.  Google Scholar
First citationRigaku (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, R.-F., Wang, Y.-H. & Jiang, F. (2004). Acta Cryst. E60, m1695–m1696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Z., Fan, J., Zhang, W. & Wang, J. (2008). Acta Cryst. E64, m1446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y. H., Song, R. F. & Zhang, F. Y. (2005). J. Mol. Struct. 752, 104–109.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds