organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo­pyridine-2-carbaldehyde phenyl­hydrazone

aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 6 June 2012; accepted 12 June 2012; online 20 June 2012)

The title compound, C12H10BrN3, is essentially planar (r.m.s. deviation of all non-H atoms = 0.0174 Å), with a dihedral angle of 0.5 (2)° between the two aromatic rings. In the crystal, mol­ecules are linked by weak N—H⋯N inter­actions, forming a zigzag chain running parallel to [001].

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Yu et al. (2005[Yu, M., Fan, Z., Jing, Z.-L., Chen, X., Diao, C.-H. & Deng, Q.-L. (2005). Acta Cryst. E61, o3342-o3343.]); Fun et al. (2012[Fun, H.-K., Chantrapromma, S., Nilwanna, B. & Karalai, C. (2012). Acta Cryst. E68, o704-o705.]). For the design of mol­ecular dynamic systems, see: Hirose (2010[Hirose, J. (2010). J. Incl. Phenom. Macrocycl. Chem. 68, 1-24.]). For the principles of synthetic mol­ecular structures with dynamic properties, see: Kay et al. (2007[Kay, E. R., Leigh, D. A. & Zerbetto, F. (2007). Angew. Chem. Int. Ed. 46, 72-191.]). For configurational changes by UV light and heat, see: Chaur et al. (2011[Chaur, M. N., Collado, D. & Lehn, J. M. (2011). Chem. Eur. J. 17, 248-258.]); Lehn (2006[Lehn, J. M. (2006). Chem. Eur. J. 12, 5910-5915.]); Dugave & Demange (2003[Dugave, C. & Demange, L. (2003). Chem. Rev. 103, 2475-2532.]). For graph-set notation, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10BrN3

  • Mr = 276.13

  • Orthorhombic, P b c a

  • a = 14.6418 (3) Å

  • b = 7.8407 (1) Å

  • c = 20.0645 (4) Å

  • V = 2303.44 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.54 mm−1

  • T = 295 K

  • 0.33 × 0.30 × 0.23 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.382, Tmax = 0.544

  • 28166 measured reflections

  • 2339 independent reflections

  • 1903 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.110

  • S = 1.03

  • 2339 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.86 2.34 3.180 (3) 166
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The design of molecular dynamic systems that operate by external stimuli without producing chemical waste is one of the questions of great interest in the nanotechnology field (Hirose, 2010), since these molecular systems are molecules that can exhibit structural (configurational) and chemical (constitutional) changes by the modification of external factors (presence of other molecules or metal ions, heat and/or light). Among the compounds that have attracted interest in this regard are the hydrazones which contain the imine group (-C=N-) (Kay et al., 2007). This group can undergo reversible configurational changes induced by UV light and heat (Chaur et al., 2011). For hydrazones prepared from pyridinecarboxaldehydes and pyridine or phenyl hydrazines the E/Z photoisomerization is favored by an intermolecular hydrogen bond between the hydrazine and the nitrogen of the pyridinecarboxaldehyde group resulting in a metastable state which can be returned to its original state by heating in solution (Chaur et al., 2011; Lehn, 2006; Dugave & Demange, 2003). Besides, these compounds can exhibit dynamic properties since they can undergo coordination with suitable metals and the reversibility of the imine group gives them other features that can be used in the development of molecular machines or in the storage of information (Chaur et al., 2011). The compound reported in this paper is part of a series of compounds that are currently being prepared in our group and that exhibit dynamic properties such as photoisomerization, constitutional changes and metal coordination in order to build supramolecular systems of multiple dynamics. Herein we report the synthesis and crystal structure of 6-bromo-pyridinecarbaldehyde phenylhydrazone (I), Fig 1. In the molecular structure of (I), the bromopyridyl ring is planar (r.m.s. deviation of all non-hydrogen atoms = 0.0020 Å) like the central bridge (C5/C7/N2/N1/C8) (r.m.s. deviation of all non-hydrogen atoms = 0.005 Å) with a dihedral angle of 0.6 (2)° between these two planes. The central bridge forms a dihedral angle of 0.8 (2)° with the benzene ring and the bromopyridyl and benzene rings form a dihedral angle of 0.5 (2)°. The bond lengths agree with the literature values (Allen et al., 1987) and are comparable with the related structures (Yu et al., 2005; Fun et al., 2012). In the crystal packing (Fig. 2), the molecules are linked by weak N—H···N interactions (Table 1). Indeed, in this substructure, atom N1 in the molecule at (x,y,z) links to N3 atom in the molecule at (-x+2,+y-1/2,-z+1/2). The propagation of this interaction forms C(6) (Etter, 1990), continuous one-dimensional zigzag chain running parallel to [001].

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Yu et al. (2005); Fun et al. (2012). For the design of molecular dynamic systems, see: Hirose (2010). For the principles of synthetic molecular structures with dynamic properties, see: Kay et al. (2007). For configurational changes by UV light and heat, see: Chaur et al. (2011); Lehn (2006); Dugave & Demange (2003). For graph-set notation, see: Etter (1990).

Experimental top

The hydrazone under study was prepared by the condensation reaction of 6-bromo-2-pyridinecarboxaldehyde with phenylhydrazine in ethanol according to Fig. 3, obtaining a yellow solid with a yield of 81%. 1H NMR (400 MHz, DMSO-d6) δppm: 10.83 (s, 1H, NH), 7.92 (d, J= 8.03 Hz, 1H), 7.78 (s, 1H), 7.71 (t, J= 7.78 Hz, 1H), 7.47 (d, J= 7.78 Hz, 1H), 7.26 (m, 2H), 7.13 (d, J= 8.28 Hz, 2H), 6.83 (t, J= 7.28 Hz, 1H). NMR 13C (100 MHz, DMSO-d6) δppm: 156.16, 144.31, 140.77, 139.60, 134.52, 129.27, 126.07, 119.99, 117.80, 112.52. IR (KBr) N(cm-1): 3228 (N-H), 3038 and 2971 (=C-H), 1558 y 1601 (C=C y C=N). Melting point: 462 (1) K. Elemental analysis: Calculated: C 52.20 %, H 3.65 %, N 15.22 %; found: C 51.98 %, H 3.46 %, N 15.07 %.

Refinement top

All H-atoms were positioned geometrically using riding model with [C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C)].

Structure description top

The design of molecular dynamic systems that operate by external stimuli without producing chemical waste is one of the questions of great interest in the nanotechnology field (Hirose, 2010), since these molecular systems are molecules that can exhibit structural (configurational) and chemical (constitutional) changes by the modification of external factors (presence of other molecules or metal ions, heat and/or light). Among the compounds that have attracted interest in this regard are the hydrazones which contain the imine group (-C=N-) (Kay et al., 2007). This group can undergo reversible configurational changes induced by UV light and heat (Chaur et al., 2011). For hydrazones prepared from pyridinecarboxaldehydes and pyridine or phenyl hydrazines the E/Z photoisomerization is favored by an intermolecular hydrogen bond between the hydrazine and the nitrogen of the pyridinecarboxaldehyde group resulting in a metastable state which can be returned to its original state by heating in solution (Chaur et al., 2011; Lehn, 2006; Dugave & Demange, 2003). Besides, these compounds can exhibit dynamic properties since they can undergo coordination with suitable metals and the reversibility of the imine group gives them other features that can be used in the development of molecular machines or in the storage of information (Chaur et al., 2011). The compound reported in this paper is part of a series of compounds that are currently being prepared in our group and that exhibit dynamic properties such as photoisomerization, constitutional changes and metal coordination in order to build supramolecular systems of multiple dynamics. Herein we report the synthesis and crystal structure of 6-bromo-pyridinecarbaldehyde phenylhydrazone (I), Fig 1. In the molecular structure of (I), the bromopyridyl ring is planar (r.m.s. deviation of all non-hydrogen atoms = 0.0020 Å) like the central bridge (C5/C7/N2/N1/C8) (r.m.s. deviation of all non-hydrogen atoms = 0.005 Å) with a dihedral angle of 0.6 (2)° between these two planes. The central bridge forms a dihedral angle of 0.8 (2)° with the benzene ring and the bromopyridyl and benzene rings form a dihedral angle of 0.5 (2)°. The bond lengths agree with the literature values (Allen et al., 1987) and are comparable with the related structures (Yu et al., 2005; Fun et al., 2012). In the crystal packing (Fig. 2), the molecules are linked by weak N—H···N interactions (Table 1). Indeed, in this substructure, atom N1 in the molecule at (x,y,z) links to N3 atom in the molecule at (-x+2,+y-1/2,-z+1/2). The propagation of this interaction forms C(6) (Etter, 1990), continuous one-dimensional zigzag chain running parallel to [001].

For bond-length data, see: Allen et al. (1987). For related structures, see: Yu et al. (2005); Fun et al. (2012). For the design of molecular dynamic systems, see: Hirose (2010). For the principles of synthetic molecular structures with dynamic properties, see: Kay et al. (2007). For configurational changes by UV light and heat, see: Chaur et al. (2011); Lehn (2006); Dugave & Demange (2003). For graph-set notation, see: Etter (1990).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of one-dimensional zigzag chain running parallel to (001). Symmetry code: (i) -x+2,+y-1/2,-z+1/2.
[Figure 3] Fig. 3. Synthesis of the 6-bromo-pyridinecarbaldehyde phenylhydrazone
6-Bromopyridine-2-carbaldehyde phenylhydrazone top
Crystal data top
C12H10BrN3Dx = 1.593 Mg m3
Mr = 276.13Melting point: 497(1) K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9233 reflections
a = 14.6418 (3) Åθ = 3.6–26.4°
b = 7.8407 (1) ŵ = 3.54 mm1
c = 20.0645 (4) ÅT = 295 K
V = 2303.44 (7) Å3Block, black
Z = 80.33 × 0.30 × 0.23 mm
F(000) = 1104
Data collection top
Nonius KappaCCD
diffractometer
2339 independent reflections
Radiation source: fine-focus sealed tube1903 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
CCD rotation images, thick slices scansθmax = 26.4°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1817
Tmin = 0.382, Tmax = 0.544k = 99
28166 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.052P)2 + 1.6466P]
where P = (Fo2 + 2Fc2)/3
2339 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
C12H10BrN3V = 2303.44 (7) Å3
Mr = 276.13Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.6418 (3) ŵ = 3.54 mm1
b = 7.8407 (1) ÅT = 295 K
c = 20.0645 (4) Å0.33 × 0.30 × 0.23 mm
Data collection top
Nonius KappaCCD
diffractometer
2339 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1903 reflections with I > 2σ(I)
Tmin = 0.382, Tmax = 0.544Rint = 0.048
28166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.03Δρmax = 0.44 e Å3
2339 reflectionsΔρmin = 0.72 e Å3
145 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.82948 (2)1.00944 (4)0.314727 (18)0.07300 (18)
N11.06677 (16)0.1846 (3)0.32501 (10)0.0535 (5)
H11.07800.20440.28370.064*
N21.01869 (15)0.2984 (3)0.36079 (10)0.0506 (5)
N30.91170 (14)0.6977 (3)0.33261 (10)0.0468 (5)
C10.86323 (18)0.8132 (3)0.36454 (13)0.0496 (6)
C20.8363 (2)0.8049 (4)0.43023 (14)0.0620 (7)
H20.80170.89070.44990.074*
C30.8635 (2)0.6620 (4)0.46526 (14)0.0674 (8)
H30.84710.64950.50980.081*
C40.9144 (2)0.5390 (4)0.43455 (13)0.0577 (7)
H40.93320.44280.45790.069*
C50.93799 (17)0.5597 (3)0.36750 (12)0.0467 (5)
C70.99160 (18)0.4341 (4)0.33110 (12)0.0506 (6)
H71.00610.45220.28650.061*
C81.09823 (17)0.0360 (3)0.35418 (12)0.0460 (5)
C91.0819 (2)0.0034 (3)0.42067 (14)0.0568 (7)
H91.04680.06920.44690.068*
C101.1179 (2)0.1504 (4)0.44746 (15)0.0696 (8)
H101.10730.17500.49210.084*
C111.1688 (2)0.2614 (4)0.41011 (18)0.0704 (8)
H111.19250.36030.42890.084*
C121.1841 (2)0.2232 (4)0.34413 (17)0.0670 (8)
H121.21840.29760.31810.080*
C131.14946 (19)0.0769 (4)0.31608 (13)0.0553 (7)
H131.16040.05330.27140.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0783 (3)0.0622 (2)0.0785 (3)0.01901 (15)0.00590 (15)0.00948 (14)
N10.0623 (14)0.0528 (13)0.0454 (11)0.0095 (11)0.0048 (9)0.0002 (10)
N20.0556 (12)0.0466 (12)0.0495 (11)0.0035 (10)0.0006 (10)0.0039 (10)
N30.0477 (11)0.0483 (12)0.0444 (10)0.0002 (9)0.0039 (9)0.0015 (9)
C10.0487 (13)0.0479 (14)0.0521 (14)0.0009 (11)0.0069 (11)0.0008 (11)
C20.0704 (19)0.0600 (17)0.0557 (16)0.0063 (14)0.0061 (13)0.0107 (13)
C30.088 (2)0.0676 (19)0.0460 (14)0.0066 (17)0.0106 (14)0.0021 (14)
C40.0731 (18)0.0524 (14)0.0475 (14)0.0013 (14)0.0007 (13)0.0024 (12)
C50.0491 (13)0.0472 (13)0.0440 (13)0.0023 (11)0.0036 (10)0.0007 (11)
C70.0548 (15)0.0530 (14)0.0439 (12)0.0004 (12)0.0016 (11)0.0019 (12)
C80.0439 (13)0.0461 (13)0.0479 (13)0.0012 (10)0.0028 (10)0.0045 (11)
C90.0661 (17)0.0505 (16)0.0539 (15)0.0015 (12)0.0063 (13)0.0007 (11)
C100.091 (2)0.0568 (17)0.0607 (17)0.0001 (16)0.0024 (16)0.0107 (14)
C110.077 (2)0.0480 (16)0.086 (2)0.0088 (14)0.0138 (16)0.0051 (15)
C120.0624 (17)0.0590 (18)0.080 (2)0.0144 (14)0.0061 (15)0.0181 (16)
C130.0539 (15)0.0590 (17)0.0530 (15)0.0080 (13)0.0020 (12)0.0096 (12)
Geometric parameters (Å, º) top
Br1—C11.900 (3)C5—C71.455 (4)
N1—C81.383 (3)C7—H70.9300
N1—H10.8600C8—C131.389 (4)
N2—C71.282 (3)C8—C91.390 (4)
N2—N11.344 (3)C9—C101.376 (4)
N3—C11.317 (3)C9—H90.9300
N3—C51.345 (3)C10—C111.369 (4)
C1—C21.377 (4)C10—H100.9300
C2—C31.381 (4)C11—C121.375 (5)
C2—H20.9300C11—H110.9300
C3—C41.366 (4)C12—C131.375 (4)
C3—H30.9300C12—H120.9300
C4—C51.398 (4)C13—H130.9300
C4—H40.9300
C7—N2—N1117.7 (2)N2—C7—H7120.2
N2—N1—C8120.5 (2)C5—C7—H7120.2
N2—N1—H1119.7N1—C8—C13118.9 (2)
C8—N1—H1119.7N1—C8—C9122.4 (2)
C1—N3—C5117.0 (2)C13—C8—C9118.7 (3)
N3—C1—C2125.9 (3)C10—C9—C8119.7 (3)
N3—C1—Br1116.18 (19)C10—C9—H9120.2
C2—C1—Br1117.9 (2)C8—C9—H9120.2
C1—C2—C3116.3 (3)C11—C10—C9121.8 (3)
C1—C2—H2121.8C11—C10—H10119.1
C3—C2—H2121.8C9—C10—H10119.1
C4—C3—C2120.0 (3)C10—C11—C12118.5 (3)
C4—C3—H3120.0C10—C11—H11120.7
C2—C3—H3120.0C12—C11—H11120.7
C3—C4—C5119.1 (3)C13—C12—C11121.0 (3)
C3—C4—H4120.4C13—C12—H12119.5
C5—C4—H4120.4C11—C12—H12119.5
N3—C5—C4121.5 (2)C12—C13—C8120.4 (3)
N3—C5—C7115.9 (2)C12—C13—H13119.8
C4—C5—C7122.5 (2)C8—C13—H13119.8
N2—C7—C5119.7 (2)
C7—N2—N1—C8179.8 (2)N3—C5—C7—N2179.5 (2)
C5—N3—C1—C20.6 (4)C4—C5—C7—N20.2 (4)
C5—N3—C1—Br1178.54 (17)N2—N1—C8—C13178.5 (2)
N3—C1—C2—C30.3 (4)N2—N1—C8—C90.3 (4)
Br1—C1—C2—C3178.8 (2)N1—C8—C9—C10177.6 (3)
C1—C2—C3—C40.2 (5)C13—C8—C9—C101.2 (4)
C2—C3—C4—C50.3 (5)C8—C9—C10—C110.9 (5)
C1—N3—C5—C40.4 (4)C9—C10—C11—C120.2 (5)
C1—N3—C5—C7179.9 (2)C10—C11—C12—C130.2 (5)
C3—C4—C5—N30.0 (4)C11—C12—C13—C80.1 (5)
C3—C4—C5—C7179.6 (3)N1—C8—C13—C12178.0 (3)
N1—N2—C7—C5179.0 (2)C9—C8—C13—C120.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.862.343.180 (3)166
Symmetry code: (i) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H10BrN3
Mr276.13
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)14.6418 (3), 7.8407 (1), 20.0645 (4)
V3)2303.44 (7)
Z8
Radiation typeMo Kα
µ (mm1)3.54
Crystal size (mm)0.33 × 0.30 × 0.23
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.382, 0.544
No. of measured, independent and
observed [I > 2σ(I)] reflections
28166, 2339, 1903
Rint0.048
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.110, 1.03
No. of reflections2339
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.72

Computer programs: COLLECT (Nonius, 2000), SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.862.343.180 (3)166.1
Symmetry code: (i) x+2, y1/2, z+1/2.
 

Acknowledgements

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database. RMF, MNC and FZ also thank the Universidad del Valle, Colombia, for partial financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationChaur, M. N., Collado, D. & Lehn, J. M. (2011). Chem. Eur. J. 17, 248–258.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDugave, C. & Demange, L. (2003). Chem. Rev. 103, 2475–2532.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Nilwanna, B. & Karalai, C. (2012). Acta Cryst. E68, o704–o705.  CSD CrossRef IUCr Journals Google Scholar
First citationHirose, J. (2010). J. Incl. Phenom. Macrocycl. Chem. 68, 1–24.  Web of Science CrossRef CAS Google Scholar
First citationKay, E. R., Leigh, D. A. & Zerbetto, F. (2007). Angew. Chem. Int. Ed. 46, 72–191.  Web of Science CrossRef CAS Google Scholar
First citationLehn, J. M. (2006). Chem. Eur. J. 12, 5910–5915.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, M., Fan, Z., Jing, Z.-L., Chen, X., Diao, C.-H. & Deng, Q.-L. (2005). Acta Cryst. E61, o3342–o3343.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds