organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3′,6′-Bis(di­ethyl­amino)-2-(4-oxopent-2-en-2-yl­amino)­spiro­[isoindoline-1,9′-xanthen]-3-one

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: changbin.guo@gmail.com

(Received 11 June 2012; accepted 18 June 2012; online 27 June 2012)

In the title compound, C33H38N4O3, the mean planes of the 9H-xanthene unit and spiro­lactam (nine-atom) core are almost mutually perpendicular at 87.26 (6)°. Intra­molecular N—H⋯O and C—H⋯N inter­actions influence the 4-oxo­pent-2-en-2-yl­amino conformation. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into chains along [001].

Related literature

For the use of Rhodamine B derivatives as fluorescent chemosensors, see: Zhang et al. (2007[Zhang, X., Shiraishi, Y. & Hirai, T. (2007). Org. Lett. 9, 5039-5042.]); Soh et al. (2007[Soh, J. H., Swamy, K. M. K., Kim, S. K., Kim, S., Lee, S. H. & Yoon, J. (2007). Tetrahedron Lett. 48, 5966-5969.]). For a related structure, see: Xiang et al. (2006[Xiang, Y., Tong, A. J., Jin, P. Y. & Ju, Y. (2006). Org. Lett. 8, 2863-2866.]).

[Scheme 1]

Experimental

Crystal data
  • C33H38N4O3

  • Mr = 538.67

  • Monoclinic, P 21 /c

  • a = 17.4255 (3) Å

  • b = 15.0965 (3) Å

  • c = 11.5354 (2) Å

  • β = 103.008 (1)°

  • V = 2956.68 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.26 × 0.26 × 0.24 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.666, Tmax = 0.746

  • 24441 measured reflections

  • 7000 independent reflections

  • 4223 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.165

  • S = 1.04

  • 7000 reflections

  • 365 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯O3 0.88 (2) 1.92 (2) 2.641 (2) 139 (2)
C33—H33A⋯N2 0.96 2.30 2.785 (3) 110
C7—H7B⋯O3i 0.97 2.60 3.334 (3) 133
Symmetry code: (i) x, y, z-1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Rhodamine B derivatives are known to have excellent photophysical properties, such as the long absorption and emission wavelengths elongated to the visible region. Therefore, they have been extensively used as fluorescent chemosensors for heavy and transition metal ions, such as Cu(II) (Zhang et al., 2007) and Hg(II) chemical sensor (Soh et al., 2007). Herein, we report the synthesis and crystal structure of a new Rhodamine B derivative, namely (Z)-3',6'-bis(diethylamino)-2-(4-oxopent-2-en-2-ylamino)spiroisoindoline- [1,9'-xanthen]-3-one.

In the title compound C33H38N4O3, the mean plane of the 9H-xanthene moiety and that of the spirolactam moiety are almost perpendicular to each other (Fig. 1). Two N,N-diethylamino groups bond to the 9H-xanthene moiety at C5 and C15, respectivly, while a 4-oxopent-2-en-2-ylamino links to the spirolactam moiety at N2 position (Fig. 1). The 9H-xanthene fragment exhibits a butterfly-like conformation with two benzene rings (C12-C13-C14-C15-C16-C17 and C1-C2-C3-C4-C5-C6, respectively) exhibiting a dihedral angle of 160.06 (4)°. For the 4-oxopent-2-en-2-ylamino group, the double bond between C29 and C30 shows a Z-configuration. The structure of the title compound is similar to that of other reported Rhodamine B derivatives (Xiang et al. 2006). The molecular packing is stabilized by an intermolecular interaction (C7—H7B···O3i, C7O3i = 3.334 (3) Å, C7—H7B···O3i = 133 °).

Related literature top

For the use of Rhodamine B derivatives as fluorescent chemosensors, see: Zhang et al. (2007); Soh et al. (2007). For a related structure, see: Xiang et al. (2006).

Experimental top

To a solution of 2-amino-3',6'-bis(diethylamino)spiro [isoindoline-1,9'-xanthen]-3-one (0.50 g, 1.09 mmol) in 3 mL absolute anhydrous ethanol was added 0.5 mL pentane-2,4-dione and CAN (5% mol), then the resulting mixture was stirred at room temperature for 6 h. The reaction mixture was dissolved in 20 mL CH2Cl2, washed twice with water and dried over Na2SO4, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (EA:PE=1:1, v/v) to yield the title compound as a white powder (0.47 g, 80.1%). Crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of the title compound in ethanol at room temperature in four days.

Refinement top

All the H atoms were discernible in the difference electro density maps with C—H = 0.93 and 0.96Å for aryl and methyl, respectively. Uiso(H)=1.2Ueq(C).

Structure description top

Rhodamine B derivatives are known to have excellent photophysical properties, such as the long absorption and emission wavelengths elongated to the visible region. Therefore, they have been extensively used as fluorescent chemosensors for heavy and transition metal ions, such as Cu(II) (Zhang et al., 2007) and Hg(II) chemical sensor (Soh et al., 2007). Herein, we report the synthesis and crystal structure of a new Rhodamine B derivative, namely (Z)-3',6'-bis(diethylamino)-2-(4-oxopent-2-en-2-ylamino)spiroisoindoline- [1,9'-xanthen]-3-one.

In the title compound C33H38N4O3, the mean plane of the 9H-xanthene moiety and that of the spirolactam moiety are almost perpendicular to each other (Fig. 1). Two N,N-diethylamino groups bond to the 9H-xanthene moiety at C5 and C15, respectivly, while a 4-oxopent-2-en-2-ylamino links to the spirolactam moiety at N2 position (Fig. 1). The 9H-xanthene fragment exhibits a butterfly-like conformation with two benzene rings (C12-C13-C14-C15-C16-C17 and C1-C2-C3-C4-C5-C6, respectively) exhibiting a dihedral angle of 160.06 (4)°. For the 4-oxopent-2-en-2-ylamino group, the double bond between C29 and C30 shows a Z-configuration. The structure of the title compound is similar to that of other reported Rhodamine B derivatives (Xiang et al. 2006). The molecular packing is stabilized by an intermolecular interaction (C7—H7B···O3i, C7O3i = 3.334 (3) Å, C7—H7B···O3i = 133 °).

For the use of Rhodamine B derivatives as fluorescent chemosensors, see: Zhang et al. (2007); Soh et al. (2007). For a related structure, see: Xiang et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I) with 35% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The crystal structure packing structure of (I).
(Z)-3',6'-Bis(diethylamino)-2-(4-oxopent-2-en-2- ylamino)spiro[isoindoline-1,9'-xanthen]-3-one top
Crystal data top
C33H38N4O3F(000) = 1152
Mr = 538.67Dx = 1.210 Mg m3
Dm = 1.210 Mg m3
Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7869 reflections
a = 17.4255 (3) Åθ = 2.5–28.8°
b = 15.0965 (3) ŵ = 0.08 mm1
c = 11.5354 (2) ÅT = 296 K
β = 103.008 (1)°Block, colorless
V = 2956.68 (9) Å30.26 × 0.26 × 0.24 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7000 independent reflections
Radiation source: fine-focus sealed tube4223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2222
Tmin = 0.666, Tmax = 0.746k = 1919
24441 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0751P)2 + 0.4182P]
where P = (Fo2 + 2Fc2)/3
7000 reflections(Δ/σ)max < 0.001
365 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C33H38N4O3V = 2956.68 (9) Å3
Mr = 538.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.4255 (3) ŵ = 0.08 mm1
b = 15.0965 (3) ÅT = 296 K
c = 11.5354 (2) Å0.26 × 0.26 × 0.24 mm
β = 103.008 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7000 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4223 reflections with I > 2σ(I)
Tmin = 0.666, Tmax = 0.746Rint = 0.038
24441 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.31 e Å3
7000 reflectionsΔρmin = 0.23 e Å3
365 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.72483 (9)0.55285 (12)0.35969 (17)0.0411 (4)
C20.79924 (9)0.58683 (11)0.40887 (16)0.0391 (4)
C30.85265 (10)0.58468 (13)0.33574 (18)0.0480 (5)
H3A0.90320.60650.36520.058*
C40.83408 (11)0.55181 (14)0.22229 (18)0.0516 (5)
H4A0.87210.55120.17730.062*
C50.75792 (10)0.51884 (13)0.17260 (17)0.0464 (4)
C60.70398 (10)0.51974 (12)0.24555 (17)0.0461 (4)
H6A0.65340.49780.21680.055*
C70.79176 (13)0.50105 (16)0.0224 (2)0.0622 (6)
H7A0.81780.55780.00460.075*
H7B0.76090.50340.10360.075*
C80.85292 (16)0.43034 (19)0.0135 (3)0.0839 (8)
H8A0.88570.44300.06810.126*
H8B0.82760.37410.03300.126*
H8C0.88460.42860.06610.126*
C90.65814 (12)0.46323 (16)0.0011 (2)0.0661 (6)
H9A0.63480.43190.05800.079*
H9B0.65920.42300.06410.079*
C100.60719 (17)0.5411 (2)0.0460 (3)0.1075 (11)
H10A0.55510.52090.08250.161*
H10B0.62910.57170.10400.161*
H10C0.60470.58070.01820.161*
C110.81924 (9)0.61870 (11)0.53530 (16)0.0393 (4)
C120.74476 (9)0.64566 (12)0.57294 (17)0.0417 (4)
C130.74226 (11)0.70387 (13)0.66550 (18)0.0523 (5)
H13A0.78790.73420.70110.063*
C140.67532 (11)0.71844 (14)0.70650 (19)0.0555 (5)
H14A0.67610.75980.76650.067*
C150.60520 (10)0.67139 (13)0.65862 (17)0.0479 (5)
C160.60620 (10)0.61550 (12)0.56295 (18)0.0473 (5)
H16A0.56070.58510.52680.057*
C170.67389 (10)0.60457 (12)0.52103 (17)0.0423 (4)
C180.46914 (11)0.62613 (16)0.6584 (2)0.0612 (6)
H18A0.43950.62120.71990.073*
H18B0.48630.56700.64310.073*
C190.41471 (14)0.6596 (2)0.5467 (3)0.0848 (8)
H19A0.37090.61980.52390.127*
H19B0.44270.66300.48410.127*
H19C0.39580.71740.56100.127*
C200.53268 (13)0.74897 (16)0.7899 (2)0.0663 (6)
H20A0.58310.75440.84590.080*
H20B0.49420.73090.83420.080*
C210.50958 (18)0.83815 (19)0.7354 (3)0.0957 (9)
H21A0.50690.88000.79700.144*
H21B0.45900.83400.68140.144*
H21C0.54810.85750.69300.144*
C280.92523 (10)0.57242 (13)0.69867 (18)0.0491 (5)
C270.94264 (10)0.66190 (12)0.65927 (17)0.0464 (5)
C261.00665 (11)0.71638 (15)0.7041 (2)0.0592 (6)
H26A1.04540.69930.76970.071*
C251.01124 (11)0.79624 (15)0.6490 (2)0.0605 (6)
H25A1.05320.83410.67830.073*
C240.95405 (11)0.82103 (14)0.5504 (2)0.0569 (5)
H24A0.95910.87450.51270.068*
C230.88946 (10)0.76746 (13)0.50691 (19)0.0506 (5)
H23A0.85070.78480.44140.061*
C220.88396 (9)0.68792 (12)0.56306 (17)0.0417 (4)
C290.83791 (10)0.39074 (12)0.59552 (18)0.0469 (5)
C330.90031 (14)0.38742 (16)0.5252 (3)0.0764 (7)
H33A0.91790.44640.51400.115*
H33B0.87910.36090.44900.115*
H33C0.94400.35280.56730.115*
C300.80224 (11)0.31622 (13)0.6247 (2)0.0559 (5)
H30A0.81530.26250.59460.067*
C310.74681 (12)0.31462 (15)0.6976 (2)0.0601 (6)
C320.72173 (19)0.22546 (19)0.7353 (3)0.1099 (11)
H32A0.68430.23360.78400.165*
H32B0.76690.19440.77980.165*
H32C0.69800.19160.66600.165*
N10.73857 (9)0.48717 (13)0.05820 (15)0.0580 (5)
N20.85909 (8)0.54639 (10)0.61756 (14)0.0445 (4)
N30.81807 (9)0.47045 (10)0.63140 (15)0.0463 (4)
N40.53859 (9)0.67999 (12)0.70403 (16)0.0569 (5)
O10.66609 (7)0.55024 (9)0.42302 (12)0.0517 (4)
O20.96133 (9)0.52827 (11)0.78133 (15)0.0744 (5)
O30.71972 (9)0.38277 (11)0.73323 (15)0.0710 (5)
H10.7807 (13)0.4688 (15)0.671 (2)0.070 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0388 (8)0.0427 (9)0.0429 (11)0.0010 (7)0.0111 (8)0.0032 (9)
C20.0391 (8)0.0402 (9)0.0368 (10)0.0009 (7)0.0060 (7)0.0023 (8)
C30.0387 (8)0.0578 (11)0.0466 (12)0.0077 (8)0.0078 (8)0.0049 (10)
C40.0479 (10)0.0644 (12)0.0455 (12)0.0067 (9)0.0172 (9)0.0065 (10)
C50.0504 (10)0.0489 (10)0.0399 (11)0.0005 (8)0.0100 (9)0.0055 (9)
C60.0417 (9)0.0512 (11)0.0442 (12)0.0061 (8)0.0072 (8)0.0094 (9)
C70.0704 (13)0.0709 (14)0.0463 (13)0.0035 (11)0.0156 (10)0.0087 (11)
C80.0891 (17)0.0923 (19)0.0758 (19)0.0133 (14)0.0305 (15)0.0065 (15)
C90.0631 (12)0.0859 (17)0.0471 (13)0.0102 (11)0.0073 (11)0.0177 (12)
C100.0870 (18)0.146 (3)0.081 (2)0.0269 (19)0.0007 (16)0.011 (2)
C110.0376 (8)0.0405 (9)0.0380 (10)0.0016 (7)0.0047 (7)0.0005 (8)
C120.0394 (8)0.0442 (10)0.0407 (11)0.0020 (7)0.0073 (8)0.0033 (9)
C130.0481 (10)0.0574 (12)0.0509 (13)0.0086 (8)0.0101 (9)0.0171 (10)
C140.0564 (11)0.0600 (12)0.0521 (13)0.0046 (9)0.0167 (10)0.0203 (11)
C150.0461 (9)0.0549 (11)0.0430 (12)0.0032 (8)0.0108 (8)0.0039 (10)
C160.0407 (8)0.0547 (11)0.0461 (12)0.0053 (8)0.0090 (8)0.0097 (10)
C170.0444 (9)0.0441 (10)0.0384 (11)0.0029 (7)0.0092 (8)0.0081 (9)
C180.0515 (10)0.0751 (15)0.0618 (15)0.0025 (10)0.0229 (11)0.0047 (12)
C190.0626 (13)0.108 (2)0.0784 (19)0.0008 (13)0.0049 (13)0.0022 (17)
C200.0628 (12)0.0779 (15)0.0641 (15)0.0054 (11)0.0270 (11)0.0147 (13)
C210.106 (2)0.0736 (18)0.105 (2)0.0087 (15)0.0189 (18)0.0119 (17)
C280.0422 (9)0.0573 (12)0.0446 (12)0.0013 (8)0.0029 (9)0.0054 (10)
C270.0408 (8)0.0536 (11)0.0434 (11)0.0055 (8)0.0066 (8)0.0021 (9)
C260.0455 (10)0.0753 (15)0.0516 (13)0.0125 (9)0.0001 (9)0.0002 (12)
C250.0480 (10)0.0632 (13)0.0693 (16)0.0180 (9)0.0113 (11)0.0093 (12)
C240.0572 (11)0.0474 (11)0.0680 (15)0.0082 (9)0.0182 (11)0.0020 (11)
C230.0487 (10)0.0474 (11)0.0532 (13)0.0014 (8)0.0062 (9)0.0025 (10)
C220.0384 (8)0.0458 (10)0.0397 (11)0.0030 (7)0.0064 (8)0.0049 (9)
C290.0438 (9)0.0476 (11)0.0469 (12)0.0064 (8)0.0049 (8)0.0012 (9)
C330.0751 (14)0.0654 (14)0.099 (2)0.0142 (11)0.0411 (14)0.0054 (14)
C300.0557 (11)0.0431 (11)0.0652 (15)0.0015 (8)0.0058 (10)0.0049 (10)
C310.0600 (11)0.0571 (13)0.0596 (15)0.0134 (10)0.0058 (11)0.0025 (12)
C320.126 (2)0.0762 (18)0.134 (3)0.0367 (17)0.043 (2)0.007 (2)
N10.0552 (9)0.0793 (12)0.0401 (10)0.0082 (8)0.0122 (8)0.0151 (9)
N20.0445 (7)0.0429 (8)0.0433 (9)0.0051 (6)0.0039 (7)0.0028 (7)
N30.0479 (8)0.0430 (9)0.0508 (10)0.0037 (7)0.0166 (8)0.0003 (8)
N40.0488 (8)0.0699 (11)0.0556 (11)0.0002 (8)0.0190 (8)0.0136 (9)
O10.0432 (6)0.0642 (8)0.0505 (8)0.0143 (6)0.0164 (6)0.0221 (7)
O20.0680 (9)0.0804 (11)0.0629 (11)0.0071 (8)0.0106 (8)0.0246 (9)
O30.0750 (9)0.0730 (11)0.0710 (12)0.0168 (8)0.0293 (9)0.0126 (9)
Geometric parameters (Å, º) top
C1—C61.378 (3)C18—C191.505 (3)
C1—O11.386 (2)C18—H18A0.9700
C1—C21.391 (2)C18—H18B0.9700
C2—C31.390 (2)C19—H19A0.9600
C2—C111.500 (3)C19—H19B0.9600
C3—C41.369 (3)C19—H19C0.9600
C3—H3A0.9300C20—N41.456 (3)
C4—C51.412 (3)C20—C211.502 (4)
C4—H4A0.9300C20—H20A0.9700
C5—N11.372 (2)C20—H20B0.9700
C5—C61.396 (2)C21—H21A0.9600
C6—H6A0.9300C21—H21B0.9600
C7—N11.468 (3)C21—H21C0.9600
C7—C81.496 (3)C28—O21.216 (2)
C7—H7A0.9700C28—N21.368 (2)
C7—H7B0.9700C28—C271.478 (3)
C8—H8A0.9600C27—C221.386 (3)
C8—H8B0.9600C27—C261.389 (3)
C8—H8C0.9600C26—C251.374 (3)
C9—N11.454 (3)C26—H26A0.9300
C9—C101.500 (4)C25—C241.385 (3)
C9—H9A0.9700C25—H25A0.9300
C9—H9B0.9700C24—C231.385 (3)
C10—H10A0.9600C24—H24A0.9300
C10—H10B0.9600C23—C221.378 (3)
C10—H10C0.9600C23—H23A0.9300
C11—N21.509 (2)C29—N31.343 (2)
C11—C121.514 (2)C29—C301.364 (3)
C11—C221.518 (2)C29—C331.497 (3)
C12—C131.391 (3)C33—H33A0.9600
C12—C171.391 (2)C33—H33B0.9600
C13—C141.371 (3)C33—H33C0.9600
C13—H13A0.9300C30—C311.416 (3)
C14—C151.414 (3)C30—H30A0.9300
C14—H14A0.9300C31—O31.240 (3)
C15—N41.383 (2)C31—C321.509 (3)
C15—C161.392 (3)C32—H32A0.9600
C16—C171.382 (2)C32—H32B0.9600
C16—H16A0.9300C32—H32C0.9600
C17—O11.379 (2)N2—N31.379 (2)
C18—N41.455 (3)N3—H10.88 (2)
C6—C1—O1115.22 (14)C18—C19—H19B109.5
C6—C1—C2122.99 (16)H19A—C19—H19B109.5
O1—C1—C2121.79 (16)C18—C19—H19C109.5
C3—C2—C1115.71 (16)H19A—C19—H19C109.5
C3—C2—C11123.82 (14)H19B—C19—H19C109.5
C1—C2—C11120.39 (15)N4—C20—C21114.2 (2)
C4—C3—C2122.84 (16)N4—C20—H20A108.7
C4—C3—H3A118.6C21—C20—H20A108.7
C2—C3—H3A118.6N4—C20—H20B108.7
C3—C4—C5120.94 (17)C21—C20—H20B108.7
C3—C4—H4A119.5H20A—C20—H20B107.6
C5—C4—H4A119.5C20—C21—H21A109.5
N1—C5—C6122.01 (16)C20—C21—H21B109.5
N1—C5—C4121.20 (16)H21A—C21—H21B109.5
C6—C5—C4116.79 (17)C20—C21—H21C109.5
C1—C6—C5120.72 (16)H21A—C21—H21C109.5
C1—C6—H6A119.6H21B—C21—H21C109.5
C5—C6—H6A119.6O2—C28—N2125.88 (18)
N1—C7—C8113.3 (2)O2—C28—C27129.50 (18)
N1—C7—H7A108.9N2—C28—C27104.58 (16)
C8—C7—H7A108.9C22—C27—C26121.10 (18)
N1—C7—H7B108.9C22—C27—C28109.86 (15)
C8—C7—H7B108.9C26—C27—C28129.03 (18)
H7A—C7—H7B107.7C25—C26—C27118.22 (19)
C7—C8—H8A109.5C25—C26—H26A120.9
C7—C8—H8B109.5C27—C26—H26A120.9
H8A—C8—H8B109.5C26—C25—C24120.76 (18)
C7—C8—H8C109.5C26—C25—H25A119.6
H8A—C8—H8C109.5C24—C25—H25A119.6
H8B—C8—H8C109.5C23—C24—C25121.02 (19)
N1—C9—C10113.6 (2)C23—C24—H24A119.5
N1—C9—H9A108.8C25—C24—H24A119.5
C10—C9—H9A108.8C22—C23—C24118.40 (18)
N1—C9—H9B108.8C22—C23—H23A120.8
C10—C9—H9B108.8C24—C23—H23A120.8
H9A—C9—H9B107.7C23—C22—C27120.44 (16)
C9—C10—H10A109.5C23—C22—C11128.89 (16)
C9—C10—H10B109.5C27—C22—C11110.67 (15)
H10A—C10—H10B109.5N3—C29—C30119.99 (17)
C9—C10—H10C109.5N3—C29—C33117.77 (17)
H10A—C10—H10C109.5C30—C29—C33122.24 (18)
H10B—C10—H10C109.5C29—C33—H33A109.5
C2—C11—N2110.65 (14)C29—C33—H33B109.5
C2—C11—C12109.78 (13)H33A—C33—H33B109.5
N2—C11—C12108.48 (14)C29—C33—H33C109.5
C2—C11—C22115.13 (15)H33A—C33—H33C109.5
N2—C11—C2298.65 (13)H33B—C33—H33C109.5
C12—C11—C22113.49 (14)C29—C30—C31124.77 (19)
C13—C12—C17115.72 (16)C29—C30—H30A117.6
C13—C12—C11124.54 (15)C31—C30—H30A117.6
C17—C12—C11119.46 (16)O3—C31—C30122.95 (19)
C14—C13—C12122.82 (17)O3—C31—C32119.2 (2)
C14—C13—H13A118.6C30—C31—C32117.8 (2)
C12—C13—H13A118.6C31—C32—H32A109.5
C13—C14—C15120.80 (18)C31—C32—H32B109.5
C13—C14—H14A119.6H32A—C32—H32B109.5
C15—C14—H14A119.6C31—C32—H32C109.5
N4—C15—C16121.23 (16)H32A—C32—H32C109.5
N4—C15—C14122.02 (17)H32B—C32—H32C109.5
C16—C15—C14116.75 (16)C5—N1—C9121.71 (16)
C17—C16—C15120.92 (16)C5—N1—C7120.39 (16)
C17—C16—H16A119.5C9—N1—C7115.47 (17)
C15—C16—H16A119.5C28—N2—N3122.57 (16)
O1—C17—C16115.08 (15)C28—N2—C11114.82 (14)
O1—C17—C12122.17 (15)N3—N2—C11119.79 (13)
C16—C17—C12122.76 (17)C29—N3—N2122.22 (16)
N4—C18—C19115.8 (2)C29—N3—H1114.1 (15)
N4—C18—H18A108.3N2—N3—H1123.3 (15)
C19—C18—H18A108.3C15—N4—C18120.76 (16)
N4—C18—H18B108.3C15—N4—C20121.22 (17)
C19—C18—H18B108.3C18—N4—C20117.73 (16)
H18A—C18—H18B107.4C17—O1—C1117.87 (13)
C18—C19—H19A109.5
C6—C1—C2—C30.7 (3)C26—C27—C22—C232.4 (3)
O1—C1—C2—C3179.48 (16)C28—C27—C22—C23176.69 (17)
C6—C1—C2—C11177.65 (17)C26—C27—C22—C11177.41 (17)
O1—C1—C2—C112.5 (3)C28—C27—C22—C113.5 (2)
C1—C2—C3—C40.3 (3)C2—C11—C22—C2353.6 (2)
C11—C2—C3—C4177.12 (18)N2—C11—C22—C23171.29 (18)
C2—C3—C4—C50.8 (3)C12—C11—C22—C2374.1 (2)
C3—C4—C5—N1178.90 (19)C2—C11—C22—C27126.66 (17)
C3—C4—C5—C61.4 (3)N2—C11—C22—C278.93 (18)
O1—C1—C6—C5179.87 (17)C12—C11—C22—C27105.64 (18)
C2—C1—C6—C50.0 (3)N3—C29—C30—C313.6 (3)
N1—C5—C6—C1179.30 (19)C33—C29—C30—C31175.6 (2)
C4—C5—C6—C11.0 (3)C29—C30—C31—O37.0 (4)
C3—C2—C11—N282.0 (2)C29—C30—C31—C32171.5 (2)
C1—C2—C11—N294.69 (18)C6—C5—N1—C98.0 (3)
C3—C2—C11—C12158.27 (17)C4—C5—N1—C9172.3 (2)
C1—C2—C11—C1225.0 (2)C6—C5—N1—C7169.48 (19)
C3—C2—C11—C2228.7 (2)C4—C5—N1—C710.9 (3)
C1—C2—C11—C22154.56 (16)C10—C9—N1—C579.8 (3)
C2—C11—C12—C13157.51 (18)C10—C9—N1—C782.5 (3)
N2—C11—C12—C1381.5 (2)C8—C7—N1—C587.5 (3)
C22—C11—C12—C1327.1 (3)C8—C7—N1—C9109.9 (2)
C2—C11—C12—C1728.9 (2)O2—C28—N2—N310.4 (3)
N2—C11—C12—C1792.1 (2)C27—C28—N2—N3171.76 (15)
C22—C11—C12—C17159.33 (17)O2—C28—N2—C11171.30 (19)
C17—C12—C13—C142.0 (3)C27—C28—N2—C1110.9 (2)
C11—C12—C13—C14171.81 (19)C2—C11—N2—C28133.47 (16)
C12—C13—C14—C152.5 (3)C12—C11—N2—C28106.05 (17)
C13—C14—C15—N4175.21 (19)C22—C11—N2—C2812.38 (19)
C13—C14—C15—C164.7 (3)C2—C11—N2—N365.08 (19)
N4—C15—C16—C17177.43 (18)C12—C11—N2—N355.4 (2)
C14—C15—C16—C172.5 (3)C22—C11—N2—N3173.83 (15)
C15—C16—C17—O1177.51 (18)C30—C29—N3—N2171.54 (17)
C15—C16—C17—C122.0 (3)C33—C29—N3—N27.6 (3)
C13—C12—C17—O1175.24 (18)C28—N2—N3—C2985.6 (2)
C11—C12—C17—O110.6 (3)C11—N2—N3—C29114.41 (19)
C13—C12—C17—C164.3 (3)C16—C15—N4—C184.3 (3)
C11—C12—C17—C16169.85 (17)C14—C15—N4—C18175.7 (2)
O2—C28—C27—C22178.0 (2)C16—C15—N4—C20169.4 (2)
N2—C28—C27—C224.3 (2)C14—C15—N4—C2010.7 (3)
O2—C28—C27—C263.0 (4)C19—C18—N4—C1583.0 (3)
N2—C28—C27—C26174.7 (2)C19—C18—N4—C2090.9 (2)
C22—C27—C26—C251.3 (3)C21—C20—N4—C1581.3 (3)
C28—C27—C26—C25177.6 (2)C21—C20—N4—C1892.6 (3)
C27—C26—C25—C240.9 (3)C16—C17—O1—C1164.94 (16)
C26—C25—C24—C232.1 (3)C12—C17—O1—C114.6 (3)
C25—C24—C23—C221.1 (3)C6—C1—O1—C17160.98 (17)
C24—C23—C22—C271.2 (3)C2—C1—O1—C1718.9 (2)
C24—C23—C22—C11178.60 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O30.88 (2)1.92 (2)2.641 (2)139 (2)
C33—H33A···N20.962.302.785 (3)110
C7—H7B···O3i0.972.603.334 (3)133
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC33H38N4O3
Mr538.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)17.4255 (3), 15.0965 (3), 11.5354 (2)
β (°) 103.008 (1)
V3)2956.68 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.26 × 0.26 × 0.24
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.666, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
24441, 7000, 4223
Rint0.038
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.165, 1.04
No. of reflections7000
No. of parameters365
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.23

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O30.88 (2)1.92 (2)2.641 (2)139 (2)
C33—H33A···N20.962.302.785 (3)110
C7—H7B···O3i0.972.603.334 (3)133
Symmetry code: (i) x, y, z1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (project No. 30873140), the Program for Excellent Talents of Beijing City (project No. 20071D0501600227) and the Beijing Municipal Commission of Education (project No. KM201010028011).

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoh, J. H., Swamy, K. M. K., Kim, S. K., Kim, S., Lee, S. H. & Yoon, J. (2007). Tetrahedron Lett. 48, 5966–5969.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiang, Y., Tong, A. J., Jin, P. Y. & Ju, Y. (2006). Org. Lett. 8, 2863–2866.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, X., Shiraishi, Y. & Hirai, T. (2007). Org. Lett. 9, 5039–5042.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds