organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-2-(Thio­phen-2-yl­methyl­­idene)-1,2,3,4-tetra­hydro­naphthalen-1-one

aCenter of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, bChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 25 June 2012; accepted 27 June 2012; online 30 June 2012)

In the title compound, C15H12OS, the cyclo­hexene ring has a twisted boat conformation with the C atom between the ketone and methyl­ene atom and this methyl­ene C atom lying 0.280 (3) and 0.760 (3) Å, respectively, from the plane through the remaining four atoms (r.m.s. deviation = 0.004 Å). The dihedral angle between the benzene and thio­phene rings [21.64 (9)°] indicates an overall twist in the mol­ecule. The thio­phene S and ketone O atoms are anti, an orientation that allows the close approach of these atoms [3.3116 (17) Å] in the crystal structure and which leads to the formation of helical supra­molecular chains along the c axis.

Related literature

For the activity of related species developed for the treatment of Chagas disease, see: Vera-DiVaio et al. (2009[Vera-DiVaio, M. A. F., Freitas, A. C. C., Castro, F. H. C., de Albuquerque, S., Cabral, L. M., Rodrigues, C. R., Albuquerque, M. G., Martins, R. C. A., Henriques, M. G. M. O. & Dias, L. R. S. (2009). Bioorg. Med. Chem. 17, 295-302.]). For a related structure, see: Asiri et al. (2012[Asiri, A. M., Faidallah, H. M., Zayed, M. E. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2190.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12OS

  • Mr = 240.31

  • Orthorhombic, P n a 21

  • a = 24.7989 (10) Å

  • b = 3.9976 (2) Å

  • c = 11.3163 (5) Å

  • V = 1121.85 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.812, Tmax = 1.000

  • 7054 measured reflections

  • 2528 independent reflections

  • 2383 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.03

  • 2528 reflections

  • 154 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1171 Friedel pairs

  • Flack parameter: 0.07 (10)

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of structural studies on tetrahydronaphthalen-1-one derivatives (Asiri et al., 2012), the crystal and molecular structure of the title compound, 2-thiophen-2-ylmethylene-3,4-dihydro-2H-naphthalen-1-one (I), was investigated. Interest in this class of compound stems from their putative activity against Chagas disease (Vera-DiVaio et al., 2009).

In (I), Fig. 1, the cyclohexene ring has a twisted boat conformation with the C6 and C15 atoms lying, respectively, 0.280 (3) and 0.760 (3) Å from the plane through the remaining four atoms which have a r.m.s. deviation = 0.004 Å. Overall, the molecule is twisted with the dihedral angle between the benzene and thiophen-2-yl rings being 21.64 (9)°. The conformation about the exocyclic methylidene C5C6 [1.349 (3) Å] is E. The thiophen-2-yl-S and ketone-O atoms are anti.

In the crystal packing, weak ππ interactions are noted between translationally related benzene rings, i.e. inter-centroid distance = 3.9976 (11) Å (symmetry operation x, 1 + y, z) which lead to stacks along the b axis. Other than these, the most prominent interactions appear to be of the type S···O, i.e. S1···O1i = 3.3116 (17) Å for i: 1 - x, 1 - y, 1/2 + z. The result is the formation of helical supramolecular chains along the c axis, Fig. 2.

Related literature top

For the activity of related species developed for the treatment of Chagas disease, see: Vera-DiVaio et al. (2009). For a related structure, see: Asiri et al. (2012).

Experimental top

A solution of the 2-thiophen-2-carboxaldehyde (1.1 g, 0.01 M) in ethanol (20 ml) was added to a stirred solution of 1-tetralone (1.46 g,0.0 1M) in ethanolic KOH (20 ml, 20%). Stirring was maintained at room temperature for 6 h. The reaction mixture was then poured onto water (200 ml) and set aside overnight. The precipitated solid product was collected by filtration, washed with water, dried and recrystallized from its ethanol solution. M.pt: 351–352 K. Yield: 92%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. Owing to poor agreement, one reflection, i.e. (6 3 - 3), was omitted from the final refinement.

Structure description top

In continuation of structural studies on tetrahydronaphthalen-1-one derivatives (Asiri et al., 2012), the crystal and molecular structure of the title compound, 2-thiophen-2-ylmethylene-3,4-dihydro-2H-naphthalen-1-one (I), was investigated. Interest in this class of compound stems from their putative activity against Chagas disease (Vera-DiVaio et al., 2009).

In (I), Fig. 1, the cyclohexene ring has a twisted boat conformation with the C6 and C15 atoms lying, respectively, 0.280 (3) and 0.760 (3) Å from the plane through the remaining four atoms which have a r.m.s. deviation = 0.004 Å. Overall, the molecule is twisted with the dihedral angle between the benzene and thiophen-2-yl rings being 21.64 (9)°. The conformation about the exocyclic methylidene C5C6 [1.349 (3) Å] is E. The thiophen-2-yl-S and ketone-O atoms are anti.

In the crystal packing, weak ππ interactions are noted between translationally related benzene rings, i.e. inter-centroid distance = 3.9976 (11) Å (symmetry operation x, 1 + y, z) which lead to stacks along the b axis. Other than these, the most prominent interactions appear to be of the type S···O, i.e. S1···O1i = 3.3116 (17) Å for i: 1 - x, 1 - y, 1/2 + z. The result is the formation of helical supramolecular chains along the c axis, Fig. 2.

For the activity of related species developed for the treatment of Chagas disease, see: Vera-DiVaio et al. (2009). For a related structure, see: Asiri et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the helical supramolecular chain along the c axis in (I) mediated by S···O interactions shown as orange dashed lines.
(2E)-2-(Thiophen-2-ylmethylidene)-1,2,3,4-tetrahydronaphthalen-1-one top
Crystal data top
C15H12OSDx = 1.423 Mg m3
Mr = 240.31Melting point: 351 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3882 reflections
a = 24.7989 (10) Åθ = 2.4–27.5°
b = 3.9976 (2) ŵ = 0.27 mm1
c = 11.3163 (5) ÅT = 100 K
V = 1121.85 (9) Å3Prism, light-brown
Z = 40.35 × 0.30 × 0.25 mm
F(000) = 504
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2528 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2383 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.4°
ω scanh = 3223
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 54
Tmin = 0.812, Tmax = 1.000l = 1414
7054 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.206P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2528 reflectionsΔρmax = 0.32 e Å3
154 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 1171 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (10)
Crystal data top
C15H12OSV = 1121.85 (9) Å3
Mr = 240.31Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 24.7989 (10) ŵ = 0.27 mm1
b = 3.9976 (2) ÅT = 100 K
c = 11.3163 (5) Å0.35 × 0.30 × 0.25 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2528 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2383 reflections with I > 2σ(I)
Tmin = 0.812, Tmax = 1.000Rint = 0.029
7054 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.32 e Å3
S = 1.03Δρmin = 0.25 e Å3
2528 reflectionsAbsolute structure: Flack (1983), 1171 Friedel pairs
154 parametersAbsolute structure parameter: 0.07 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.538955 (17)0.26862 (11)0.50161 (7)0.01740 (13)
O10.36843 (6)0.5071 (4)0.19698 (15)0.0251 (4)
C10.59800 (8)0.0731 (5)0.4638 (2)0.0201 (4)
H10.62760.04450.51610.024*
C20.59738 (8)0.0357 (5)0.3506 (2)0.0201 (4)
H20.62680.14800.31430.024*
C30.54817 (8)0.0355 (5)0.2914 (2)0.0173 (4)
H30.54120.02490.21170.021*
C40.51135 (8)0.2025 (5)0.36246 (19)0.0153 (4)
C50.45890 (8)0.3086 (5)0.32082 (19)0.0152 (4)
H50.45190.25710.24030.018*
C60.41829 (8)0.4681 (4)0.37662 (18)0.0149 (4)
C70.36964 (8)0.5503 (5)0.30417 (19)0.0157 (4)
C80.32189 (8)0.6897 (4)0.36676 (19)0.0149 (4)
C90.27955 (8)0.8271 (5)0.3005 (2)0.0170 (4)
H90.28240.83820.21680.020*
C100.23379 (8)0.9464 (5)0.35577 (19)0.0177 (4)
H100.20531.03890.31030.021*
C110.22952 (8)0.9309 (5)0.47876 (19)0.0179 (4)
H110.19791.01000.51710.022*
C120.27162 (9)0.7996 (5)0.5445 (2)0.0176 (4)
H120.26880.79200.62820.021*
C130.31817 (7)0.6783 (4)0.4900 (2)0.0140 (4)
C140.36339 (8)0.5298 (5)0.56230 (18)0.0149 (4)
H14A0.35700.28720.57280.018*
H14B0.36370.63480.64150.018*
C150.41813 (7)0.5824 (4)0.5033 (2)0.0150 (4)
H15A0.42760.82280.50640.018*
H15B0.44600.45730.54770.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0148 (2)0.0213 (2)0.0160 (2)0.00044 (16)0.0005 (2)0.0013 (2)
O10.0217 (9)0.0398 (9)0.0137 (8)0.0081 (6)0.0021 (6)0.0022 (7)
C10.0132 (9)0.0204 (9)0.0267 (12)0.0002 (7)0.0007 (8)0.0033 (8)
C20.0145 (10)0.0212 (10)0.0247 (12)0.0020 (7)0.0048 (9)0.0030 (9)
C30.0195 (10)0.0168 (9)0.0156 (10)0.0027 (7)0.0009 (8)0.0041 (8)
C40.0174 (10)0.0145 (8)0.0139 (10)0.0021 (7)0.0012 (8)0.0017 (8)
C50.0164 (10)0.0178 (9)0.0113 (10)0.0016 (7)0.0012 (7)0.0011 (8)
C60.0162 (9)0.0147 (9)0.0137 (10)0.0011 (7)0.0007 (8)0.0028 (8)
C70.0156 (10)0.0168 (9)0.0147 (10)0.0009 (7)0.0004 (8)0.0008 (8)
C80.0143 (9)0.0138 (8)0.0167 (10)0.0021 (7)0.0014 (8)0.0012 (8)
C90.0182 (10)0.0175 (9)0.0153 (10)0.0021 (8)0.0019 (8)0.0016 (8)
C100.0130 (9)0.0177 (9)0.0226 (12)0.0019 (7)0.0046 (8)0.0028 (8)
C110.0150 (9)0.0172 (9)0.0216 (12)0.0008 (7)0.0035 (8)0.0002 (7)
C120.0173 (10)0.0186 (10)0.0169 (10)0.0033 (7)0.0032 (8)0.0012 (8)
C130.0155 (9)0.0119 (8)0.0147 (10)0.0029 (6)0.0001 (8)0.0007 (8)
C140.0166 (9)0.0152 (9)0.0129 (10)0.0012 (7)0.0010 (8)0.0001 (8)
C150.0138 (8)0.0187 (8)0.0125 (9)0.0005 (7)0.0006 (9)0.0001 (9)
Geometric parameters (Å, º) top
S1—C11.714 (2)C8—C91.403 (3)
S1—C41.737 (2)C9—C101.381 (3)
O1—C71.226 (3)C9—H90.9500
C1—C21.353 (3)C10—C111.397 (3)
C1—H10.9500C10—H100.9500
C2—C31.421 (3)C11—C121.385 (3)
C2—H20.9500C11—H110.9500
C3—C41.388 (3)C12—C131.396 (3)
C3—H30.9500C12—H120.9500
C4—C51.447 (3)C13—C141.510 (3)
C5—C61.349 (3)C14—C151.527 (3)
C5—H50.9500C14—H14A0.9900
C6—C71.495 (3)C14—H14B0.9900
C6—C151.504 (3)C15—H15A0.9900
C7—C81.488 (3)C15—H15B0.9900
C8—C131.399 (3)
C1—S1—C492.35 (10)C10—C9—H9119.7
C2—C1—S1111.91 (16)C8—C9—H9119.7
C2—C1—H1124.0C9—C10—C11119.89 (19)
S1—C1—H1124.0C9—C10—H10120.1
C1—C2—C3113.1 (2)C11—C10—H10120.1
C1—C2—H2123.5C12—C11—C10119.65 (19)
C3—C2—H2123.5C12—C11—H11120.2
C4—C3—C2112.9 (2)C10—C11—H11120.2
C4—C3—H3123.6C11—C12—C13121.2 (2)
C2—C3—H3123.6C11—C12—H12119.4
C3—C4—C5122.9 (2)C13—C12—H12119.4
C3—C4—S1109.82 (15)C12—C13—C8118.9 (2)
C5—C4—S1127.21 (16)C12—C13—C14120.8 (2)
C6—C5—C4131.1 (2)C8—C13—C14120.26 (17)
C6—C5—H5114.5C13—C14—C15111.67 (17)
C4—C5—H5114.5C13—C14—H14A109.3
C5—C6—C7116.72 (18)C15—C14—H14A109.3
C5—C6—C15126.27 (18)C13—C14—H14B109.3
C7—C6—C15116.97 (16)C15—C14—H14B109.3
O1—C7—C8120.28 (18)H14A—C14—H14B107.9
O1—C7—C6122.11 (18)C6—C15—C14112.16 (16)
C8—C7—C6117.60 (18)C6—C15—H15A109.2
C13—C8—C9119.78 (19)C14—C15—H15A109.2
C13—C8—C7121.00 (18)C6—C15—H15B109.2
C9—C8—C7119.20 (19)C14—C15—H15B109.2
C10—C9—C8120.5 (2)H15A—C15—H15B107.9
C4—S1—C1—C20.54 (16)C6—C7—C8—C9168.28 (17)
S1—C1—C2—C30.5 (2)C13—C8—C9—C101.1 (3)
C1—C2—C3—C40.2 (3)C7—C8—C9—C10177.44 (17)
C2—C3—C4—C5178.49 (17)C8—C9—C10—C110.1 (3)
C2—C3—C4—S10.2 (2)C9—C10—C11—C120.8 (3)
C1—S1—C4—C30.40 (15)C10—C11—C12—C130.8 (3)
C1—S1—C4—C5178.62 (18)C11—C12—C13—C80.2 (3)
C3—C4—C5—C6179.2 (2)C11—C12—C13—C14178.85 (17)
S1—C4—C5—C62.8 (3)C9—C8—C13—C121.1 (3)
C4—C5—C6—C7177.95 (19)C7—C8—C13—C12177.36 (16)
C4—C5—C6—C150.4 (3)C9—C8—C13—C14179.76 (16)
C5—C6—C7—O17.2 (3)C7—C8—C13—C141.3 (3)
C15—C6—C7—O1170.53 (18)C12—C13—C14—C15150.02 (17)
C5—C6—C7—C8172.98 (17)C8—C13—C14—C1531.4 (2)
C15—C6—C7—C89.3 (2)C5—C6—C15—C14140.98 (19)
O1—C7—C8—C13166.95 (18)C7—C6—C15—C1441.5 (2)
C6—C7—C8—C1313.2 (3)C13—C14—C15—C651.7 (2)
O1—C7—C8—C911.5 (3)

Experimental details

Crystal data
Chemical formulaC15H12OS
Mr240.31
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)24.7989 (10), 3.9976 (2), 11.3163 (5)
V3)1121.85 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.812, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7054, 2528, 2383
Rint0.029
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.03
No. of reflections2528
No. of parameters154
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.25
Absolute structureFlack (1983), 1171 Friedel pairs
Absolute structure parameter0.07 (10)

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are grateful to King Abdulaziz University for providing research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Faidallah, H. M., Zayed, M. E. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2190.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVera-DiVaio, M. A. F., Freitas, A. C. C., Castro, F. H. C., de Albuquerque, S., Cabral, L. M., Rodrigues, C. R., Albuquerque, M. G., Martins, R. C. A., Henriques, M. G. M. O. & Dias, L. R. S. (2009). Bioorg. Med. Chem. 17, 295–302.  Web of Science PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds