organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cholest-5-en-3β-yl 3-(4-eth­­oxy­phen­yl)prop-2-enoate

aInstitute of Inorganic Chemistry, University of Hamburg, Hamburg, Germany, bInstitute of Organic Chemistry, University of Hamburg, Hamburg, Germany, cDepartment of Chemical Engineering, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates, and dDepartment of Chemistry, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
*Correspondence e-mail: thies@uaeu.ac.ae

(Received 12 April 2012; accepted 29 May 2012; online 13 June 2012)

In the asymmetric unit of the title compound, C38H56O3, there are two symmetry-independent mol­ecules that differ in the rotation angle along the C—O bond between the 3-(4-eth­oxy­phen­yl)prop-2-enoate and cholest-5-en-3β-yl groups by 169.3 (3)°. In both mol­ecules, steroid ring B adopts a half-chair conformation, rings A and C adopt a chair conformation and ring D exists in an envelope form. The two symmetry-independent mol­ecules pack in the crystal into separate layers parallel to (-102) with their long axis parallel to the [201] direction. Short inter­molecular C—H⋯O and C—H⋯π contacts are observed.

Related literature

For the preparation of the title compound, see: Thiemann et al. (2011[Thiemann, T., al-Sulaibi, M., Al-Jasem, Y. & al-Hindawi, B. (2011). Proc. 15th Int. Electron. Conf. Synth. Org. Chem. 1-30 November 2011. Sciforum Electronic Conferences Series.]). For applications of this class of compounds, see: Vora (1976[Vora, R. A. (1976). Curr. Sci. 45, 538-539.]); Kutulya et al. (1983[Kutulya, L. A., Cherkashina, R. M., Tishchenko, V. G., Surov, Yu. N. & Polishchuk, A. G. (1983). Zh. Obshch. Khim. 53, 1665-1668.]); Tanaka et al. (1981[Tanaka, Y., Tsuchiya, H., Suzuki, M., Tsuda, K., Takano, J. & Kurihara, H. (1981). Mol. Cryst. Liq. Cryst. 68, 113-125.]); Dong et al. (2010[Dong, X., Guo, J. & Wei, J. (2010). Chin. J. Chem. Phys. 23, 719-725.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Siri et al. (2002[Siri, D., Siri, A. G. & Tordo, P. (2002). J. Mol. Struct. 582, 171-185.]).

[Scheme 1]

Experimental

Crystal data
  • C38H56O3

  • Mr = 560.83

  • Monoclinic, P 21

  • a = 11.6919 (5) Å

  • b = 10.5844 (4) Å

  • c = 27.3230 (11) Å

  • β = 101.226 (1)°

  • V = 3316.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.25 × 0.08 × 0.07 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.714, Tmax = 0.746

  • 45080 measured reflections

  • 7947 independent reflections

  • 7272 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.06

  • 7947 reflections

  • 751 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C33B—H33B⋯O2Bi 0.95 2.56 3.389 (3) 145
C37B—H37C⋯O2Bi 0.99 2.59 3.425 (3) 142
C37A—H37B⋯O2Aii 0.99 2.40 3.362 (3) 163
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+2]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Cholesteryl cinnamates are known to exhibit chiral mesogenic phases. The interest in the influence of the substituents of the cinnamyl unit in these compounds on their phase transition behavior (Vora, 1976; Kutulya et al., 1983) and on their crystal packing at room temperature and below remains unabated, also in view of the possibility of photodimerizing the substances in the crystal (Tanaka et al., 1981; Dong et al., 2010). For the title compound, the authors have observed the following phase transformation sequence: Cr(1) 136.2 Cr(2) 148.9 C h 270 dec., where the numbers denote temperature of the phase transition in °C. The cholesteric phase Ch undergoes decomposition at 270°C. Of special note is the Cr(1)—Cr(2) transition at 136.2°C, which proceeds through a rapid melting of Cr(1) and an immediate solidification to Cr(2). This led the authors to investigate the crystal structure Cr(1) of the compound. In the crystal, there are two symmetry independent molecules A and B that vary in their ring-conformation only slightly but differ in the rotation angle along the C—O ester bond between the 3-(4-ethoxyphenyl)-2-propenoate and cholest-5-en-3β-yl groups by 169.3 (3)°. In both molecules, the π system of the phenylpropenoate unit is almost planar [for A: O1A—C28A– –C31A—C36A = 3.4 (3)° and for B: O1B—C28B– –C31B—C32B = -3.3 (2)°], but the average plane of the phenylpropenoate is tilted by 55.5 (3)° versus the average plane defined by the carbon atoms of ring A of the cholest-5-ene framework for molecule B and by 61.1 (3)° for molecule A. In the crystal, molecules A and molecules B define separate layers parallel to (-1 0 2). Within each layer translation related molecules form columns extended along [2 0 1] with their long molecular axis collinear with this direction. Molecules in the neighbouring columns exhibit head to tail arrangement with C—H···O interactions occurring between the 4-ethoxyphenyl group and propenoate unit (Table 1). These interactions define the strands of molecules extending in the [0 1 0] direction within the layer. The molecules in neighbouring [0 1 0] strands contact via their steroidal fragments and the dihedral angle between the mean planes of the steroidal parts of neighboring molecules is 77.3 (3)° and 83.3 (3)° for molecules A and B, respectively. The neighboring layers are packed in such a manner that contacts are formed only between molecules A and B in a head-to-head arrangement; the dihedral angle between the steroidal mean planes of these contacting molecules is 80.3 (3)°.

A conformational analysis of rings A—D was carried out, using puckering parameters developed by Cremer and Pople (1975) (Table 2). It was found that rings A and C adopt a chair conformation, ring B adopts a half-chair conformation, and ring D adopts an envelope conformation for both molecules A and B (Siri et al., 2002).

Related literature top

For the preparation of the title compound, see: Thiemann et al. (2011). For applications of this class of compounds, see: Vora (1976); Kutulya et al. (1983); Tanaka et al. (1981); Dong et al. (2010). For ring conformational analysis, see: Cremer & Pople (1975); Siri et al. (2002).

Experimental top

To a solution of triphenylphosphine (582 mg, 2.2 mmol) in CH2Cl2 (7.5 ml) is added bromotrichloromethane (900 mg, 4.5 mmol), and the resulting solution is stirred for 20 min. at rt. Thereafter, 3-(4-ethoxyphenyl)prop-2-enoic acid (4-ethoxycinnamic acid (384 mg, 2.0 mmol) is added, and the solution is heated at 50 °C for 15 min. Cholest-5-en-3β-ol (cholesterol, 386 mg, 1.0 mmol) is added, and after 20 min. Et3N (200 mg, 2.0 mmol) is added dropwise with the help of a syringe. The reaction mixture is stirred at 45 °C for 12 h. Then, it is cooled, poured into water (30 ml) and extracted with CH2Cl2 (3 X 15 ml). The organic phase is washed with 15w% aq. NaOH (15 ml) and subsequently with aq. HCl (1 ml conc. HCl in 7 ml of H2O), dried over anhydrous MgSO4, and evaporated in vacuo. Column chromatography of the residue on silica gel (eluent MtBE/hexane/CHCl3 1:3:1, Rf = 0.6) gives the target compound (476 mg, 85%) as a colorless solid; νmax (KBr/cm-1) 2946, 1713, 1631, 1602, 1511, 1469, 1313, 1252, 1163, 1009, 826; δH (400 MHz, CDCl3) 0.68 (3H, s, CH3), 0.86 (3H, d, 3J = 6.4 Hz, CH3), 0.87 (3H, d, 3J = 6.8 Hz, CH3), 0.91 (3H, d, 3J = 6.8 Hz, CH3), 1.04 (3H, s, CH3), 1.42 (3H, t, 3J = 7.2 Hz, CH3), 4.06 (2H, q, 3J = 7.2 Hz), 4.74 (1H, m), 5.40 (1H, m), 6.28 (1H, d, 3J = 16.0 Hz), 6.88 (2H, d, 3J = 8.8 Hz), 7.46 (2H, d, 3J = 8.8 Hz), 7.62 (1H, d, 3J = 16.0 Hz); δC (100.5 MHz, CDCl3) 11.9, 14.7, 18.7, 19.4, 21.0, 22.6, 22.8, 23.8, 24.3, 27.9, 28.0, 28.2, 31.8, 35.8, 36.2, 36.6, 37.0, 38.3, 39.5, 39.7, 42.3, 50.0, 56.1, 56.7, 63.6, 73.9, 114.7 (2 C), 116.0, 122.6, 127.1, 129.7 (2 C), 139.7, 144.2, 160.7, 166.8. The crystal was grown from hot 2-propanol.

Refinement top

All hydrogen atoms were placed in calculated positions with C—H distances of 0.95 - 1.00 Å and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for all other H-atoms. The highest peak of 0.77 e Å-3 is located at a distance of 1.30 Å and 1.22 Å from the alkyl group C25B and C27B atoms, respectively, however no reasonable model of disorder for the alkyl group could be found. In the absence of significant anomalous scattering effects Friedel pairs were merged as equivalent data. The absolute structure is based on the known absolute configuration of cholest-5-en-3β-ol used for the synthesis.

Structure description top

Cholesteryl cinnamates are known to exhibit chiral mesogenic phases. The interest in the influence of the substituents of the cinnamyl unit in these compounds on their phase transition behavior (Vora, 1976; Kutulya et al., 1983) and on their crystal packing at room temperature and below remains unabated, also in view of the possibility of photodimerizing the substances in the crystal (Tanaka et al., 1981; Dong et al., 2010). For the title compound, the authors have observed the following phase transformation sequence: Cr(1) 136.2 Cr(2) 148.9 C h 270 dec., where the numbers denote temperature of the phase transition in °C. The cholesteric phase Ch undergoes decomposition at 270°C. Of special note is the Cr(1)—Cr(2) transition at 136.2°C, which proceeds through a rapid melting of Cr(1) and an immediate solidification to Cr(2). This led the authors to investigate the crystal structure Cr(1) of the compound. In the crystal, there are two symmetry independent molecules A and B that vary in their ring-conformation only slightly but differ in the rotation angle along the C—O ester bond between the 3-(4-ethoxyphenyl)-2-propenoate and cholest-5-en-3β-yl groups by 169.3 (3)°. In both molecules, the π system of the phenylpropenoate unit is almost planar [for A: O1A—C28A– –C31A—C36A = 3.4 (3)° and for B: O1B—C28B– –C31B—C32B = -3.3 (2)°], but the average plane of the phenylpropenoate is tilted by 55.5 (3)° versus the average plane defined by the carbon atoms of ring A of the cholest-5-ene framework for molecule B and by 61.1 (3)° for molecule A. In the crystal, molecules A and molecules B define separate layers parallel to (-1 0 2). Within each layer translation related molecules form columns extended along [2 0 1] with their long molecular axis collinear with this direction. Molecules in the neighbouring columns exhibit head to tail arrangement with C—H···O interactions occurring between the 4-ethoxyphenyl group and propenoate unit (Table 1). These interactions define the strands of molecules extending in the [0 1 0] direction within the layer. The molecules in neighbouring [0 1 0] strands contact via their steroidal fragments and the dihedral angle between the mean planes of the steroidal parts of neighboring molecules is 77.3 (3)° and 83.3 (3)° for molecules A and B, respectively. The neighboring layers are packed in such a manner that contacts are formed only between molecules A and B in a head-to-head arrangement; the dihedral angle between the steroidal mean planes of these contacting molecules is 80.3 (3)°.

A conformational analysis of rings A—D was carried out, using puckering parameters developed by Cremer and Pople (1975) (Table 2). It was found that rings A and C adopt a chair conformation, ring B adopts a half-chair conformation, and ring D adopts an envelope conformation for both molecules A and B (Siri et al., 2002).

For the preparation of the title compound, see: Thiemann et al. (2011). For applications of this class of compounds, see: Vora (1976); Kutulya et al. (1983); Tanaka et al. (1981); Dong et al. (2010). For ring conformational analysis, see: Cremer & Pople (1975); Siri et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within OLEX2 (Dolomanov et al., 2009); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of molecules A, B of the title compound with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Intermolecular C—H···O contacts between molecules of the title compound. [Symmetry codes: (i) -1 + x,-1 + y,-1 + z; (ii) 1 - x,1/2 + y,1 - z; (iii) x,y,z]
[Figure 3] Fig. 3. The layers formed by molecules A (blue), and B (green) are shown with the direction of the strand propagation (arrows).
Cholest-5-en-3β-yl 3-(4-ethoxyphenyl)prop-2-enoate top
Crystal data top
C38H56O3Dx = 1.123 Mg m3
Mr = 560.83Melting point: 543 K
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 11.6919 (5) ÅCell parameters from 9899 reflections
b = 10.5844 (4) Åθ = 2.5–27.9°
c = 27.3230 (11) ŵ = 0.07 mm1
β = 101.226 (1)°T = 100 K
V = 3316.6 (2) Å3Needle, colourless
Z = 40.25 × 0.08 × 0.07 mm
F(000) = 1232
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7947 independent reflections
Radiation source: micro-focus7272 reflections with I > 2σ(I)
Multi-layer optics monochromatorRint = 0.029
Detector resolution: 8 pixels mm-1θmax = 27.5°, θmin = 1.8°
ω and φ scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1313
Tmin = 0.714, Tmax = 0.746l = 3535
45080 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.8113P]
where P = (Fo2 + 2Fc2)/3
7947 reflections(Δ/σ)max = 0.001
751 parametersΔρmax = 0.77 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C38H56O3V = 3316.6 (2) Å3
Mr = 560.83Z = 4
Monoclinic, P21Mo Kα radiation
a = 11.6919 (5) ŵ = 0.07 mm1
b = 10.5844 (4) ÅT = 100 K
c = 27.3230 (11) Å0.25 × 0.08 × 0.07 mm
β = 101.226 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7947 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7272 reflections with I > 2σ(I)
Tmin = 0.714, Tmax = 0.746Rint = 0.029
45080 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.108H-atom parameters constrained
S = 1.06Δρmax = 0.77 e Å3
7947 reflectionsΔρmin = 0.18 e Å3
751 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1B0.50002 (19)0.8745 (2)0.77777 (8)0.0237 (4)
H1BA0.44780.94880.77580.028*
H1BB0.45610.80000.78590.028*
C2B0.60530 (19)0.8956 (2)0.82008 (8)0.0237 (4)
H2BA0.64680.97360.81370.028*
H2BB0.57870.90590.85210.028*
C3B0.68674 (18)0.7837 (2)0.82327 (8)0.0218 (4)
H3B0.64630.70610.83200.026*
C4B0.72765 (18)0.7630 (2)0.77432 (8)0.0226 (4)
H4BA0.77690.83520.76820.027*
H4BB0.77580.68550.77680.027*
C5B0.62539 (17)0.7504 (2)0.73096 (7)0.0197 (4)
C6B0.62078 (19)0.6562 (2)0.69872 (8)0.0236 (4)
H6B0.68100.59460.70520.028*
C7B0.52771 (19)0.6389 (2)0.65267 (8)0.0241 (5)
H7BA0.47740.56680.65780.029*
H7BB0.56490.61850.62410.029*
C8B0.45243 (17)0.7572 (2)0.64045 (7)0.0191 (4)
H8B0.49800.82230.62590.023*
C9B0.42165 (17)0.8100 (2)0.68878 (7)0.0188 (4)
H9B0.38820.73800.70510.023*
C10B0.53253 (18)0.8536 (2)0.72619 (7)0.0186 (4)
C11B0.32670 (19)0.9126 (2)0.67917 (8)0.0260 (5)
H11C0.29960.92920.71070.031*
H11D0.36180.99170.66950.031*
C12B0.22060 (19)0.8796 (2)0.63854 (8)0.0239 (5)
H12C0.17730.80880.65010.029*
H12D0.16770.95340.63240.029*
C13B0.25827 (17)0.8421 (2)0.58983 (7)0.0180 (4)
C14B0.34130 (17)0.72835 (19)0.60296 (7)0.0185 (4)
H14B0.29780.66390.61890.022*
C15B0.35437 (18)0.6737 (2)0.55244 (8)0.0213 (4)
H15C0.36770.58130.55480.026*
H15D0.42010.71400.54040.026*
C16B0.23677 (18)0.7043 (2)0.51733 (8)0.0224 (4)
H16C0.19550.62540.50510.027*
H16D0.25030.75370.48820.027*
C17B0.16351 (17)0.7823 (2)0.54817 (7)0.0187 (4)
H17B0.11820.72100.56470.022*
C18B0.31660 (19)0.9530 (2)0.56817 (8)0.0233 (4)
H18D0.26151.02350.56120.035*
H18E0.33990.92650.53720.035*
H18F0.38570.98000.59230.035*
C19B0.5826 (2)0.9771 (2)0.70902 (8)0.0249 (5)
H19D0.52981.04730.71220.037*
H19E0.59040.96890.67410.037*
H19F0.65930.99370.72990.037*
C20B0.07489 (18)0.8707 (2)0.51588 (8)0.0221 (4)
H20B0.11890.93000.49790.026*
C21B0.0071 (2)0.9492 (2)0.54760 (9)0.0295 (5)
H21D0.05851.01390.56580.044*
H21E0.02140.89410.57140.044*
H21F0.05920.99010.52590.044*
C22B0.00947 (19)0.7938 (2)0.47650 (8)0.0257 (5)
H22C0.03680.73710.45900.031*
H22D0.05840.74000.49380.031*
C23B0.0894 (2)0.8743 (2)0.43762 (9)0.0320 (5)
H23C0.13720.92990.45480.038*
H23D0.04100.92890.42030.038*
C24B0.1698 (2)0.7943 (2)0.39908 (8)0.0272 (5)
H24C0.21220.73400.41680.033*
H24D0.12160.74430.38010.033*
C25B0.2593 (2)0.8704 (2)0.36200 (8)0.0270 (5)
H25B0.29990.92910.38170.032*
C26B0.2019 (3)0.9504 (3)0.32722 (10)0.0397 (6)
H26D0.16060.89520.30770.060*
H26E0.14651.00900.34700.060*
H26F0.26180.99830.30460.060*
C27B0.3518 (2)0.7833 (3)0.33197 (9)0.0358 (6)
H27D0.38990.73490.35490.054*
H27E0.31450.72500.31200.054*
H27F0.41010.83410.30980.054*
C28B0.84713 (19)0.7127 (2)0.88528 (8)0.0247 (5)
C29B0.93912 (18)0.7553 (2)0.92685 (8)0.0238 (4)
H29B0.95210.84300.93280.029*
C30B1.00404 (18)0.6710 (2)0.95611 (8)0.0243 (5)
H30B0.99090.58480.94710.029*
C31B1.09345 (18)0.6961 (2)1.00060 (8)0.0228 (4)
C32B1.12289 (19)0.8178 (2)1.01864 (8)0.0251 (5)
H32B1.08540.88851.00090.030*
C33B1.2056 (2)0.8380 (2)1.06179 (9)0.0269 (5)
H33B1.22480.92151.07330.032*
C34B1.26024 (18)0.7344 (2)1.08804 (8)0.0238 (4)
C35B1.23214 (19)0.6126 (2)1.07093 (8)0.0257 (5)
H35B1.26920.54211.08890.031*
C36B1.15012 (19)0.5942 (2)1.02768 (8)0.0250 (5)
H36B1.13190.51061.01610.030*
C37B1.3761 (2)0.8662 (3)1.15029 (9)0.0325 (5)
H37C1.30780.91311.15730.039*
H37D1.41040.91481.12570.039*
C38B1.4655 (2)0.8477 (3)1.19796 (9)0.0385 (6)
H38D1.43280.79321.22080.058*
H38E1.48600.92981.21380.058*
H38F1.53550.80801.19010.058*
O1B0.78630 (13)0.81197 (15)0.86300 (5)0.0237 (3)
O2B0.82610 (16)0.60381 (17)0.87301 (7)0.0356 (4)
O3B1.34174 (14)0.74309 (17)1.13115 (6)0.0294 (4)
C1A0.8932 (2)0.3266 (2)0.77104 (9)0.0315 (5)
H1AA0.86630.36020.80070.038*
H1AB0.94510.39060.76040.038*
C2A0.7868 (2)0.3066 (3)0.72871 (9)0.0335 (6)
H2AA0.73230.24610.73960.040*
H2AB0.74530.38780.72070.040*
C3A0.82570 (19)0.2560 (2)0.68269 (8)0.0267 (5)
H3A0.87600.31980.67000.032*
C4A0.89175 (19)0.1329 (2)0.69391 (8)0.0248 (5)
H4AA0.92270.10650.66420.030*
H4AB0.83760.06650.70090.030*
C5A0.99232 (19)0.1453 (2)0.73842 (8)0.0231 (4)
C6A1.0972 (2)0.1040 (3)0.73531 (9)0.0332 (6)
H6A1.10810.07190.70410.040*
C7A1.2005 (2)0.1042 (3)0.77772 (9)0.0383 (6)
H7AA1.25610.17020.77160.046*
H7AB1.24060.02160.77880.046*
C8A1.16655 (19)0.1286 (2)0.82794 (8)0.0236 (5)
H8A1.12950.05050.83840.028*
C9A1.07796 (18)0.2372 (2)0.82321 (8)0.0223 (4)
H9A1.11380.31020.80850.027*
C10A0.96339 (18)0.2038 (2)0.78571 (8)0.0218 (4)
C11A1.05688 (19)0.2817 (2)0.87455 (8)0.0259 (5)
H11A1.00920.21750.88770.031*
H11B1.01130.36110.86990.031*
C12A1.16956 (19)0.3045 (2)0.91377 (8)0.0242 (5)
H12A1.21180.37780.90350.029*
H12B1.14870.32490.94630.029*
C13A1.24945 (18)0.1887 (2)0.91977 (8)0.0204 (4)
C14A1.27365 (18)0.1597 (2)0.86724 (8)0.0221 (4)
H14A1.30690.23890.85580.027*
C15A1.3730 (2)0.0634 (3)0.87590 (9)0.0320 (6)
H15A1.42050.07010.84970.038*
H15B1.34240.02370.87610.038*
C16A1.44533 (19)0.0991 (2)0.92745 (8)0.0270 (5)
H16A1.52370.12900.92410.032*
H16B1.45460.02490.95000.032*
C17A1.37803 (18)0.2058 (2)0.94863 (7)0.0212 (4)
H17A1.40690.28800.93770.025*
C18A1.1925 (2)0.0769 (2)0.94191 (9)0.0270 (5)
H18A1.24580.00450.94620.040*
H18B1.11970.05380.91930.040*
H18C1.17560.10120.97440.040*
C19A0.8886 (2)0.1098 (3)0.80890 (9)0.0310 (5)
H19A0.85610.15240.83500.047*
H19B0.93720.03870.82350.047*
H19C0.82490.07850.78300.047*
C20A1.40391 (18)0.2050 (2)1.00620 (8)0.0240 (4)
H20A1.37770.12191.01760.029*
C21A1.3378 (2)0.3099 (3)1.02773 (9)0.0325 (5)
H21A1.35350.39131.01320.049*
H21B1.36380.31321.06400.049*
H21C1.25400.29241.01970.049*
C22A1.53664 (19)0.2170 (2)1.02611 (8)0.0259 (5)
H22A1.57710.15241.00950.031*
H22B1.56250.30091.01660.031*
C23A1.57473 (19)0.2015 (3)1.08280 (8)0.0276 (5)
H23A1.54360.27291.09960.033*
H23B1.54090.12251.09320.033*
C24A1.70691 (19)0.1971 (3)1.09949 (8)0.0275 (5)
H24A1.74110.26891.08410.033*
H24B1.73610.11831.08670.033*
C25A1.7501 (2)0.2024 (3)1.15630 (8)0.0314 (5)
H25A1.71770.28081.16890.038*
C26A1.7076 (3)0.0899 (3)1.18265 (10)0.0461 (7)
H26A1.73670.01151.17040.069*
H26B1.62220.08871.17580.069*
H26C1.73670.09701.21870.069*
C27A1.8831 (2)0.2121 (4)1.16863 (10)0.0549 (9)
H27A1.90820.28561.15160.082*
H27B1.91720.13531.15740.082*
H27C1.90930.22151.20480.082*
C28A0.67884 (19)0.3256 (2)0.61451 (8)0.0240 (5)
C29A0.57405 (18)0.2878 (2)0.57844 (8)0.0236 (4)
H29A0.54330.20500.57950.028*
C30A0.52194 (19)0.3705 (2)0.54399 (8)0.0217 (4)
H30A0.55310.45370.54680.026*
C31A0.42368 (18)0.3498 (2)0.50272 (8)0.0204 (4)
C32A0.39284 (18)0.4477 (2)0.46799 (8)0.0220 (4)
H32A0.43110.52700.47390.026*
C33A0.30829 (19)0.4316 (2)0.42559 (8)0.0234 (4)
H33A0.28860.49950.40270.028*
C34A0.25167 (19)0.3153 (2)0.41630 (8)0.0236 (4)
C35A0.27867 (18)0.2172 (2)0.45101 (8)0.0244 (4)
H35A0.23900.13860.44550.029*
C36A0.36379 (18)0.2355 (2)0.49353 (8)0.0235 (4)
H36A0.38170.16860.51690.028*
C37A0.1117 (2)0.1912 (2)0.36052 (9)0.0306 (5)
H37A0.06050.17240.38450.037*
H37B0.16810.12110.36140.037*
C38A0.0401 (2)0.2070 (3)0.30852 (9)0.0357 (6)
H38A0.01360.27830.30810.054*
H38B0.00460.12970.29870.054*
H38C0.09210.22330.28510.054*
O1A0.72293 (13)0.22869 (15)0.64413 (6)0.0264 (3)
O2A0.72243 (15)0.43022 (16)0.61707 (7)0.0346 (4)
O3A0.17188 (14)0.30866 (16)0.37293 (6)0.0284 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1B0.0215 (10)0.0300 (11)0.0188 (10)0.0033 (9)0.0020 (8)0.0017 (9)
C2B0.0226 (10)0.0304 (12)0.0168 (10)0.0035 (9)0.0009 (8)0.0018 (8)
C3B0.0201 (10)0.0252 (11)0.0180 (10)0.0001 (9)0.0016 (8)0.0005 (8)
C4B0.0184 (10)0.0259 (11)0.0220 (10)0.0033 (8)0.0006 (8)0.0009 (8)
C5B0.0160 (9)0.0242 (10)0.0182 (10)0.0013 (8)0.0016 (7)0.0006 (8)
C6B0.0202 (10)0.0228 (10)0.0263 (11)0.0058 (9)0.0005 (8)0.0019 (9)
C7B0.0228 (11)0.0219 (11)0.0253 (11)0.0049 (9)0.0010 (9)0.0073 (9)
C8B0.0181 (9)0.0205 (10)0.0181 (10)0.0023 (8)0.0021 (7)0.0027 (8)
C9B0.0171 (9)0.0219 (10)0.0165 (9)0.0021 (8)0.0012 (7)0.0017 (8)
C10B0.0186 (9)0.0200 (10)0.0165 (9)0.0016 (8)0.0016 (8)0.0016 (8)
C11B0.0250 (11)0.0288 (11)0.0224 (11)0.0098 (9)0.0000 (9)0.0086 (9)
C12B0.0201 (10)0.0323 (12)0.0184 (10)0.0076 (9)0.0019 (8)0.0031 (9)
C13B0.0162 (9)0.0197 (10)0.0172 (9)0.0011 (8)0.0011 (7)0.0017 (7)
C14B0.0180 (9)0.0183 (10)0.0193 (10)0.0006 (8)0.0035 (8)0.0018 (8)
C15B0.0207 (10)0.0221 (10)0.0201 (10)0.0015 (8)0.0019 (8)0.0052 (8)
C16B0.0209 (10)0.0236 (10)0.0209 (10)0.0002 (9)0.0002 (8)0.0034 (8)
C17B0.0176 (9)0.0182 (9)0.0190 (10)0.0012 (8)0.0006 (8)0.0006 (8)
C18B0.0232 (10)0.0202 (10)0.0251 (11)0.0021 (9)0.0017 (8)0.0005 (8)
C19B0.0266 (11)0.0221 (11)0.0237 (11)0.0021 (9)0.0008 (9)0.0001 (8)
C20B0.0209 (10)0.0205 (10)0.0223 (10)0.0002 (8)0.0019 (8)0.0010 (8)
C21B0.0250 (11)0.0273 (11)0.0310 (12)0.0074 (9)0.0073 (9)0.0038 (9)
C22B0.0239 (11)0.0237 (11)0.0255 (11)0.0004 (9)0.0046 (9)0.0013 (9)
C23B0.0345 (13)0.0218 (11)0.0331 (13)0.0006 (10)0.0099 (10)0.0002 (9)
C24B0.0298 (11)0.0222 (11)0.0262 (11)0.0009 (9)0.0025 (9)0.0003 (9)
C25B0.0320 (12)0.0219 (11)0.0232 (11)0.0030 (9)0.0038 (9)0.0005 (9)
C26B0.0471 (15)0.0384 (14)0.0317 (14)0.0009 (13)0.0027 (11)0.0082 (11)
C27B0.0363 (13)0.0354 (14)0.0298 (13)0.0015 (11)0.0078 (10)0.0026 (10)
C28B0.0241 (11)0.0260 (11)0.0225 (10)0.0016 (9)0.0014 (8)0.0044 (9)
C29B0.0233 (10)0.0265 (11)0.0208 (10)0.0004 (9)0.0023 (8)0.0002 (9)
C30B0.0230 (10)0.0266 (11)0.0226 (10)0.0002 (9)0.0025 (8)0.0011 (8)
C31B0.0192 (10)0.0288 (11)0.0201 (10)0.0013 (9)0.0029 (8)0.0034 (9)
C32B0.0238 (11)0.0267 (11)0.0228 (11)0.0025 (9)0.0000 (9)0.0065 (9)
C33B0.0268 (11)0.0270 (12)0.0251 (11)0.0028 (9)0.0005 (9)0.0005 (9)
C34B0.0178 (10)0.0331 (12)0.0197 (10)0.0015 (9)0.0017 (8)0.0022 (9)
C35B0.0223 (11)0.0286 (12)0.0248 (11)0.0049 (9)0.0012 (9)0.0066 (9)
C36B0.0239 (11)0.0246 (11)0.0252 (11)0.0011 (9)0.0015 (9)0.0007 (9)
C37B0.0292 (12)0.0381 (14)0.0271 (12)0.0056 (11)0.0024 (10)0.0002 (10)
C38B0.0304 (13)0.0540 (17)0.0274 (13)0.0065 (12)0.0032 (10)0.0001 (11)
O1B0.0229 (8)0.0261 (8)0.0189 (7)0.0029 (6)0.0032 (6)0.0008 (6)
O2B0.0386 (10)0.0265 (9)0.0349 (9)0.0016 (8)0.0098 (8)0.0022 (7)
O3B0.0257 (8)0.0342 (9)0.0245 (8)0.0002 (7)0.0044 (6)0.0021 (7)
C1A0.0306 (12)0.0264 (12)0.0319 (12)0.0098 (10)0.0073 (10)0.0082 (10)
C2A0.0280 (12)0.0333 (13)0.0334 (13)0.0120 (11)0.0079 (10)0.0080 (11)
C3A0.0245 (11)0.0241 (11)0.0273 (11)0.0003 (9)0.0051 (9)0.0009 (9)
C4A0.0241 (11)0.0284 (11)0.0203 (10)0.0021 (9)0.0002 (8)0.0037 (9)
C5A0.0238 (11)0.0239 (11)0.0199 (10)0.0024 (9)0.0002 (8)0.0023 (8)
C6A0.0293 (12)0.0503 (16)0.0187 (11)0.0097 (11)0.0014 (9)0.0082 (10)
C7A0.0264 (12)0.0654 (19)0.0219 (11)0.0152 (12)0.0014 (9)0.0110 (12)
C8A0.0207 (10)0.0303 (12)0.0184 (10)0.0055 (9)0.0007 (8)0.0056 (9)
C9A0.0199 (10)0.0240 (11)0.0221 (10)0.0005 (9)0.0018 (8)0.0011 (8)
C10A0.0194 (10)0.0246 (10)0.0207 (10)0.0020 (9)0.0020 (8)0.0035 (8)
C11A0.0214 (10)0.0291 (12)0.0257 (11)0.0069 (9)0.0013 (8)0.0060 (9)
C12A0.0233 (11)0.0253 (11)0.0227 (11)0.0040 (9)0.0011 (8)0.0052 (9)
C13A0.0184 (9)0.0233 (11)0.0185 (10)0.0007 (8)0.0012 (8)0.0024 (8)
C14A0.0179 (10)0.0292 (11)0.0187 (10)0.0042 (9)0.0025 (8)0.0040 (8)
C15A0.0253 (11)0.0442 (15)0.0238 (11)0.0124 (11)0.0015 (9)0.0097 (10)
C16A0.0207 (10)0.0363 (13)0.0225 (11)0.0087 (10)0.0005 (8)0.0051 (9)
C17A0.0192 (10)0.0245 (10)0.0192 (10)0.0014 (8)0.0020 (8)0.0019 (8)
C18A0.0251 (11)0.0289 (12)0.0254 (11)0.0037 (9)0.0012 (9)0.0007 (9)
C19A0.0254 (11)0.0419 (14)0.0248 (11)0.0071 (11)0.0028 (9)0.0026 (10)
C20A0.0203 (10)0.0311 (11)0.0200 (10)0.0003 (9)0.0020 (8)0.0033 (9)
C21A0.0244 (11)0.0465 (15)0.0245 (11)0.0022 (11)0.0004 (9)0.0125 (11)
C22A0.0224 (10)0.0327 (12)0.0211 (10)0.0003 (10)0.0009 (8)0.0028 (9)
C23A0.0257 (11)0.0362 (13)0.0198 (10)0.0017 (10)0.0020 (9)0.0016 (9)
C24A0.0231 (11)0.0361 (13)0.0220 (11)0.0039 (10)0.0009 (9)0.0014 (9)
C25A0.0281 (12)0.0430 (14)0.0215 (11)0.0069 (11)0.0007 (9)0.0014 (10)
C26A0.0637 (19)0.0475 (17)0.0275 (13)0.0134 (15)0.0096 (13)0.0123 (12)
C27A0.0307 (14)0.104 (3)0.0260 (13)0.0090 (17)0.0044 (11)0.0008 (16)
C28A0.0243 (11)0.0231 (11)0.0238 (11)0.0044 (9)0.0027 (9)0.0010 (8)
C29A0.0229 (10)0.0227 (10)0.0241 (11)0.0029 (9)0.0019 (8)0.0021 (8)
C30A0.0225 (10)0.0227 (10)0.0207 (10)0.0003 (9)0.0060 (8)0.0031 (8)
C31A0.0185 (10)0.0235 (10)0.0200 (10)0.0031 (8)0.0056 (8)0.0015 (8)
C32A0.0232 (10)0.0211 (10)0.0225 (10)0.0023 (9)0.0064 (8)0.0008 (8)
C33A0.0266 (11)0.0239 (11)0.0197 (10)0.0049 (9)0.0049 (8)0.0012 (8)
C34A0.0205 (10)0.0276 (11)0.0219 (10)0.0045 (9)0.0020 (8)0.0009 (9)
C35A0.0204 (10)0.0224 (11)0.0290 (11)0.0012 (9)0.0017 (9)0.0001 (9)
C36A0.0243 (11)0.0217 (11)0.0239 (11)0.0022 (9)0.0034 (8)0.0032 (8)
C37A0.0269 (12)0.0319 (13)0.0304 (12)0.0025 (10)0.0003 (9)0.0026 (10)
C38A0.0282 (12)0.0504 (16)0.0269 (12)0.0013 (12)0.0014 (10)0.0046 (11)
O1A0.0242 (8)0.0254 (8)0.0249 (8)0.0000 (7)0.0065 (6)0.0001 (6)
O2A0.0331 (9)0.0245 (9)0.0398 (10)0.0007 (7)0.0084 (7)0.0010 (7)
O3A0.0290 (8)0.0287 (8)0.0238 (8)0.0016 (7)0.0042 (6)0.0006 (7)
Geometric parameters (Å, º) top
C1B—H1BA0.9900C1A—H1AA0.9900
C1B—H1BB0.9900C1A—H1AB0.9900
C1B—C2B1.532 (3)C1A—C2A1.539 (3)
C1B—C10B1.545 (3)C1A—C10A1.548 (3)
C2B—H2BA0.9900C2A—H2AA0.9900
C2B—H2BB0.9900C2A—H2AB0.9900
C2B—C3B1.512 (3)C2A—C3A1.516 (3)
C3B—H3B1.0000C3A—H3A1.0000
C3B—C4B1.521 (3)C3A—C4A1.515 (3)
C3B—O1B1.460 (2)C3A—O1A1.464 (2)
C4B—H4BA0.9900C4A—H4AA0.9900
C4B—H4BB0.9900C4A—H4AB0.9900
C4B—C5B1.517 (3)C4A—C5A1.524 (3)
C5B—C6B1.325 (3)C5A—C6A1.320 (3)
C5B—C10B1.528 (3)C5A—C10A1.529 (3)
C6B—H6B0.9500C6A—H6A0.9500
C6B—C7B1.506 (3)C6A—C7A1.502 (3)
C7B—H7BA0.9900C7A—H7AA0.9900
C7B—H7BB0.9900C7A—H7AB0.9900
C7B—C8B1.530 (3)C7A—C8A1.523 (3)
C8B—H8B1.0000C8A—H8A1.0000
C8B—C9B1.540 (3)C8A—C9A1.535 (3)
C8B—C14B1.521 (3)C8A—C14A1.518 (3)
C9B—H9B1.0000C9A—H9A1.0000
C9B—C10B1.556 (3)C9A—C10A1.560 (3)
C9B—C11B1.539 (3)C9A—C11A1.544 (3)
C10B—C19B1.542 (3)C10A—C19A1.540 (3)
C11B—H11C0.9900C11A—H11A0.9900
C11B—H11D0.9900C11A—H11B0.9900
C11B—C12B1.536 (3)C11A—C12A1.547 (3)
C12B—H12C0.9900C12A—H12A0.9900
C12B—H12D0.9900C12A—H12B0.9900
C12B—C13B1.533 (3)C12A—C13A1.531 (3)
C13B—C14B1.544 (3)C13A—C14A1.547 (3)
C13B—C17B1.559 (3)C13A—C17A1.566 (3)
C13B—C18B1.534 (3)C13A—C18A1.538 (3)
C14B—H14B1.0000C14A—H14A1.0000
C14B—C15B1.532 (3)C14A—C15A1.528 (3)
C15B—H15C0.9900C15A—H15A0.9900
C15B—H15D0.9900C15A—H15B0.9900
C15B—C16B1.550 (3)C15A—C16A1.542 (3)
C16B—H16C0.9900C16A—H16A0.9900
C16B—H16D0.9900C16A—H16B0.9900
C16B—C17B1.551 (3)C16A—C17A1.551 (3)
C17B—H17B1.0000C17A—H17A1.0000
C17B—C20B1.539 (3)C17A—C20A1.543 (3)
C18B—H18D0.9800C18A—H18A0.9800
C18B—H18E0.9800C18A—H18B0.9800
C18B—H18F0.9800C18A—H18C0.9800
C19B—H19D0.9800C19A—H19A0.9800
C19B—H19E0.9800C19A—H19B0.9800
C19B—H19F0.9800C19A—H19C0.9800
C20B—H20B1.0000C20A—H20A1.0000
C20B—C21B1.529 (3)C20A—C21A1.534 (3)
C20B—C22B1.543 (3)C20A—C22A1.547 (3)
C21B—H21D0.9800C21A—H21A0.9800
C21B—H21E0.9800C21A—H21B0.9800
C21B—H21F0.9800C21A—H21C0.9800
C22B—H22C0.9900C22A—H22A0.9900
C22B—H22D0.9900C22A—H22B0.9900
C22B—C23B1.530 (3)C22A—C23A1.535 (3)
C23B—H23C0.9900C23A—H23A0.9900
C23B—H23D0.9900C23A—H23B0.9900
C23B—C24B1.525 (3)C23A—C24A1.524 (3)
C24B—H24C0.9900C24A—H24A0.9900
C24B—H24D0.9900C24A—H24B0.9900
C24B—C25B1.536 (3)C24A—C25A1.537 (3)
C25B—H25B1.0000C25A—H25A1.0000
C25B—C26B1.523 (4)C25A—C26A1.525 (4)
C25B—C27B1.532 (3)C25A—C27A1.529 (4)
C26B—H26D0.9800C26A—H26A0.9800
C26B—H26E0.9800C26A—H26B0.9800
C26B—H26F0.9800C26A—H26C0.9800
C27B—H27D0.9800C27A—H27A0.9800
C27B—H27E0.9800C27A—H27B0.9800
C27B—H27F0.9800C27A—H27C0.9800
C28B—C29B1.474 (3)C28A—C29A1.470 (3)
C28B—O1B1.346 (3)C28A—O1A1.346 (3)
C28B—O2B1.212 (3)C28A—O2A1.215 (3)
C29B—H29B0.9500C29A—H29A0.9500
C29B—C30B1.332 (3)C29A—C30A1.341 (3)
C30B—H30B0.9500C30A—H30A0.9500
C30B—C31B1.465 (3)C30A—C31A1.461 (3)
C31B—C32B1.399 (3)C31A—C32A1.404 (3)
C31B—C36B1.399 (3)C31A—C36A1.396 (3)
C32B—H32B0.9500C32A—H32A0.9500
C32B—C33B1.388 (3)C32A—C33A1.379 (3)
C33B—H33B0.9500C33A—H33A0.9500
C33B—C34B1.395 (3)C33A—C34A1.397 (3)
C34B—C35B1.389 (3)C34A—C35A1.400 (3)
C34B—O3B1.366 (3)C34A—O3A1.360 (3)
C35B—H35B0.9500C35A—H35A0.9500
C35B—C36B1.383 (3)C35A—C36A1.388 (3)
C36B—H36B0.9500C36A—H36A0.9500
C37B—H37C0.9900C37A—H37A0.9900
C37B—H37D0.9900C37A—H37B0.9900
C37B—C38B1.516 (3)C37A—C38A1.511 (3)
C37B—O3B1.432 (3)C37A—O3A1.436 (3)
C38B—H38D0.9800C38A—H38A0.9800
C38B—H38E0.9800C38A—H38B0.9800
C38B—H38F0.9800C38A—H38C0.9800
H1BA—C1B—H1BB107.7H1AA—C1A—H1AB107.8
C2B—C1B—H1BA108.8C2A—C1A—H1AA109.0
C2B—C1B—H1BB108.8C2A—C1A—H1AB109.0
C2B—C1B—C10B113.88 (17)C2A—C1A—C10A112.90 (19)
C10B—C1B—H1BA108.8C10A—C1A—H1AA109.0
C10B—C1B—H1BB108.8C10A—C1A—H1AB109.0
C1B—C2B—H2BA109.8C1A—C2A—H2AA109.6
C1B—C2B—H2BB109.8C1A—C2A—H2AB109.6
H2BA—C2B—H2BB108.2H2AA—C2A—H2AB108.2
C3B—C2B—C1B109.51 (18)C3A—C2A—C1A110.1 (2)
C3B—C2B—H2BA109.8C3A—C2A—H2AA109.6
C3B—C2B—H2BB109.8C3A—C2A—H2AB109.6
C2B—C3B—H3B109.6C2A—C3A—H3A109.9
C2B—C3B—C4B111.37 (18)C4A—C3A—C2A111.1 (2)
C4B—C3B—H3B109.6C4A—C3A—H3A109.9
O1B—C3B—C2B106.53 (17)O1A—C3A—C2A109.28 (18)
O1B—C3B—H3B109.6O1A—C3A—H3A109.9
O1B—C3B—C4B109.97 (17)O1A—C3A—C4A106.86 (18)
C3B—C4B—H4BA109.4C3A—C4A—H4AA109.3
C3B—C4B—H4BB109.4C3A—C4A—H4AB109.3
H4BA—C4B—H4BB108.0C3A—C4A—C5A111.79 (19)
C5B—C4B—C3B111.38 (17)H4AA—C4A—H4AB107.9
C5B—C4B—H4BA109.4C5A—C4A—H4AA109.3
C5B—C4B—H4BB109.4C5A—C4A—H4AB109.3
C4B—C5B—C10B116.27 (18)C4A—C5A—C10A116.48 (17)
C6B—C5B—C4B120.64 (19)C6A—C5A—C4A120.1 (2)
C6B—C5B—C10B123.06 (18)C6A—C5A—C10A123.35 (19)
C5B—C6B—H6B117.4C5A—C6A—H6A117.7
C5B—C6B—C7B125.2 (2)C5A—C6A—C7A124.6 (2)
C7B—C6B—H6B117.4C7A—C6A—H6A117.7
C6B—C7B—H7BA109.2C6A—C7A—H7AA109.1
C6B—C7B—H7BB109.2C6A—C7A—H7AB109.1
C6B—C7B—C8B111.99 (17)C6A—C7A—C8A112.57 (19)
H7BA—C7B—H7BB107.9H7AA—C7A—H7AB107.8
C8B—C7B—H7BA109.2C8A—C7A—H7AA109.1
C8B—C7B—H7BB109.2C8A—C7A—H7AB109.1
C7B—C8B—H8B108.8C7A—C8A—H8A108.7
C7B—C8B—C9B109.31 (17)C7A—C8A—C9A109.95 (19)
C9B—C8B—H8B108.8C9A—C8A—H8A108.7
C14B—C8B—C7B111.26 (17)C14A—C8A—C7A110.50 (18)
C14B—C8B—H8B108.8C14A—C8A—H8A108.7
C14B—C8B—C9B109.81 (16)C14A—C8A—C9A110.34 (18)
C8B—C9B—H9B106.4C8A—C9A—H9A106.5
C8B—C9B—C10B111.54 (16)C8A—C9A—C10A111.39 (18)
C10B—C9B—H9B106.4C8A—C9A—C11A112.11 (17)
C11B—C9B—C8B113.04 (17)C10A—C9A—H9A106.5
C11B—C9B—H9B106.4C11A—C9A—H9A106.5
C11B—C9B—C10B112.56 (17)C11A—C9A—C10A113.40 (17)
C1B—C10B—C9B108.67 (16)C1A—C10A—C9A108.91 (18)
C5B—C10B—C1B108.76 (17)C5A—C10A—C1A108.35 (18)
C5B—C10B—C9B109.33 (17)C5A—C10A—C9A110.11 (16)
C5B—C10B—C19B109.07 (17)C5A—C10A—C19A108.81 (19)
C19B—C10B—C1B109.34 (18)C19A—C10A—C1A109.54 (19)
C19B—C10B—C9B111.62 (17)C19A—C10A—C9A111.08 (18)
C9B—C11B—H11C108.6C9A—C11A—H11A108.7
C9B—C11B—H11D108.6C9A—C11A—H11B108.7
H11C—C11B—H11D107.6C9A—C11A—C12A114.31 (17)
C12B—C11B—C9B114.64 (18)H11A—C11A—H11B107.6
C12B—C11B—H11C108.6C12A—C11A—H11A108.7
C12B—C11B—H11D108.6C12A—C11A—H11B108.7
C11B—C12B—H12C109.4C11A—C12A—H12A109.3
C11B—C12B—H12D109.4C11A—C12A—H12B109.3
H12C—C12B—H12D108.0H12A—C12A—H12B107.9
C13B—C12B—C11B111.00 (17)C13A—C12A—C11A111.66 (18)
C13B—C12B—H12C109.4C13A—C12A—H12A109.3
C13B—C12B—H12D109.4C13A—C12A—H12B109.3
C12B—C13B—C14B105.91 (16)C12A—C13A—C14A106.12 (17)
C12B—C13B—C17B117.08 (17)C12A—C13A—C17A117.86 (18)
C12B—C13B—C18B111.16 (18)C12A—C13A—C18A110.86 (18)
C14B—C13B—C17B100.30 (16)C14A—C13A—C17A99.16 (16)
C18B—C13B—C14B112.33 (17)C18A—C13A—C14A112.57 (18)
C18B—C13B—C17B109.57 (17)C18A—C13A—C17A109.73 (18)
C8B—C14B—C13B114.59 (17)C8A—C14A—C13A115.12 (17)
C8B—C14B—H14B106.5C8A—C14A—H14A106.1
C8B—C14B—C15B117.44 (16)C8A—C14A—C15A117.55 (19)
C13B—C14B—H14B106.5C13A—C14A—H14A106.1
C15B—C14B—C13B104.70 (16)C15A—C14A—C13A105.03 (17)
C15B—C14B—H14B106.5C15A—C14A—H14A106.1
C14B—C15B—H15C110.9C14A—C15A—H15A110.9
C14B—C15B—H15D110.9C14A—C15A—H15B110.9
C14B—C15B—C16B104.28 (16)C14A—C15A—C16A104.10 (18)
H15C—C15B—H15D108.9H15A—C15A—H15B109.0
C16B—C15B—H15C110.9C16A—C15A—H15A110.9
C16B—C15B—H15D110.9C16A—C15A—H15B110.9
C15B—C16B—H16C110.3C15A—C16A—H16A110.3
C15B—C16B—H16D110.3C15A—C16A—H16B110.3
C15B—C16B—C17B106.99 (16)C15A—C16A—C17A106.92 (17)
H16C—C16B—H16D108.6H16A—C16A—H16B108.6
C17B—C16B—H16C110.3C17A—C16A—H16A110.3
C17B—C16B—H16D110.3C17A—C16A—H16B110.3
C13B—C17B—H17B107.3C13A—C17A—H17A107.3
C16B—C17B—C13B102.90 (16)C16A—C17A—C13A103.59 (17)
C16B—C17B—H17B107.3C16A—C17A—H17A107.3
C20B—C17B—C13B118.39 (17)C20A—C17A—C13A119.42 (17)
C20B—C17B—C16B113.14 (17)C20A—C17A—C16A111.31 (18)
C20B—C17B—H17B107.3C20A—C17A—H17A107.3
C13B—C18B—H18D109.5C13A—C18A—H18A109.5
C13B—C18B—H18E109.5C13A—C18A—H18B109.5
C13B—C18B—H18F109.5C13A—C18A—H18C109.5
H18D—C18B—H18E109.5H18A—C18A—H18B109.5
H18D—C18B—H18F109.5H18A—C18A—H18C109.5
H18E—C18B—H18F109.5H18B—C18A—H18C109.5
C10B—C19B—H19D109.5C10A—C19A—H19A109.5
C10B—C19B—H19E109.5C10A—C19A—H19B109.5
C10B—C19B—H19F109.5C10A—C19A—H19C109.5
H19D—C19B—H19E109.5H19A—C19A—H19B109.5
H19D—C19B—H19F109.5H19A—C19A—H19C109.5
H19E—C19B—H19F109.5H19B—C19A—H19C109.5
C17B—C20B—H20B108.0C17A—C20A—H20A108.1
C17B—C20B—C22B110.32 (17)C17A—C20A—C22A110.02 (18)
C21B—C20B—C17B111.76 (18)C21A—C20A—C17A111.94 (19)
C21B—C20B—H20B108.0C21A—C20A—H20A108.1
C21B—C20B—C22B110.54 (19)C21A—C20A—C22A110.57 (19)
C22B—C20B—H20B108.0C22A—C20A—H20A108.1
C20B—C21B—H21D109.5C20A—C21A—H21A109.5
C20B—C21B—H21E109.5C20A—C21A—H21B109.5
C20B—C21B—H21F109.5C20A—C21A—H21C109.5
H21D—C21B—H21E109.5H21A—C21A—H21B109.5
H21D—C21B—H21F109.5H21A—C21A—H21C109.5
H21E—C21B—H21F109.5H21B—C21A—H21C109.5
C20B—C22B—H22C108.7C20A—C22A—H22A108.6
C20B—C22B—H22D108.7C20A—C22A—H22B108.6
H22C—C22B—H22D107.6H22A—C22A—H22B107.5
C23B—C22B—C20B114.32 (19)C23A—C22A—C20A114.86 (19)
C23B—C22B—H22C108.7C23A—C22A—H22A108.6
C23B—C22B—H22D108.7C23A—C22A—H22B108.6
C22B—C23B—H23C109.1C22A—C23A—H23A109.1
C22B—C23B—H23D109.1C22A—C23A—H23B109.1
H23C—C23B—H23D107.9H23A—C23A—H23B107.8
C24B—C23B—C22B112.40 (19)C24A—C23A—C22A112.53 (19)
C24B—C23B—H23C109.1C24A—C23A—H23A109.1
C24B—C23B—H23D109.1C24A—C23A—H23B109.1
C23B—C24B—H24C108.7C23A—C24A—H24A108.6
C23B—C24B—H24D108.7C23A—C24A—H24B108.6
C23B—C24B—C25B114.41 (19)C23A—C24A—C25A114.57 (19)
H24C—C24B—H24D107.6H24A—C24A—H24B107.6
C25B—C24B—H24C108.7C25A—C24A—H24A108.6
C25B—C24B—H24D108.7C25A—C24A—H24B108.6
C24B—C25B—H25B107.7C24A—C25A—H25A107.8
C26B—C25B—C24B112.1 (2)C26A—C25A—C24A112.0 (2)
C26B—C25B—H25B107.7C26A—C25A—H25A107.8
C26B—C25B—C27B110.6 (2)C26A—C25A—C27A111.0 (2)
C27B—C25B—C24B110.86 (19)C27A—C25A—C24A110.2 (2)
C27B—C25B—H25B107.7C27A—C25A—H25A107.8
C25B—C26B—H26D109.5C25A—C26A—H26A109.5
C25B—C26B—H26E109.5C25A—C26A—H26B109.5
C25B—C26B—H26F109.5C25A—C26A—H26C109.5
H26D—C26B—H26E109.5H26A—C26A—H26B109.5
H26D—C26B—H26F109.5H26A—C26A—H26C109.5
H26E—C26B—H26F109.5H26B—C26A—H26C109.5
C25B—C27B—H27D109.5C25A—C27A—H27A109.5
C25B—C27B—H27E109.5C25A—C27A—H27B109.5
C25B—C27B—H27F109.5C25A—C27A—H27C109.5
H27D—C27B—H27E109.5H27A—C27A—H27B109.5
H27D—C27B—H27F109.5H27A—C27A—H27C109.5
H27E—C27B—H27F109.5H27B—C27A—H27C109.5
O1B—C28B—C29B110.6 (2)O1A—C28A—C29A111.56 (19)
O2B—C28B—C29B125.6 (2)O2A—C28A—C29A124.9 (2)
O2B—C28B—O1B123.8 (2)O2A—C28A—O1A123.6 (2)
C28B—C29B—H29B119.9C28A—C29A—H29A120.1
C30B—C29B—C28B120.2 (2)C30A—C29A—C28A119.9 (2)
C30B—C29B—H29B119.9C30A—C29A—H29A120.1
C29B—C30B—H30B116.3C29A—C30A—H30A115.7
C29B—C30B—C31B127.4 (2)C29A—C30A—C31A128.7 (2)
C31B—C30B—H30B116.3C31A—C30A—H30A115.7
C32B—C31B—C30B123.1 (2)C32A—C31A—C30A118.1 (2)
C32B—C31B—C36B117.71 (19)C36A—C31A—C30A124.1 (2)
C36B—C31B—C30B119.1 (2)C36A—C31A—C32A117.68 (19)
C31B—C32B—H32B119.2C31A—C32A—H32A119.2
C33B—C32B—C31B121.6 (2)C33A—C32A—C31A121.6 (2)
C33B—C32B—H32B119.2C33A—C32A—H32A119.2
C32B—C33B—H33B120.3C32A—C33A—H33A120.1
C32B—C33B—C34B119.3 (2)C32A—C33A—C34A119.9 (2)
C34B—C33B—H33B120.3C34A—C33A—H33A120.1
C35B—C34B—C33B120.1 (2)C33A—C34A—C35A119.6 (2)
O3B—C34B—C33B124.3 (2)O3A—C34A—C33A115.1 (2)
O3B—C34B—C35B115.6 (2)O3A—C34A—C35A125.3 (2)
C34B—C35B—H35B120.1C34A—C35A—H35A120.2
C36B—C35B—C34B119.8 (2)C36A—C35A—C34A119.6 (2)
C36B—C35B—H35B120.1C36A—C35A—H35A120.2
C31B—C36B—H36B119.3C31A—C36A—H36A119.2
C35B—C36B—C31B121.4 (2)C35A—C36A—C31A121.6 (2)
C35B—C36B—H36B119.3C35A—C36A—H36A119.2
H37C—C37B—H37D108.6H37A—C37A—H37B108.6
C38B—C37B—H37C110.3C38A—C37A—H37A110.4
C38B—C37B—H37D110.3C38A—C37A—H37B110.4
O3B—C37B—H37C110.3O3A—C37A—H37A110.4
O3B—C37B—H37D110.3O3A—C37A—H37B110.4
O3B—C37B—C38B107.1 (2)O3A—C37A—C38A106.4 (2)
C37B—C38B—H38D109.5C37A—C38A—H38A109.5
C37B—C38B—H38E109.5C37A—C38A—H38B109.5
C37B—C38B—H38F109.5C37A—C38A—H38C109.5
H38D—C38B—H38E109.5H38A—C38A—H38B109.5
H38D—C38B—H38F109.5H38A—C38A—H38C109.5
H38E—C38B—H38F109.5H38B—C38A—H38C109.5
C28B—O1B—C3B116.80 (18)C28A—O1A—C3A116.53 (18)
C34B—O3B—C37B118.36 (19)C34A—O3A—C37A118.18 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33B—H33B···O2Bi0.952.563.389 (3)145
C37B—H37C···O2Bi0.992.593.425 (3)142
C37A—H37B···O2Aii0.992.403.362 (3)163
Symmetry codes: (i) x+2, y+1/2, z+2; (ii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC38H56O3
Mr560.83
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)11.6919 (5), 10.5844 (4), 27.3230 (11)
β (°) 101.226 (1)
V3)3316.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.25 × 0.08 × 0.07
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.714, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
45080, 7947, 7272
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.06
No. of reflections7947
No. of parameters751
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) within OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33B—H33B···O2Bi0.952.563.389 (3)145
C37B—H37C···O2Bi0.992.593.425 (3)142
C37A—H37B···O2Aii0.992.403.362 (3)163
Symmetry codes: (i) x+2, y+1/2, z+2; (ii) x+1, y1/2, z+1.
Cremer and Pople puckering parameters (Q, θ, φ) top
RingAtomsQ(Å )iθ (°)iφ (°)iQ(Å )iiθ (°)iiφ (°)ii
A(C1-C2-C3-C4-C5-C10)i,ii0.551 (3)7.4 (2)58 (2)0.546 (2)7.0 (2)73.3 (19)
B(C5-C6-C7-C8-C9-C10)i,ii0.496 (2)51.2 (3)211.8 (4)0.509 (2)51.1 (2)213.9 (3)
C(C8-C9-C11-C12-C13-C14)i,ii0.560 (2)8.7 (2)250.9 (16)0.565 (2)11.2 (2)249.6 (11)
D(C13-C14-C15-C16-C17)i,ii0.457 (2)-186.7 (3)0.452 (2)-184.1 (3)
i: molecule A; ii: molecule B.
 

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDong, X., Guo, J. & Wei, J. (2010). Chin. J. Chem. Phys. 23, 719–725.  Web of Science CrossRef CAS Google Scholar
First citationKutulya, L. A., Cherkashina, R. M., Tishchenko, V. G., Surov, Yu. N. & Polishchuk, A. G. (1983). Zh. Obshch. Khim. 53, 1665–1668.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiri, D., Siri, A. G. & Tordo, P. (2002). J. Mol. Struct. 582, 171–185.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, Y., Tsuchiya, H., Suzuki, M., Tsuda, K., Takano, J. & Kurihara, H. (1981). Mol. Cryst. Liq. Cryst. 68, 113–125.  CrossRef CAS Google Scholar
First citationThiemann, T., al-Sulaibi, M., Al-Jasem, Y. & al-Hindawi, B. (2011). Proc. 15th Int. Electron. Conf. Synth. Org. Chem. 1–30 November 2011. Sciforum Electronic Conferences Series.  Google Scholar
First citationVora, R. A. (1976). Curr. Sci. 45, 538–539.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds