organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-aminona­phtho[2,1-b]furan-2-carboxyl­ate

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, bDepartment of Chemistry, Kuvempu University, Shankaraghatta 577 451, India, and cDepartment of Physics, Faculty of Science, An Najah National University, Nabtus, West Bank, Palestinian Territories
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in

(Received 24 May 2012; accepted 4 June 2012; online 16 June 2012)

In the title compound, C15H13NO3, there is intra­molecular N—H⋯O hydrogen bond between the amino group and the ester carbonyl O atom and the dihedral angle between the aromatic ring and the ester group is 2.05 (15)°. In the crystal, mol­ecules are connected by N—H⋯O hydrogen bonds into chains parallel to [010]. In addition there are short C—H⋯O inter­actions and ππ stacking inter­actions with a distance of 3.555 (2) Å between the centroids of the furan and benzene rings.

Related literature

For bioactivity of naphtho­furan compounds, see: Nagaraja et al. (2006[Nagaraja, G. K., Prakash, G. K., Satyanarayan, N. D., Vaidya, V. P. & Mahadevan, K. M. (2006). ARKIVOC, XV, 142-152.]); Mahadevan et al. (2005[Mahadevan, K. M., Basavaraj, K. M., Prathima Mathias, D. A. & Vaidya, V. P. (2005). Indian J. Chem. Section B, 44, 789-793.]). For similar structures, see: Shruthi et al. (2012[Shruthi, E., Madan, K. S., Kusuma, K., Manjunath, H. R., Vaidya, V. P., Sridhar, M. A. & Lokanth, N. K. (2012). Anal. Sci. X-ray Struct. Anal. Online, 28, 23-24.]). For the synthesis of the title compound, see: Veena et al. (2011[Veena, K., Shashikaladevi, K., Shanmukha, I., Ramaiah, V. & Vaidya, V. P. (2011). Pharmacology Online, 1, 304-316.])

[Scheme 1]

Experimental

Crystal data
  • C15H13NO3

  • Mr = 255.26

  • Orthorhombic, P 21 21 21

  • a = 6.2217 (5) Å

  • b = 8.3795 (6) Å

  • c = 23.4692 (17) Å

  • V = 1223.56 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 103 K

  • 0.28 × 0.22 × 0.22 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • 18171 measured reflections

  • 1288 independent reflections

  • 1093 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.117

  • S = 1.03

  • 1288 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O2 0.86 2.30 2.872 (4) 124
N4—H4B⋯O2i 0.86 2.29 3.027 (4) 144
C9—H9⋯O2i 0.93 2.50 3.308 (4) 146
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Various derivatives of naphtho[2,1-b]furan synthesized in our laboratory have been shown to possess broad spectrum of pharmacological and biological activities (Nagaraja et al., 2006).

The title compound was synthesized as an intermediate in the synthesis of aza heterocyclic derivative of naphtho[2,1-b]furan. The synthesis of the title compound was reported by Veena et al. (2011).

The ORTEP drawing of the title molecule is shown in Fig. 1. The naphthofuran system is basically planar and its geometry is similar to ethyl naphtho[2,1- b]furan-2-carboxylate (Shruthi et al., 2012). The dihedral angle between aromatic ring and the ester group is 2.05 (15)°.

The molecules are connected by N-H···O interactions into chains along the b axis (Fig. 2). There are π-π stacking interactions between molecules related by unit translation along the a axis with the distance of 3.555 (2) Å between centroids of the furan and benzene rings.

Related literature top

For bioactivity of naphthofuran compounds, see: Nagaraja et al. (2006); Mahadevan et al. (2005). For similar structures, see: Shruthi et al. (2012). For the synthesis of the title compound, see: Veena et al. (2011)

Experimental top

Ethyl 3-aminonaphtho[2,1-b]furan-2-carboxylate was synthesized as per the procedure reported in the literature (Veena et al., 2011). The final product was obtained by recrystallization using aqueous ethanol as a solvent. Slow evaporation method yielded crystals.

Refinement top

In the absence of significant anomalous dispersion effects Friedel pairs have been merged. All the hydrogen atoms of the compound are fixed geometrically (N-H = 0.86 and C-H= 0.93-0.97 Å) and allowed to ride on their parent atoms.

Structure description top

Various derivatives of naphtho[2,1-b]furan synthesized in our laboratory have been shown to possess broad spectrum of pharmacological and biological activities (Nagaraja et al., 2006).

The title compound was synthesized as an intermediate in the synthesis of aza heterocyclic derivative of naphtho[2,1-b]furan. The synthesis of the title compound was reported by Veena et al. (2011).

The ORTEP drawing of the title molecule is shown in Fig. 1. The naphthofuran system is basically planar and its geometry is similar to ethyl naphtho[2,1- b]furan-2-carboxylate (Shruthi et al., 2012). The dihedral angle between aromatic ring and the ester group is 2.05 (15)°.

The molecules are connected by N-H···O interactions into chains along the b axis (Fig. 2). There are π-π stacking interactions between molecules related by unit translation along the a axis with the distance of 3.555 (2) Å between centroids of the furan and benzene rings.

For bioactivity of naphthofuran compounds, see: Nagaraja et al. (2006); Mahadevan et al. (2005). For similar structures, see: Shruthi et al. (2012). For the synthesis of the title compound, see: Veena et al. (2011)

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the crystallographic a axis. N—H···O hydrogen bonds are indicated by dashed lines.
Ethyl 1-aminonaphtho[2,1-b]furan-2-carboxylate top
Crystal data top
C15H13NO3F(000) = 536
Mr = 255.26Dx = 1.386 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1288 reflections
a = 6.2217 (5) Åθ = 1.7–25.0°
b = 8.3795 (6) ŵ = 0.10 mm1
c = 23.4692 (17) ÅT = 103 K
V = 1223.56 (16) Å3Block, colorless
Z = 40.28 × 0.22 × 0.22 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
1093 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.064
Graphite monochromatorθmax = 25.0°, θmin = 1.7°
Detector resolution: 16.0839 pixels mm-1h = 77
ω scansk = 99
18171 measured reflectionsl = 2726
1288 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0749P)2 + 0.4783P]
where P = (Fo2 + 2Fc2)/3
1288 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C15H13NO3V = 1223.56 (16) Å3
Mr = 255.26Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.2217 (5) ŵ = 0.10 mm1
b = 8.3795 (6) ÅT = 103 K
c = 23.4692 (17) Å0.28 × 0.22 × 0.22 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
1093 reflections with I > 2σ(I)
18171 measured reflectionsRint = 0.064
1288 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
1288 reflectionsΔρmin = 0.36 e Å3
173 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9439 (3)0.7967 (3)0.08591 (8)0.0215 (7)
O20.7201 (4)0.7539 (3)0.22562 (9)0.0245 (7)
O30.6156 (4)0.6531 (3)0.14062 (9)0.0243 (7)
N41.0980 (4)0.9507 (3)0.22348 (11)0.0233 (8)
C50.9186 (5)0.8149 (4)0.14469 (12)0.0196 (9)
C61.0771 (5)0.9106 (4)0.16666 (13)0.0200 (10)
C71.2157 (5)0.9524 (4)0.11969 (12)0.0194 (9)
C81.4090 (5)1.0413 (4)0.11392 (13)0.0199 (9)
C91.5215 (5)1.1151 (4)0.15900 (13)0.0220 (9)
C101.7085 (5)1.1961 (4)0.14924 (14)0.0258 (10)
C111.7922 (6)1.2091 (4)0.09382 (14)0.0276 (10)
C121.6865 (6)1.1397 (4)0.04934 (14)0.0263 (11)
C131.4948 (6)1.0545 (4)0.05737 (13)0.0226 (9)
C141.3886 (6)0.9777 (4)0.01060 (13)0.0252 (10)
C151.2054 (6)0.8914 (4)0.01695 (12)0.0241 (10)
C161.1224 (5)0.8797 (4)0.07259 (13)0.0201 (9)
C170.7458 (5)0.7406 (4)0.17366 (13)0.0197 (10)
C180.4392 (5)0.5720 (4)0.16960 (14)0.0249 (10)
C190.3046 (6)0.4943 (4)0.12417 (15)0.0302 (11)
H4A1.007400.914800.248000.0280*
H4B1.201601.011500.234300.0280*
H91.467501.108400.195900.0260*
H101.781001.243200.179600.0310*
H111.919401.264700.087500.0330*
H121.742801.149200.012800.0320*
H141.447600.987400.025600.0300*
H151.138300.842500.013900.0290*
H18A0.353900.648000.191100.0300*
H18B0.494600.492300.195700.0300*
H19A0.253900.574100.098100.0450*
H19B0.184100.441700.141500.0450*
H19C0.389900.417500.103900.0450*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0281 (12)0.0267 (12)0.0098 (10)0.0011 (11)0.0003 (9)0.0002 (9)
O20.0339 (13)0.0273 (13)0.0122 (11)0.0006 (12)0.0006 (9)0.0017 (9)
O30.0282 (12)0.0274 (12)0.0173 (11)0.0038 (11)0.0004 (9)0.0010 (9)
N40.0301 (15)0.0319 (15)0.0080 (12)0.0032 (15)0.0007 (11)0.0010 (11)
C50.0276 (17)0.0217 (16)0.0094 (13)0.0001 (16)0.0013 (13)0.0003 (12)
C60.0288 (18)0.0185 (17)0.0126 (15)0.0043 (15)0.0007 (13)0.0009 (12)
C70.0282 (17)0.0197 (16)0.0104 (14)0.0061 (15)0.0012 (14)0.0007 (12)
C80.0270 (17)0.0173 (16)0.0153 (15)0.0042 (16)0.0013 (14)0.0020 (12)
C90.0255 (17)0.0211 (16)0.0193 (16)0.0032 (16)0.0019 (14)0.0002 (13)
C100.0281 (18)0.0224 (18)0.0268 (17)0.0030 (17)0.0058 (14)0.0010 (15)
C110.0261 (18)0.0242 (18)0.0324 (18)0.0009 (17)0.0018 (15)0.0057 (15)
C120.0325 (19)0.0256 (19)0.0207 (17)0.0016 (16)0.0074 (15)0.0033 (14)
C130.0289 (17)0.0212 (17)0.0177 (15)0.0065 (16)0.0020 (14)0.0009 (13)
C140.038 (2)0.0237 (18)0.0138 (15)0.0006 (18)0.0060 (14)0.0007 (13)
C150.0369 (19)0.0236 (18)0.0119 (15)0.0025 (17)0.0006 (14)0.0037 (13)
C160.0236 (16)0.0209 (16)0.0157 (15)0.0016 (15)0.0002 (13)0.0022 (13)
C170.0237 (17)0.0177 (17)0.0177 (16)0.0021 (15)0.0026 (13)0.0007 (13)
C180.0269 (18)0.0228 (18)0.0249 (17)0.0034 (16)0.0020 (14)0.0014 (14)
C190.033 (2)0.0276 (19)0.0300 (19)0.0028 (17)0.0091 (16)0.0003 (15)
Geometric parameters (Å, º) top
O1—C51.397 (3)C11—C121.364 (5)
O1—C161.347 (4)C12—C131.403 (5)
O2—C171.235 (4)C13—C141.434 (5)
O3—C171.340 (4)C14—C151.358 (5)
O3—C181.459 (4)C15—C161.408 (4)
N4—C61.381 (4)C18—C191.504 (5)
N4—H4A0.8600C9—H90.9300
N4—H4B0.8600C10—H100.9300
C5—C171.416 (4)C11—H110.9300
C5—C61.372 (4)C12—H120.9300
C6—C71.443 (4)C14—H140.9300
C7—C161.389 (4)C15—H150.9300
C7—C81.421 (4)C18—H18A0.9700
C8—C91.411 (4)C18—H18B0.9700
C8—C131.435 (4)C19—H19A0.9600
C9—C101.366 (4)C19—H19B0.9600
C10—C111.405 (5)C19—H19C0.9600
C5—O1—C16105.4 (2)O1—C16—C15123.6 (3)
C17—O3—C18116.1 (2)O2—C17—O3122.9 (3)
H4A—N4—H4B120.00O2—C17—C5122.2 (3)
C6—N4—H4B120.00O3—C17—C5114.9 (3)
C6—N4—H4A120.00O3—C18—C19106.9 (3)
C6—C5—C17128.5 (3)C8—C9—H9119.00
O1—C5—C17120.8 (3)C10—C9—H9120.00
O1—C5—C6110.7 (3)C9—C10—H10120.00
N4—C6—C5125.0 (3)C11—C10—H10120.00
N4—C6—C7128.5 (3)C10—C11—H11120.00
C5—C6—C7106.5 (3)C12—C11—H11120.00
C8—C7—C16120.5 (3)C11—C12—H12119.00
C6—C7—C8134.9 (3)C13—C12—H12119.00
C6—C7—C16104.6 (3)C13—C14—H14119.00
C7—C8—C9125.3 (3)C15—C14—H14119.00
C7—C8—C13116.3 (3)C14—C15—H15122.00
C9—C8—C13118.4 (3)C16—C15—H15122.00
C8—C9—C10121.0 (3)O3—C18—H18A110.00
C9—C10—C11120.6 (3)O3—C18—H18B110.00
C10—C11—C12119.8 (3)C19—C18—H18A110.00
C11—C12—C13121.6 (3)C19—C18—H18B110.00
C8—C13—C14120.1 (3)H18A—C18—H18B109.00
C8—C13—C12118.7 (3)C18—C19—H19A109.00
C12—C13—C14121.2 (3)C18—C19—H19B109.00
C13—C14—C15122.8 (3)C18—C19—H19C109.00
C14—C15—C16116.5 (3)H19A—C19—H19B109.00
C7—C16—C15123.7 (3)H19A—C19—H19C109.00
O1—C16—C7112.7 (3)H19B—C19—H19C109.00
C16—O1—C5—C61.3 (4)C16—C7—C8—C131.9 (5)
C16—O1—C5—C17179.2 (3)C6—C7—C16—O10.8 (4)
C5—O1—C16—C70.3 (4)C6—C7—C16—C15179.3 (3)
C5—O1—C16—C15179.7 (3)C8—C7—C16—O1178.2 (3)
C18—O3—C17—O20.3 (4)C8—C7—C16—C151.8 (5)
C18—O3—C17—C5178.6 (3)C7—C8—C9—C10178.9 (3)
C17—O3—C18—C19175.1 (3)C13—C8—C9—C100.5 (5)
O1—C5—C6—N4179.5 (3)C7—C8—C13—C12179.4 (3)
O1—C5—C6—C71.8 (4)C7—C8—C13—C141.2 (5)
C17—C5—C6—N41.1 (6)C9—C8—C13—C120.1 (5)
C17—C5—C6—C7178.8 (3)C9—C8—C13—C14178.3 (3)
O1—C5—C17—O2179.6 (3)C8—C9—C10—C110.6 (5)
O1—C5—C17—O30.7 (4)C9—C10—C11—C120.3 (5)
C6—C5—C17—O21.0 (6)C10—C11—C12—C130.1 (5)
C6—C5—C17—O3179.9 (3)C11—C12—C13—C80.2 (5)
N4—C6—C7—C80.4 (6)C11—C12—C13—C14178.0 (3)
N4—C6—C7—C16179.1 (3)C8—C13—C14—C150.4 (5)
C5—C6—C7—C8177.2 (4)C12—C13—C14—C15178.6 (3)
C5—C6—C7—C161.5 (4)C13—C14—C15—C160.2 (5)
C6—C7—C8—C91.0 (6)C14—C15—C16—O1179.1 (3)
C6—C7—C8—C13179.6 (4)C14—C15—C16—C70.9 (5)
C16—C7—C8—C9177.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O20.862.302.872 (4)124
N4—H4B···O2i0.862.293.027 (4)144
C9—H9···O2i0.932.503.308 (4)146
Symmetry code: (i) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13NO3
Mr255.26
Crystal system, space groupOrthorhombic, P212121
Temperature (K)103
a, b, c (Å)6.2217 (5), 8.3795 (6), 23.4692 (17)
V3)1223.56 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.28 × 0.22 × 0.22
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18171, 1288, 1093
Rint0.064
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.117, 1.03
No. of reflections1288
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.36

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O20.862.302.872 (4)124
N4—H4B···O2i0.862.293.027 (4)144
C9—H9···O2i0.932.503.308 (4)146
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

Acknowledgements

MKS thanks Research Cell, SBRR Mahajana First Grade College. SE, SAM and VVP are thankful to the UGC and the Department of Chemistry, Kuvempu University, Shankaraghatta, for financial assistance and laboratory facilities.

References

First citationMahadevan, K. M., Basavaraj, K. M., Prathima Mathias, D. A. & Vaidya, V. P. (2005). Indian J. Chem. Section B, 44, 789–793.  Google Scholar
First citationNagaraja, G. K., Prakash, G. K., Satyanarayan, N. D., Vaidya, V. P. & Mahadevan, K. M. (2006). ARKIVOC, XV, 142–152.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShruthi, E., Madan, K. S., Kusuma, K., Manjunath, H. R., Vaidya, V. P., Sridhar, M. A. & Lokanth, N. K. (2012). Anal. Sci. X-ray Struct. Anal. Online, 28, 23–24.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVeena, K., Shashikaladevi, K., Shanmukha, I., Ramaiah, V. & Vaidya, V. P. (2011). Pharmacology Online, 1, 304–316.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds