metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­­[5-(pyridin-3-yl)tetra­zolido-κN5]manganese(II) tetra­hydrate

aDepartment of Chemistry, College of Science, Shanghai University, Shanghai, 200444, People's Republic of China, and bLaboratory for Microstructures, Shanghai University, Shanghai 200444, People's Republic of China
*Correspondence e-mail: mx_li@mail.shu.edu.cn

(Received 27 May 2012; accepted 1 June 2012; online 13 June 2012)

The title compound, [Mn(C6H4N5)2(H2O)4]·4H2O, was obtained by the solution reaction of MnCl2 and 3-(2H-tetra­zol-5-yl)pyridine. The MnII atom, located on an inversion center, shows a slightly distorted octa­hedral geometry and is coordinated by two pyridine N atoms from two 5-(pyridin-3-yl)tetra­zolide ligands occupying trans positions and four water mol­ecules. In the crystal, the mononuclear complex mol­ecules and solvent water mol­ecules are connected into a three-dimensional framework by O—H⋯N and O—H⋯O hydrogen bonds.

Related literature

For the synthesis and crystal structure of the isotypic zinc(II) complex [Zn(C6H4N5)2(H2O)4]·4H2O, see: Mu et al. (2010[Mu, Y.-Q., Zhao, J. & Li, C. (2010). Acta Cryst. E66, m1667.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C6H4N5)2(H2O)4]·4H2O

  • Mr = 491.35

  • Triclinic, [P \overline 1]

  • a = 8.137 (8) Å

  • b = 8.629 (8) Å

  • c = 8.761 (8) Å

  • α = 84.878 (10)°

  • β = 65.347 (8)°

  • γ = 72.571 (10)°

  • V = 533.0 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 293 K

  • 0.15 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.922, Tmax = 0.934

  • 2785 measured reflections

  • 1850 independent reflections

  • 1712 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.080

  • S = 1.05

  • 1850 reflections

  • 143 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O4i 0.85 1.94 2.783 (3) 172
O1—H1A⋯N5ii 0.85 1.91 2.731 (3) 163
O2—H2A⋯O3iii 0.85 1.99 2.836 (3) 171
O2—H2B⋯O3iv 0.85 1.96 2.800 (3) 169
O3—H3B⋯O4 0.85 1.96 2.803 (3) 171
O3—H3A⋯N2 0.85 1.96 2.797 (3) 170
O4—H4B⋯N3v 0.85 2.03 2.878 (3) 177
O4—H4A⋯N4vi 0.85 2.00 2.849 (3) 176
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+2, -z; (iii) x+1, y, z; (iv) -x+1, -y+2, -z+1; (v) -x, -y+1, -z+1; (vi) x, y, z+1.

Data collection: APEX2 (Bruker, 2000[Bruker (2000). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

3-(2H-Tetrazol-5-yl)pyridine (3-Ptz) is a multifunctional ligand which possesses five potential coordinate nitrogen atoms. Recently Mu et al. (2010) reported that hydrothermal reaction of Zn(OAc)2 with 3-Ptz results in a mononuclear zinc complex [Zn(C6H4N5)2(H2O)4].4H2O. We were able to prepare an analogues manganese(II) compound, [Mn(C6H4N5)2(H2O)4].4H2O, by the solution reaction of MnCl2 with 3-Ptz in a basic H2O/ethanol solution. This compound is closely isostructural with the Zn complex reported by Mu et al. (2010)

Related literature top

For the synthesis and crystal structure of the isotypic zinc(II) complex [Zn(C6H4N5)2(H2O)4].4H2O, see: Mu et al. (2010).

Experimental top

A mixture of MnCl2 (0.1 mmol), 3-Ptz (0.1 mmol), 1 ml NaOH solution (0.1 mol L-1) was added into 10 ml H2O/ethanol mixed solvent (1:1). After being stirred for twenty minutes, the mixture was filtered. The filtrate was left undisturbed for two days to give yellow block crystals with 35% yield based on 3-Ptz. Anal. calcd for C12H24MnN10O8 (%): C, 29.33; H, 4.92; N, 28.51. Found: C, 29.24; H, 4.83; N, 28.66. IR (KBr pellet, cm-1): 3400m, 1613m, 1588m, 1464m, 1426s, 1372m, 1153s, 1019m, 787s, 750s, 696s, 642m, 463m.

Refinement top

All the H atoms were positioned geometrically (C—H = 0.93 Å, O—H = 0.85 Å), and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(O).

Structure description top

The asymmetric unit of the title complex consists of a mononuclear [Mn(C6H4N5)2(H2O)4] unit and four lattice water molecules (Figure 1). The Mn(II) atom is located on an inversion center and is six-coordinated by two pyridine groups and four H2O molecules in a trans-octahedral geometry. Two 3-Ptz ligands coordinate to the Mn(II) in the axial positions with the Mn–N bond length of 2.290 Å. Four coordinate water molecules occupy the equatorial plane with the average Mn–O bond length of 2.178 Å. The bond angle of O(1)#1-Mn(1)-N(1), O(2)#1-Mn(1)-N(1), O(1)-Mn(1)-O(2) are 84.98 (7) °, 92.50 (6) °, 91.41 (7) °, respectively. 3-(2H-tetrazol-5-yl)pyridine is deprotonated. The pyridine ring and tetrazole group are essentially coplanar, with a dihedral angle of 9.72 (7)°. The mononuclear complex is further extended to three-dimensional supramolecular network by hydrogen-bond interactions linking tetrazole group, coordinate and lattice water molecules as shown in Figure 2

Figure 1

Figure 2

Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title complex. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) -x, -y, -z].
[Figure 2] Fig. 2. A crystal packing diagram of the title compound with hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
Tetraaquabis[5-(pyridin-3-yl)tetrazolido-κN5]manganese(II) tetrahydrate top
Crystal data top
[Mn(C6H4N5)2(H2O)4]·4H2OZ = 1
Mr = 491.35F(000) = 255
Triclinic, P1Dx = 1.531 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.137 (8) ÅCell parameters from 1565 reflections
b = 8.629 (8) Åθ = 2.5–27.3°
c = 8.761 (8) ŵ = 0.68 mm1
α = 84.878 (10)°T = 293 K
β = 65.347 (8)°Block, yellow
γ = 72.571 (10)°0.15 × 0.10 × 0.10 mm
V = 533.0 (9) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1850 independent reflections
Radiation source: fine-focus sealed tube1712 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 79
Tmin = 0.922, Tmax = 0.934k = 610
2785 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.2064P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1850 reflectionsΔρmax = 0.23 e Å3
143 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.063 (6)
Crystal data top
[Mn(C6H4N5)2(H2O)4]·4H2Oγ = 72.571 (10)°
Mr = 491.35V = 533.0 (9) Å3
Triclinic, P1Z = 1
a = 8.137 (8) ÅMo Kα radiation
b = 8.629 (8) ŵ = 0.68 mm1
c = 8.761 (8) ÅT = 293 K
α = 84.878 (10)°0.15 × 0.10 × 0.10 mm
β = 65.347 (8)°
Data collection top
Bruker APEXII CCD
diffractometer
1850 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1712 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.934Rint = 0.026
2785 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
1850 reflectionsΔρmin = 0.32 e Å3
143 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4972 (3)0.8406 (3)0.1955 (2)0.0309 (5)
H10.38630.83300.28440.037*
C20.5378 (3)0.7784 (2)0.0396 (2)0.0250 (4)
C30.7038 (3)0.7881 (3)0.0919 (2)0.0312 (4)
H30.73690.74850.19930.037*
C40.8196 (3)0.8579 (3)0.0606 (3)0.0367 (5)
H40.93260.86470.14680.044*
C50.7665 (3)0.9175 (2)0.0990 (3)0.0313 (4)
H50.84570.96430.11800.038*
C60.4027 (3)0.7086 (2)0.0214 (2)0.0253 (4)
Mn10.50001.00000.50000.02565 (17)
N10.6059 (2)0.9108 (2)0.22757 (19)0.0291 (4)
N20.2536 (2)0.6822 (2)0.1516 (2)0.0316 (4)
N30.1654 (2)0.6214 (2)0.0825 (2)0.0345 (4)
N40.2572 (2)0.6120 (2)0.0813 (2)0.0335 (4)
N50.4088 (2)0.6669 (2)0.12397 (19)0.0293 (4)
O10.4248 (2)1.25174 (18)0.44974 (18)0.0465 (4)
H1B0.34861.32880.52130.056*
H1A0.45871.29500.35480.056*
O20.79389 (19)0.99831 (18)0.44105 (18)0.0364 (4)
H2A0.87300.91730.45890.044*
H2B0.82291.08200.45260.044*
O30.0823 (2)0.75323 (18)0.49811 (18)0.0372 (4)
H3B0.09420.66960.55620.045*
H3A0.13460.71960.39580.045*
O40.1519 (2)0.48719 (18)0.69383 (17)0.0359 (4)
H4B0.06080.45190.75980.043*
H4A0.18550.52710.75750.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0302 (10)0.0403 (11)0.0217 (10)0.0155 (9)0.0058 (8)0.0023 (8)
C20.0279 (10)0.0230 (9)0.0239 (10)0.0064 (8)0.0108 (8)0.0002 (7)
C30.0317 (10)0.0378 (11)0.0216 (10)0.0100 (9)0.0071 (8)0.0061 (8)
C40.0286 (10)0.0506 (13)0.0277 (11)0.0162 (10)0.0043 (8)0.0034 (9)
C50.0277 (10)0.0374 (11)0.0320 (11)0.0116 (8)0.0134 (8)0.0010 (9)
C60.0292 (10)0.0226 (9)0.0234 (10)0.0065 (8)0.0104 (8)0.0011 (7)
Mn10.0264 (2)0.0299 (3)0.0210 (2)0.00911 (17)0.00862 (17)0.00332 (16)
N10.0311 (9)0.0351 (9)0.0230 (8)0.0125 (7)0.0105 (7)0.0017 (7)
N20.0307 (9)0.0386 (10)0.0264 (9)0.0142 (7)0.0091 (7)0.0018 (7)
N30.0341 (9)0.0405 (10)0.0320 (9)0.0165 (8)0.0122 (7)0.0018 (8)
N40.0370 (9)0.0370 (10)0.0314 (9)0.0153 (8)0.0152 (8)0.0008 (7)
N50.0348 (9)0.0320 (9)0.0237 (9)0.0141 (7)0.0109 (7)0.0014 (7)
O10.0623 (10)0.0321 (8)0.0252 (8)0.0059 (7)0.0044 (7)0.0003 (6)
O20.0302 (7)0.0385 (8)0.0429 (9)0.0084 (6)0.0166 (6)0.0071 (6)
O30.0407 (8)0.0377 (8)0.0292 (8)0.0113 (7)0.0100 (6)0.0011 (6)
O40.0401 (8)0.0413 (8)0.0273 (8)0.0177 (7)0.0094 (6)0.0044 (6)
Geometric parameters (Å, º) top
C1—N11.337 (3)Mn1—O2i2.222 (3)
C1—C21.382 (3)Mn1—O22.222 (3)
C1—H10.9300Mn1—N12.290 (3)
C2—C31.383 (3)Mn1—N1i2.290 (3)
C2—C61.468 (3)N2—N31.342 (2)
C3—C41.382 (3)N3—N41.309 (3)
C3—H30.9300N4—N51.349 (3)
C4—C51.377 (3)O1—H1B0.8500
C4—H40.9300O1—H1A0.8500
C5—N11.336 (3)O2—H2A0.8500
C5—H50.9300O2—H2B0.8501
C6—N51.331 (3)O3—H3B0.8500
C6—N21.338 (3)O3—H3A0.8501
Mn1—O12.132 (2)O4—H4B0.8500
Mn1—O1i2.132 (2)O4—H4A0.8501
N1—C1—C2124.70 (17)O1—Mn1—N195.02 (7)
N1—C1—H1117.6O1i—Mn1—N184.98 (7)
C2—C1—H1117.6O2i—Mn1—N192.50 (6)
C1—C2—C3117.48 (18)O2—Mn1—N187.50 (6)
C1—C2—C6118.90 (17)O1—Mn1—N1i84.98 (7)
C3—C2—C6123.61 (18)O1i—Mn1—N1i95.02 (7)
C4—C3—C2118.66 (19)O2i—Mn1—N1i87.50 (5)
C4—C3—H3120.7O2—Mn1—N1i92.50 (6)
C2—C3—H3120.7N1—Mn1—N1i179.999 (1)
C5—C4—C3119.62 (19)C5—N1—C1116.74 (18)
C5—C4—H4120.2C5—N1—Mn1127.06 (13)
C3—C4—H4120.2C1—N1—Mn1116.17 (13)
N1—C5—C4122.78 (19)C6—N2—N3104.94 (17)
N1—C5—H5118.6N4—N3—N2109.54 (17)
C4—C5—H5118.6N3—N4—N5109.28 (15)
N5—C6—N2111.27 (17)C6—N5—N4104.97 (15)
N5—C6—C2125.30 (17)Mn1—O1—H1B126.3
N2—C6—C2123.42 (17)Mn1—O1—H1A127.6
O1—Mn1—O1i180.0H1B—O1—H1A106.1
O1—Mn1—O2i88.59 (7)Mn1—O2—H2A122.5
O1i—Mn1—O2i91.41 (7)Mn1—O2—H2B123.2
O1—Mn1—O291.41 (7)H2A—O2—H2B106.1
O1i—Mn1—O288.59 (7)H3B—O3—H3A106.7
O2i—Mn1—O2180.000 (1)H4B—O4—H4A105.2
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O4ii0.851.942.783 (3)172
O1—H1A···N5iii0.851.912.731 (3)163
O2—H2A···O3iv0.851.992.836 (3)171
O2—H2B···O3i0.851.962.800 (3)169
O3—H3B···O40.851.962.803 (3)171
O3—H3A···N20.851.962.797 (3)170
O4—H4B···N3v0.852.032.878 (3)177
O4—H4A···N4vi0.852.002.849 (3)176
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z; (iii) x+1, y+2, z; (iv) x+1, y, z; (v) x, y+1, z+1; (vi) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C6H4N5)2(H2O)4]·4H2O
Mr491.35
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.137 (8), 8.629 (8), 8.761 (8)
α, β, γ (°)84.878 (10), 65.347 (8), 72.571 (10)
V3)533.0 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.922, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
2785, 1850, 1712
Rint0.026
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.080, 1.05
No. of reflections1850
No. of parameters143
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.32

Computer programs: APEX2 (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O4i0.851.942.783 (3)172
O1—H1A···N5ii0.851.912.731 (3)163
O2—H2A···O3iii0.851.992.836 (3)171
O2—H2B···O3iv0.851.962.800 (3)169
O3—H3B···O40.851.962.803 (3)171
O3—H3A···N20.851.962.797 (3)170
O4—H4B···N3v0.852.032.878 (3)177
O4—H4A···N4vi0.852.002.849 (3)176
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z; (iii) x+1, y, z; (iv) x+1, y+2, z+1; (v) x, y+1, z+1; (vi) x, y, z+1.
 

Acknowledgements

The project was supported by the National Natural Science Foundation of China (21171115), the Leading Academic Discipline Project (J50102) and the Innovation Program (12ZZ089) of Shanghai Municipal Education Commission, China.

References

First citationBruker (2000). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMu, Y.-Q., Zhao, J. & Li, C. (2010). Acta Cryst. E66, m1667.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds