organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Fluoro­phen­yl)(1H-pyrrol-2-yl)methan­one

aShirdi Sai Engineering College, Anekal, Bangalore 562 106, India, bX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, cDepartment of Chemistry, University College of Science, Tumkur University, Tumkur, India, and dCentre for Advanced Materials, Tumkur University, Tumkur, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 6 June 2012; accepted 7 June 2012; online 13 June 2012)

In the title mol­ecule, C11H8FNO, the dihedral angle between the pyrrole and benzene rings is 49.16 (6)°. In the crystal, adjacent mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers.

Related literature

For background to pyrrole derivatives and their applications, see: Fischer & Orth (1934[Fischer, H. & Orth, H. (1934). Die Chemie des Pyrrols, Vol. 1, p. 333. Leipzig: Akademische Verlagsgesellschaft.]); Mohamed et al. (2009[Mohamed, M. S., EL-Domany, R. A. & EL-Hameed, R. H. (2009). Acta Pharm. 59, 145-158.]). For related structures, see: English et al. (1980[English, R. B., McGillivray, G. & Smal, E. (1980). Acta Cryst. B36, 1136-1141.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8FNO

  • Mr = 189.18

  • Triclinic, [P \overline 1]

  • a = 3.8957 (2) Å

  • b = 10.7053 (5) Å

  • c = 11.1421 (6) Å

  • α = 99.167 (4)°

  • β = 95.951 (4)°

  • γ = 98.699 (4)°

  • V = 449.56 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.980, Tmax = 1.000

  • 10652 measured reflections

  • 1762 independent reflections

  • 1410 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.098

  • S = 1.03

  • 1762 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6i 0.86 2.06 2.865 (2) 157
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction,2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The chemistry of pyrrole compounds and biological activities of the related compounds have been extensively studied (Fischer & Orth, 1934; Mohamed et al., 2009). With the view of biological importance, the title compound was synthesized and its crystal structure is reported here.

Bond lengths and angles in the title compound (Fig. 1) have normal values (Allen et al., 1987) and are comparable with the similar crystal structures solved earlier (English et al., 1980). The pyrrole and benzene rings are planar with maximum deviations of 0.004 (2) Å and -0.009 (2) Å, respectively. The two rings are not coplanar with the dihedral angle being 49.16 (6)°. The crystal packing is stabilized by N—H···O intermolecular interactions, generating centrosymmetric dimers (Fig. 2).

Related literature top

For background to pyrrole derivatives and their applications, see: Fischer & Orth (1934); Mohamed et al. (2009). For related structures, see: English et al. (1980). For bond-length data, see: Allen et al. (1987).

Experimental top

Amide-phosphoryl complex was prepared by treating 1 equiv. of N,N-dimethyl-4-fluorobenzamide with 3 equiv. of POCl3 at room temperature and stirred for 6 h. The above complex was treated with pyrrole in anhydrous 1,2-dichloroethane at 25°C and stirred for one hour and kept overnight. The resulting mixture was hydrolyzed using saturated sodium carbonate solution, followed by heating for 45 minutes to obtain the title compound. The title compound was extracted using 1,2-dichloroethane. Single crystals required for X-ray diffraction were obtained by slow evaporation of the methanolic solution of the compound.

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent atoms, with d(N—H)= 0.86 Å and d(C—H) = 0.93 Å for aromatic, and with Uiso(H) = 1.2Ueq(Caryl, N).

Structure description top

The chemistry of pyrrole compounds and biological activities of the related compounds have been extensively studied (Fischer & Orth, 1934; Mohamed et al., 2009). With the view of biological importance, the title compound was synthesized and its crystal structure is reported here.

Bond lengths and angles in the title compound (Fig. 1) have normal values (Allen et al., 1987) and are comparable with the similar crystal structures solved earlier (English et al., 1980). The pyrrole and benzene rings are planar with maximum deviations of 0.004 (2) Å and -0.009 (2) Å, respectively. The two rings are not coplanar with the dihedral angle being 49.16 (6)°. The crystal packing is stabilized by N—H···O intermolecular interactions, generating centrosymmetric dimers (Fig. 2).

For background to pyrrole derivatives and their applications, see: Fischer & Orth (1934); Mohamed et al. (2009). For related structures, see: English et al. (1980). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction,2010); cell refinement: CrysAlis PRO (Oxford Diffraction,2010); data reduction: CrysAlis PRO (Oxford Diffraction,2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with the atom-labeling scheme. The thermal ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A molecular packing view of the title compound, showing intermolecular interactions. For clarity, hydrogen atoms which are not involved in hydrogen bonding have been omitted.
(4-Fluorophenyl)(1H-pyrrol-2-yl)methanone top
Crystal data top
C11H8FNOZ = 2
Mr = 189.18F(000) = 196
Triclinic, P1Dx = 1.398 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.8957 (2) ÅCell parameters from 4740 reflections
b = 10.7053 (5) Åθ = 3.7–28.9°
c = 11.1421 (6) ŵ = 0.11 mm1
α = 99.167 (4)°T = 293 K
β = 95.951 (4)°Plate, white
γ = 98.699 (4)°0.3 × 0.2 × 0.1 mm
V = 449.56 (4) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1762 independent reflections
Radiation source: fine-focus sealed tube1410 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.7°
ω scanh = 44
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1313
Tmin = 0.980, Tmax = 1.000l = 1313
10652 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.1079P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
1762 reflectionsΔρmax = 0.16 e Å3
128 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.068 (8)
Crystal data top
C11H8FNOγ = 98.699 (4)°
Mr = 189.18V = 449.56 (4) Å3
Triclinic, P1Z = 2
a = 3.8957 (2) ÅMo Kα radiation
b = 10.7053 (5) ŵ = 0.11 mm1
c = 11.1421 (6) ÅT = 293 K
α = 99.167 (4)°0.3 × 0.2 × 0.1 mm
β = 95.951 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1762 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1410 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 1.000Rint = 0.027
10652 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
1762 reflectionsΔρmin = 0.15 e Å3
128 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1668 (3)0.83359 (12)0.41956 (11)0.0485 (3)
H10.08620.90390.41840.058*
C20.2594 (4)0.78614 (13)0.52317 (13)0.0415 (3)
C30.3794 (4)0.67263 (14)0.48471 (15)0.0474 (4)
H30.46180.61920.53500.057*
C40.3545 (4)0.65312 (15)0.35771 (15)0.0538 (4)
H40.41690.58450.30740.065*
C50.2207 (4)0.75399 (16)0.32037 (14)0.0543 (4)
H50.17500.76530.23960.065*
C60.2390 (4)0.85622 (13)0.64280 (14)0.0428 (4)
O60.1574 (3)0.96424 (10)0.65746 (10)0.0600 (4)
C70.3239 (4)0.79769 (13)0.75287 (13)0.0414 (3)
C80.1941 (4)0.67098 (14)0.75797 (14)0.0468 (4)
H80.05940.61850.68950.056*
C90.2626 (5)0.62175 (16)0.86362 (15)0.0554 (4)
H90.17160.53730.86780.066*
C100.4675 (5)0.70044 (18)0.96151 (15)0.0597 (5)
C110.6022 (5)0.82580 (18)0.96050 (15)0.0619 (5)
H110.74100.87681.02900.074*
C120.5269 (4)0.87470 (15)0.85531 (15)0.0525 (4)
H120.61300.96010.85310.063*
F10.5388 (4)0.65272 (12)1.06567 (9)0.0951 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0574 (8)0.0403 (7)0.0514 (8)0.0120 (6)0.0089 (6)0.0141 (6)
C20.0402 (8)0.0380 (8)0.0473 (8)0.0057 (6)0.0047 (6)0.0117 (6)
C30.0459 (8)0.0416 (8)0.0565 (9)0.0120 (6)0.0054 (7)0.0106 (7)
C40.0548 (10)0.0477 (9)0.0577 (10)0.0109 (7)0.0114 (7)0.0012 (7)
C50.0608 (10)0.0544 (10)0.0464 (9)0.0065 (8)0.0083 (7)0.0077 (7)
C60.0426 (8)0.0345 (7)0.0526 (9)0.0077 (6)0.0069 (6)0.0104 (6)
O60.0852 (9)0.0397 (6)0.0603 (7)0.0228 (6)0.0102 (6)0.0122 (5)
C70.0420 (8)0.0390 (8)0.0453 (8)0.0143 (6)0.0065 (6)0.0062 (6)
C80.0525 (9)0.0410 (8)0.0477 (9)0.0120 (7)0.0031 (7)0.0087 (6)
C90.0711 (11)0.0479 (9)0.0543 (10)0.0216 (8)0.0121 (8)0.0169 (8)
C100.0792 (12)0.0679 (11)0.0415 (9)0.0392 (9)0.0080 (8)0.0131 (8)
C110.0695 (11)0.0666 (12)0.0460 (9)0.0260 (9)0.0043 (8)0.0063 (8)
C120.0573 (10)0.0433 (9)0.0547 (10)0.0129 (7)0.0055 (7)0.0005 (7)
F10.1500 (12)0.1005 (9)0.0478 (6)0.0585 (8)0.0025 (7)0.0240 (6)
Geometric parameters (Å, º) top
N1—C51.339 (2)C7—C81.386 (2)
N1—C21.3699 (18)C7—C121.387 (2)
N1—H10.8600C8—C91.382 (2)
C2—C31.388 (2)C8—H80.9300
C2—C61.438 (2)C9—C101.364 (3)
C3—C41.388 (2)C9—H90.9300
C3—H30.9300C10—F11.3602 (18)
C4—C51.371 (2)C10—C111.367 (3)
C4—H40.9300C11—C121.380 (2)
C5—H50.9300C11—H110.9300
C6—O61.2357 (17)C12—H120.9300
C6—C71.493 (2)
C5—N1—C2109.79 (12)C8—C7—C12119.05 (14)
C5—N1—H1125.1C8—C7—C6122.28 (13)
C2—N1—H1125.1C12—C7—C6118.61 (13)
N1—C2—C3106.57 (13)C9—C8—C7120.79 (15)
N1—C2—C6120.91 (12)C9—C8—H8119.6
C3—C2—C6132.43 (13)C7—C8—H8119.6
C2—C3—C4107.76 (13)C10—C9—C8118.13 (15)
C2—C3—H3126.1C10—C9—H9120.9
C4—C3—H3126.1C8—C9—H9120.9
C5—C4—C3107.18 (14)F1—C10—C9118.64 (17)
C5—C4—H4126.4F1—C10—C11118.26 (16)
C3—C4—H4126.4C9—C10—C11123.10 (15)
N1—C5—C4108.69 (14)C10—C11—C12118.31 (15)
N1—C5—H5125.7C10—C11—H11120.8
C4—C5—H5125.7C12—C11—H11120.8
O6—C6—C2121.97 (13)C11—C12—C7120.61 (15)
O6—C6—C7118.92 (13)C11—C12—H12119.7
C2—C6—C7119.11 (12)C7—C12—H12119.7
C5—N1—C2—C30.71 (17)O6—C6—C7—C1242.0 (2)
C5—N1—C2—C6177.63 (14)C2—C6—C7—C12137.16 (15)
N1—C2—C3—C40.42 (17)C12—C7—C8—C90.5 (2)
C6—C2—C3—C4176.84 (15)C6—C7—C8—C9176.53 (14)
C2—C3—C4—C50.01 (18)C7—C8—C9—C101.4 (2)
C2—N1—C5—C40.73 (18)C8—C9—C10—F1179.51 (14)
C3—C4—C5—N10.45 (19)C8—C9—C10—C111.2 (3)
N1—C2—C6—O64.2 (2)F1—C10—C11—C12179.32 (15)
C3—C2—C6—O6171.82 (16)C9—C10—C11—C120.0 (3)
N1—C2—C6—C7176.72 (13)C10—C11—C12—C70.9 (2)
C3—C2—C6—C77.3 (2)C8—C7—C12—C110.7 (2)
O6—C6—C7—C8135.08 (16)C6—C7—C12—C11177.84 (14)
C2—C6—C7—C845.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.862.062.865 (2)157
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC11H8FNO
Mr189.18
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)3.8957 (2), 10.7053 (5), 11.1421 (6)
α, β, γ (°)99.167 (4), 95.951 (4), 98.699 (4)
V3)449.56 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.980, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10652, 1762, 1410
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.03
No. of reflections1762
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: CrysAlis PRO (Oxford Diffraction,2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.862.062.865 (2)157
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnglish, R. B., McGillivray, G. & Smal, E. (1980). Acta Cryst. B36, 1136–1141.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFischer, H. & Orth, H. (1934). Die Chemie des Pyrrols, Vol. 1, p. 333. Leipzig: Akademische Verlagsgesellschaft.  Google Scholar
First citationMohamed, M. S., EL-Domany, R. A. & EL-Hameed, R. H. (2009). Acta Pharm. 59, 145–158.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds