organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Dimeth­­oxy-N-((E)-4-{[1-(prop-2-en-1-yl)-1H-1,2,3-triazol-4-yl]meth­­oxy}benzyl­­idene)aniline

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 7 June 2012; accepted 13 June 2012; online 16 June 2012)

In the title compound, C21H22N4O3, the triazole ring is planar [maximum deviaton = 0.004 (1) Å] and makes dihedral angles of 26.21 (8) and 38.66 (8)° with the two benzene rings. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming zigzag chains along [1-11]. In addition, a weak C—H⋯π intreraction is also observed.

Related literature

For background on the importance of triazole derivatives and their uses, see: da Silva et al. (2011[Silva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B. & de Fatima, A. (2011). J. Adv. Res. 2, 1-8.]); Hranjec et al. (2011[Hranjec, M., Starcevic, K., Pavelic, S. K., Lucin, P., Pavelic, K. & Zamola, G. K. (2011). Eur. J. Med. Chem. 46, 2274-2279.]); Shi & Zhou (2011[Shi, Y. & Zhou, C. H. (2011). Bioorg. Med. Chem. Lett. 21, 956-960.]); Yap & Weinreb (2006[Yap, A. H. & Weinreb, S. M. (2006). Tetrahedron Lett. 47, 3035-3038.]); Yu et al. (2006[Yu, H.-X., Ma, J.-F., Xu, G.-H., Li, S.-L., Yang, J., Liu, Y.-Y. & Cheng, Y.-X. (2006). J. Organomet. Chem. 691, 3531-3539.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22N4O3

  • Mr = 378.43

  • Triclinic, [P \overline 1]

  • a = 5.8144 (4) Å

  • b = 11.9677 (8) Å

  • c = 14.1019 (10) Å

  • α = 85.803 (6)°

  • β = 80.497 (6)°

  • γ = 80.434 (5)°

  • V = 953.30 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.73 × 0.41 × 0.21 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.957, Tmax = 0.981

  • 15258 measured reflections

  • 3919 independent reflections

  • 2795 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 1.04

  • 3919 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19A⋯O2i 0.97 2.54 3.385 (2) 146
C16—H16ACg2ii 0.97 2.87 3.6647 (18) 140
Symmetry codes: (i) x+1, y-1, z+1; (ii) -x+1, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases are aldehyde- or ketone-like compounds in which the carbonyl group is replaced by an imine or azomethine group. They are widely used for industrial purposes and also exhibit a broad range of biological activities (da Silva et al., 2011). These compounds represent an important class of organic compounds, especially in the medicinal and pharmaceutical field. Thus, development and synthesis of novel Schiff base derivatives as potential chemotherapeutics still attracts attention of organic and medicinal chemists (Hranjec et al., 2011). 1,2,3-Triazoles are nitrogen heterocycles, which have a number of important industrial, agrochemical, and pharmaceutical uses (Yap & Weinreb, 2006). Triazole derivatives also display a broad range of biological activity, showing potential applications as antitumor, antibacterial, antifungal and antiviral agents (Yu et al., 2006). Recently, some triazole derivatives have been reported to exhibit good anti-MRSA potency (Shi & Zhou, 2011). Therefore, compound (I), which has the two mentioned features, was synthesized and its X-ray studies is reported here.

The title compound, (Fig. 1), has a non-planar conformation. The N2–N4/C17—C18 triazole ring is essentially planar with a maximum deviaton of 0.004 (1) Å. The dihedral angles between the rings in (I) are: A/B = 26.21 (8), A/C = 38.66 (8) and B/C = 64.87 (7)°, where A, B and C define the C1–C6 and C10–C15 benzene rings, and the N2–N4/C17—C18 triazole ring, respectively.

The crystal packing is stabilized by intermolecular C—H···O hydrogen bonding interactions (Table 1) forming zigzag chains along the [1 -1 1] direction (Fig. 2). Furthermore, a weak intermolecular C—H···π interaction contributes to the stability of the crystal structure.

Related literature top

For background on the importance of triazole derivatives and their uses, see: da Silva et al. (2011); Hranjec et al. (2011); Shi & Zhou (2011); Yap & Weinreb (2006); Yu et al. (2006).

Experimental top

Reaction of 4-((1-allyl-1H-1, 2, 3-triazol-4-yl)methoxy)benzaldehyde with 3,4-dimethoxyaniline in refluxing ethanol gave the title compound. Recrystallization from ethanol gave brown crystals in 85% yield. [mp: 363–365 K]. IR (KBr, cm-1): 1573 (N=N), 1612 (CN). 1H-NMR (250 MHz, CDCl3) δ (p.p.m): 3.87–3.90 (2OMe, s, 6H), 4.97 (d, 2H, J=6.0 Hz), 5.25–5.37 (m, 4H), 5.93–6.1(m, 1H), 6.84–7.89(m, ArH, 7H), 7.62(s, 1H, Htriazole), 8.41(HCN, s, 1H). 13 C-NMR (CDCl3) δ (p.p.m):62.8 (N—CH2), 55.9–56.0 (2OMe), 62.0 (O—CH2), 105.7–157.9 (C=C aromatic carbons and triazole), 160.96(C=N).

Refinement top

H atoms were positioned geometrically with C—H = 0.93, 0.96 and 0.97 Å, and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C).

Structure description top

Schiff bases are aldehyde- or ketone-like compounds in which the carbonyl group is replaced by an imine or azomethine group. They are widely used for industrial purposes and also exhibit a broad range of biological activities (da Silva et al., 2011). These compounds represent an important class of organic compounds, especially in the medicinal and pharmaceutical field. Thus, development and synthesis of novel Schiff base derivatives as potential chemotherapeutics still attracts attention of organic and medicinal chemists (Hranjec et al., 2011). 1,2,3-Triazoles are nitrogen heterocycles, which have a number of important industrial, agrochemical, and pharmaceutical uses (Yap & Weinreb, 2006). Triazole derivatives also display a broad range of biological activity, showing potential applications as antitumor, antibacterial, antifungal and antiviral agents (Yu et al., 2006). Recently, some triazole derivatives have been reported to exhibit good anti-MRSA potency (Shi & Zhou, 2011). Therefore, compound (I), which has the two mentioned features, was synthesized and its X-ray studies is reported here.

The title compound, (Fig. 1), has a non-planar conformation. The N2–N4/C17—C18 triazole ring is essentially planar with a maximum deviaton of 0.004 (1) Å. The dihedral angles between the rings in (I) are: A/B = 26.21 (8), A/C = 38.66 (8) and B/C = 64.87 (7)°, where A, B and C define the C1–C6 and C10–C15 benzene rings, and the N2–N4/C17—C18 triazole ring, respectively.

The crystal packing is stabilized by intermolecular C—H···O hydrogen bonding interactions (Table 1) forming zigzag chains along the [1 -1 1] direction (Fig. 2). Furthermore, a weak intermolecular C—H···π interaction contributes to the stability of the crystal structure.

For background on the importance of triazole derivatives and their uses, see: da Silva et al. (2011); Hranjec et al. (2011); Shi & Zhou (2011); Yap & Weinreb (2006); Yu et al. (2006).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule shown with the displacement ellipsoids for non-H atoms at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing and hydrogen bonding diagram of the title compound shown down the a axis. H atoms not participating in hydrogen bonding have been omitted for clarity.
3,4-Dimethoxy-N-((E)-4-{[1-(prop-2-en-1-yl)-1H-1,2,3- triazol-4-yl]methoxy}benzylidene)aniline top
Crystal data top
C21H22N4O3Z = 2
Mr = 378.43F(000) = 400
Triclinic, P1Dx = 1.318 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8144 (4) ÅCell parameters from 16791 reflections
b = 11.9677 (8) Åθ = 2.2–27.3°
c = 14.1019 (10) ŵ = 0.09 mm1
α = 85.803 (6)°T = 296 K
β = 80.497 (6)°Prism, brown
γ = 80.434 (5)°0.73 × 0.41 × 0.21 mm
V = 953.30 (12) Å3
Data collection top
Stoe IPDS 2
diffractometer
3919 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2795 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.050
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.2°
ω scansh = 77
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1515
Tmin = 0.957, Tmax = 0.981l = 1717
15258 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0603P)2]
where P = (Fo2 + 2Fc2)/3
3919 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C21H22N4O3γ = 80.434 (5)°
Mr = 378.43V = 953.30 (12) Å3
Triclinic, P1Z = 2
a = 5.8144 (4) ÅMo Kα radiation
b = 11.9677 (8) ŵ = 0.09 mm1
c = 14.1019 (10) ÅT = 296 K
α = 85.803 (6)°0.73 × 0.41 × 0.21 mm
β = 80.497 (6)°
Data collection top
Stoe IPDS 2
diffractometer
3919 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2795 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.981Rint = 0.050
15258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.04Δρmax = 0.14 e Å3
3919 reflectionsΔρmin = 0.18 e Å3
253 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.04640 (19)0.88296 (10)0.07531 (10)0.0725 (4)
O20.35022 (17)0.75647 (9)0.03759 (8)0.0615 (4)
O30.67186 (18)0.09568 (8)0.56736 (8)0.0618 (4)
N10.1657 (2)0.50851 (10)0.32214 (9)0.0553 (4)
N21.0236 (2)0.14989 (10)0.76913 (9)0.0557 (4)
N30.7884 (2)0.14280 (12)0.78848 (11)0.0693 (5)
N40.6981 (2)0.05436 (12)0.73864 (11)0.0661 (5)
C10.1137 (2)0.60697 (11)0.26194 (11)0.0503 (4)
C20.1013 (2)0.67614 (12)0.28129 (11)0.0561 (5)
C30.1602 (3)0.77029 (13)0.22197 (12)0.0581 (5)
C40.0060 (2)0.79558 (11)0.14080 (11)0.0526 (5)
C50.2124 (2)0.72537 (11)0.12021 (10)0.0495 (4)
C60.2718 (2)0.63275 (11)0.17977 (11)0.0508 (4)
C70.2711 (3)0.95187 (13)0.08467 (16)0.0732 (6)
C80.5684 (3)0.68677 (14)0.00812 (13)0.0653 (6)
C90.3712 (3)0.48356 (12)0.34398 (11)0.0537 (5)
C100.4505 (2)0.38187 (12)0.40066 (11)0.0504 (4)
C110.6468 (2)0.37782 (12)0.44608 (12)0.0554 (5)
C120.7232 (2)0.28590 (12)0.50323 (11)0.0550 (5)
C130.6079 (2)0.19201 (11)0.51366 (11)0.0497 (4)
C140.4171 (2)0.19244 (12)0.46571 (11)0.0539 (5)
C150.3388 (2)0.28612 (12)0.41111 (11)0.0534 (5)
C160.8385 (3)0.10194 (13)0.62971 (13)0.0608 (5)
C170.8768 (2)0.00575 (12)0.68750 (11)0.0523 (4)
C181.0838 (2)0.06698 (12)0.70649 (11)0.0545 (5)
C191.1770 (3)0.23609 (13)0.81922 (14)0.0659 (6)
C201.1179 (3)0.35129 (13)0.81555 (13)0.0613 (5)
C211.1076 (3)0.42391 (14)0.88837 (14)0.0708 (6)
H20.208400.659300.335000.0670*
H30.304700.816900.236900.0700*
H60.417500.586800.165600.0610*
H7A0.302300.987700.145200.0880*
H7B0.389900.905800.082100.0880*
H7C0.273301.008900.033100.0880*
H8A0.540700.612000.002000.0780*
H8B0.666600.682800.057100.0780*
H8C0.645800.718300.050800.0780*
H90.478200.533100.322600.0640*
H110.728600.439200.437500.0660*
H120.851400.286500.534800.0660*
H140.342300.128900.470700.0650*
H150.208900.285900.380500.0640*
H16A0.780200.164100.672100.0730*
H16B0.986900.116200.591900.0730*
H181.235500.053800.681100.0650*
H19A1.161700.217100.885900.0790*
H19B1.340100.235600.790000.0790*
H201.086300.372800.757500.0740*
H21A1.138300.404900.947300.0850*
H21B1.069400.495100.881700.0850*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0606 (6)0.0700 (7)0.0781 (8)0.0077 (5)0.0144 (6)0.0221 (6)
O20.0562 (6)0.0660 (6)0.0546 (7)0.0023 (5)0.0065 (5)0.0151 (5)
O30.0753 (7)0.0498 (5)0.0673 (7)0.0155 (5)0.0325 (6)0.0124 (5)
N10.0600 (7)0.0532 (6)0.0553 (8)0.0148 (5)0.0159 (6)0.0100 (6)
N20.0519 (7)0.0592 (7)0.0563 (8)0.0087 (5)0.0153 (6)0.0104 (6)
N30.0569 (8)0.0777 (9)0.0704 (9)0.0128 (6)0.0112 (7)0.0244 (7)
N40.0511 (7)0.0728 (8)0.0710 (9)0.0081 (6)0.0111 (6)0.0185 (7)
C10.0548 (8)0.0477 (7)0.0528 (8)0.0149 (6)0.0180 (6)0.0053 (6)
C20.0505 (8)0.0608 (8)0.0587 (9)0.0154 (7)0.0097 (7)0.0033 (7)
C30.0459 (7)0.0590 (8)0.0685 (10)0.0034 (6)0.0123 (7)0.0003 (7)
C40.0514 (8)0.0505 (7)0.0571 (9)0.0059 (6)0.0183 (6)0.0066 (7)
C50.0496 (7)0.0528 (7)0.0479 (8)0.0092 (6)0.0148 (6)0.0040 (6)
C60.0493 (7)0.0500 (7)0.0538 (9)0.0045 (6)0.0158 (6)0.0039 (6)
C70.0631 (10)0.0586 (9)0.0952 (14)0.0050 (7)0.0242 (9)0.0085 (9)
C80.0573 (9)0.0723 (10)0.0603 (10)0.0005 (7)0.0056 (7)0.0072 (8)
C90.0585 (8)0.0535 (8)0.0524 (9)0.0174 (6)0.0138 (7)0.0070 (6)
C100.0540 (8)0.0515 (7)0.0457 (8)0.0107 (6)0.0083 (6)0.0052 (6)
C110.0584 (8)0.0516 (7)0.0599 (9)0.0183 (6)0.0156 (7)0.0094 (7)
C120.0539 (8)0.0539 (8)0.0611 (9)0.0143 (6)0.0191 (7)0.0072 (7)
C130.0539 (8)0.0476 (7)0.0478 (8)0.0083 (6)0.0112 (6)0.0054 (6)
C140.0597 (8)0.0498 (7)0.0565 (9)0.0184 (6)0.0154 (7)0.0062 (7)
C150.0536 (8)0.0573 (8)0.0529 (9)0.0147 (6)0.0167 (6)0.0060 (7)
C160.0618 (9)0.0590 (8)0.0662 (10)0.0142 (7)0.0253 (7)0.0123 (7)
C170.0522 (8)0.0542 (7)0.0512 (8)0.0095 (6)0.0124 (6)0.0046 (6)
C180.0496 (8)0.0582 (8)0.0554 (9)0.0111 (6)0.0094 (6)0.0083 (7)
C190.0655 (9)0.0647 (9)0.0701 (11)0.0091 (7)0.0285 (8)0.0174 (8)
C200.0631 (9)0.0614 (9)0.0583 (10)0.0010 (7)0.0173 (7)0.0014 (8)
C210.0779 (11)0.0622 (9)0.0745 (12)0.0105 (8)0.0244 (9)0.0093 (9)
Geometric parameters (Å, º) top
O1—C41.3603 (19)C16—C171.478 (2)
O1—C71.416 (2)C17—C181.3572 (18)
O2—C51.3658 (17)C19—C201.482 (2)
O2—C81.415 (2)C20—C211.296 (3)
O3—C131.3651 (17)C2—H20.9300
O3—C161.426 (2)C3—H30.9300
N1—C11.4215 (18)C6—H60.9300
N1—C91.265 (2)C7—H7A0.9600
N2—N31.3392 (17)C7—H7B0.9600
N2—C181.3313 (19)C7—H7C0.9600
N2—C191.468 (2)C8—H8A0.9600
N3—N41.311 (2)C8—H8B0.9600
N4—C171.3528 (19)C8—H8C0.9600
C1—C21.3780 (18)C9—H90.9300
C1—C61.405 (2)C11—H110.9300
C2—C31.384 (2)C12—H120.9300
C3—C41.381 (2)C14—H140.9300
C4—C51.4008 (18)C15—H150.9300
C5—C61.3732 (19)C16—H16A0.9700
C9—C101.458 (2)C16—H16B0.9700
C10—C111.3906 (18)C18—H180.9300
C10—C151.3956 (19)C19—H19A0.9700
C11—C121.372 (2)C19—H19B0.9700
C12—C131.3883 (19)C20—H200.9300
C13—C141.3904 (18)C21—H21A0.9300
C14—C151.370 (2)C21—H21B0.9300
C4—O1—C7119.09 (13)C4—C3—H3120.00
C5—O2—C8118.37 (12)C1—C6—H6120.00
C13—O3—C16116.35 (11)C5—C6—H6120.00
C1—N1—C9118.68 (12)O1—C7—H7A109.00
N3—N2—C18110.57 (12)O1—C7—H7B109.00
N3—N2—C19120.68 (13)O1—C7—H7C109.00
C18—N2—C19128.62 (13)H7A—C7—H7B109.00
N2—N3—N4107.23 (12)H7A—C7—H7C109.00
N3—N4—C17108.59 (12)H7B—C7—H7C110.00
N1—C1—C2119.65 (13)O2—C8—H8A109.00
N1—C1—C6121.52 (11)O2—C8—H8B109.00
C2—C1—C6118.75 (13)O2—C8—H8C109.00
C1—C2—C3120.94 (14)H8A—C8—H8B110.00
C2—C3—C4120.51 (14)H8A—C8—H8C109.00
O1—C4—C3126.10 (13)H8B—C8—H8C109.00
O1—C4—C5114.93 (13)N1—C9—H9118.00
C3—C4—C5118.95 (13)C10—C9—H9118.00
O2—C5—C4114.42 (12)C10—C11—H11119.00
O2—C5—C6125.10 (12)C12—C11—H11119.00
C4—C5—C6120.47 (13)C11—C12—H12120.00
C1—C6—C5120.36 (12)C13—C12—H12120.00
N1—C9—C10124.02 (14)C13—C14—H14120.00
C9—C10—C11119.63 (13)C15—C14—H14120.00
C9—C10—C15122.79 (13)C10—C15—H15119.00
C11—C10—C15117.58 (13)C14—C15—H15119.00
C10—C11—C12121.91 (13)O3—C16—H16A110.00
C11—C12—C13119.56 (12)O3—C16—H16B110.00
O3—C13—C12124.27 (12)C17—C16—H16A110.00
O3—C13—C14116.29 (12)C17—C16—H16B110.00
C12—C13—C14119.44 (13)H16A—C16—H16B108.00
C13—C14—C15120.28 (12)N2—C18—H18127.00
C10—C15—C14121.14 (12)C17—C18—H18127.00
O3—C16—C17109.84 (12)N2—C19—H19A109.00
N4—C17—C16123.06 (13)N2—C19—H19B109.00
N4—C17—C18108.21 (13)C20—C19—H19A109.00
C16—C17—C18128.49 (13)C20—C19—H19B109.00
N2—C18—C17105.40 (12)H19A—C19—H19B108.00
N2—C19—C20112.12 (14)C19—C20—H20118.00
C19—C20—C21123.90 (17)C21—C20—H20118.00
C1—C2—H2120.00C20—C21—H21A120.00
C3—C2—H2120.00C20—C21—H21B120.00
C2—C3—H3120.00H21A—C21—H21B120.00
C7—O1—C4—C5173.80 (13)C2—C3—C4—C50.9 (2)
C7—O1—C4—C34.8 (2)O1—C4—C5—C6178.56 (12)
C8—O2—C5—C62.3 (2)O1—C4—C5—O20.26 (17)
C8—O2—C5—C4176.48 (13)C3—C4—C5—O2178.94 (13)
C16—O3—C13—C1212.0 (2)C3—C4—C5—C60.1 (2)
C16—O3—C13—C14169.30 (13)C4—C5—C6—C10.3 (2)
C13—O3—C16—C17176.09 (12)O2—C5—C6—C1178.40 (12)
C1—N1—C9—C10176.54 (14)N1—C9—C10—C1520.6 (2)
C9—N1—C1—C2139.67 (14)N1—C9—C10—C11160.07 (15)
C9—N1—C1—C643.7 (2)C9—C10—C15—C14179.39 (14)
C18—N2—N3—N40.57 (17)C9—C10—C11—C12177.46 (14)
N3—N2—C19—C2050.9 (2)C11—C10—C15—C141.3 (2)
C18—N2—C19—C20133.53 (16)C15—C10—C11—C123.2 (2)
C19—N2—N3—N4175.73 (14)C10—C11—C12—C132.5 (2)
C19—N2—C18—C17175.21 (14)C11—C12—C13—C140.2 (2)
N3—N2—C18—C170.71 (17)C11—C12—C13—O3178.86 (14)
N2—N3—N4—C170.19 (17)C12—C13—C14—C152.1 (2)
N3—N4—C17—C180.25 (18)O3—C13—C14—C15179.18 (13)
N3—N4—C17—C16174.51 (15)C13—C14—C15—C101.3 (2)
C6—C1—C2—C30.9 (2)O3—C16—C17—N451.4 (2)
C2—C1—C6—C50.1 (2)O3—C16—C17—C18134.98 (16)
N1—C1—C2—C3177.66 (13)N4—C17—C18—N20.58 (17)
N1—C1—C6—C5176.80 (12)C16—C17—C18—N2173.81 (15)
C1—C2—C3—C41.3 (2)N2—C19—C20—C21137.14 (18)
C2—C3—C4—O1177.60 (14)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C19—H19A···O2i0.972.543.385 (2)146
C16—H16A···Cg2ii0.972.873.6647 (18)140
Symmetry codes: (i) x+1, y1, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H22N4O3
Mr378.43
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.8144 (4), 11.9677 (8), 14.1019 (10)
α, β, γ (°)85.803 (6), 80.497 (6), 80.434 (5)
V3)953.30 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.73 × 0.41 × 0.21
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.957, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
15258, 3919, 2795
Rint0.050
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.04
No. of reflections3919
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.18

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C19—H19A···O2i0.972.543.385 (2)146
C16—H16A···Cg2ii0.972.873.6647 (18)140
Symmetry codes: (i) x+1, y1, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). AJ, HS, MMC and PS also thank the Shiraz University Research Council for financial support (grant No. 89-GR—SC-23).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHranjec, M., Starcevic, K., Pavelic, S. K., Lucin, P., Pavelic, K. & Zamola, G. K. (2011). Eur. J. Med. Chem. 46, 2274–2279.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y. & Zhou, C. H. (2011). Bioorg. Med. Chem. Lett. 21, 956–960.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSilva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B. & de Fatima, A. (2011). J. Adv. Res. 2, 1–8.  Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYap, A. H. & Weinreb, S. M. (2006). Tetrahedron Lett. 47, 3035–3038.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, H.-X., Ma, J.-F., Xu, G.-H., Li, S.-L., Yang, J., Liu, Y.-Y. & Cheng, Y.-X. (2006). J. Organomet. Chem. 691, 3531–3539.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds