organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-1-phenyl-4-[(Z)-phen­yl(4-acetamido­anilino)methyl­­idene]-1H-pyrazol-5(4H)-one

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
*Correspondence e-mail: wangyuan08@hpu.edu.cn

(Received 9 June 2012; accepted 13 June 2012; online 20 June 2012)

In the title compound, C25H22N4O2, the dihedral angles between the central pyrazole ring and the phenyl and benzene rings are 37.01 (3), 75.58 (7) and 49.67 (8)°. An intra­molecular N—H⋯O hydrogen bond generates an S(6) motif. In the crystal, N—H⋯O hydrogen bonds link mol­ecules into a zigzag chain extended along the b axis.

Related literature

For the synthesis of Schiff bases derived from 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone and the DNA binding properties of their transition metal complexes, see: Wang & Yang (2005[Wang, Y. & Yang, Z.-Y. (2005). Transition Met. Chem. 30, 902-906.]). For the structure of (E,E)-3,3′-dimethyl-1,1′-diphenyl-4,4′-{[3-aza­pentane-1,5-diylbis(aza­nedi­yl)]-bis­(phenyl­methyl­idyne)}di-1H-pyrazol-5(4H)-one, see: Zhang et al. (2010[Zhang, Z.-P., Wang, Y., Li, X.-X. & Li, Y.-W. (2010). Acta Cryst. E66, o3326.]).

[Scheme 1]

Experimental

Crystal data
  • C25H22N4O2

  • Mr = 410.47

  • Monoclinic, P 21 /n

  • a = 7.1800 (4) Å

  • b = 11.0562 (7) Å

  • c = 27.3932 (16) Å

  • β = 95.138 (4)°

  • V = 2165.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.19 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.985, Tmax = 0.988

  • 19323 measured reflections

  • 5168 independent reflections

  • 3047 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.169

  • S = 1.02

  • 5168 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1i 0.86 2.05 2.874 (2) 161
N3—H3A⋯O1 0.86 1.96 2.696 (2) 143
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

For our interest in coordination chemistry of the Schiff bases derived from 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) (Wang & Yang, 2005; Zhang et al., 2010), the crystal structure of the title compound was determined by X-ray diffraction analysis.

As shown in Fig. 1, in the title molecule , the dihedral angles between the central pyrazole ring (r.m.s. deviation = 0.0094 Å) and the other three benzene rings (C1—C6, r.m.s. deviation = 0.0047 Å, C12—C17, r.m.s. deviation = 0.0097 Å and C18—C23, r.m.s. deviation = 0.0033 Å) are 37.01 (3)°, 75.58 (7)° and 49.67 (8)°, respectively. A strong intramolecular N3—H3···O1 hydrogen bond forms a six-membered ring, producing a S(6) ring motif. In the crystal, intermolecular N—H···O hydrogen bonds link the molecules into a zigzag chain structure along the b axis (Table 1, Fig. 2).

Related literature top

For the synthesis of Schiff bases derived from 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone and the DNA binding properties of their transition metal complexes, see: Wang & Yang (2005). For the structure of (E,E)-3,3'-dimethyl-1,1'-diphenyl-4,4'-{[3-azapentane-1,5-diylbis(azanediyl)]-bis(phenylmethylidyne)}di-1H-pyrazol-5(4H)-one, see: Zhang et al. (2010).

Experimental top

1-Phenyl-3-methyl-4-benzoyl-5-pyrazolone (1.1 g, 4 mmol) was dissolved in EtOH (50 ml), and ethanolic solution (10 ml) containing N-(4-aminophenyl)acetylamide (0.6 g, 4 mmol) was added dropwise. The reaction mixture was refluxed on a water bath for 3 h, then cooled to room temperature. Yellow block crystals were obtained by slow evaporation of the reaction mixture.

Refinement top

All H atoms were placed in calculated positions, with the carrier atom-H distances = 0.93 Å for aryl, 0.96 Å for methyl and 0.86 Å for the secondary amine H atoms, and refined as riding, with the Uiso(H) = 1.5Ueq(C) for methyl groups and 1.2Ueq(C,N) for others.

Structure description top

For our interest in coordination chemistry of the Schiff bases derived from 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) (Wang & Yang, 2005; Zhang et al., 2010), the crystal structure of the title compound was determined by X-ray diffraction analysis.

As shown in Fig. 1, in the title molecule , the dihedral angles between the central pyrazole ring (r.m.s. deviation = 0.0094 Å) and the other three benzene rings (C1—C6, r.m.s. deviation = 0.0047 Å, C12—C17, r.m.s. deviation = 0.0097 Å and C18—C23, r.m.s. deviation = 0.0033 Å) are 37.01 (3)°, 75.58 (7)° and 49.67 (8)°, respectively. A strong intramolecular N3—H3···O1 hydrogen bond forms a six-membered ring, producing a S(6) ring motif. In the crystal, intermolecular N—H···O hydrogen bonds link the molecules into a zigzag chain structure along the b axis (Table 1, Fig. 2).

For the synthesis of Schiff bases derived from 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone and the DNA binding properties of their transition metal complexes, see: Wang & Yang (2005). For the structure of (E,E)-3,3'-dimethyl-1,1'-diphenyl-4,4'-{[3-azapentane-1,5-diylbis(azanediyl)]-bis(phenylmethylidyne)}di-1H-pyrazol-5(4H)-one, see: Zhang et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Extended zigzag chain structure along the b axis formed by N—H···O hydrogen bonds [ symmetry code (i): 0.5 - x, y - 0.5, 0.5 - z]. Hydrogen bonds are shown as dashed lines and C-bound H atoms are omitted for clarity.
3-Methyl-1-phenyl-4-[(Z)-phenyl(4-acetamidoanilino)methylidene]- 1H-pyrazol-5(4H)-one top
Crystal data top
C25H22N4O2F(000) = 864
Mr = 410.47Dx = 1.259 Mg m3
Monoclinic, P21/nMelting point: 567(9) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.1800 (4) ÅCell parameters from 3801 reflections
b = 11.0562 (7) Åθ = 2.4–22.2°
c = 27.3932 (16) ŵ = 0.08 mm1
β = 95.138 (4)°T = 296 K
V = 2165.8 (2) Å3Block, yellow
Z = 40.19 × 0.18 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
5168 independent reflections
Radiation source: fine-focus sealed tube3047 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 27.9°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.985, Tmax = 0.988k = 1412
19323 measured reflectionsl = 3631
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0834P)2 + 0.3021P]
where P = (Fo2 + 2Fc2)/3
5168 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C25H22N4O2V = 2165.8 (2) Å3
Mr = 410.47Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1800 (4) ŵ = 0.08 mm1
b = 11.0562 (7) ÅT = 296 K
c = 27.3932 (16) Å0.19 × 0.18 × 0.15 mm
β = 95.138 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
5168 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3047 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.988Rint = 0.037
19323 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
5168 reflectionsΔρmin = 0.22 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1453 (4)0.8096 (3)0.15116 (9)0.0775 (7)
H1A1.22850.87120.16100.093*
C20.9601 (4)0.8167 (2)0.16072 (10)0.0790 (7)
H2B0.91890.88290.17770.095*
C30.8358 (3)0.7268 (2)0.14534 (8)0.0648 (6)
H3B0.71100.73250.15170.078*
C40.8971 (3)0.62867 (18)0.12057 (7)0.0485 (5)
C51.0823 (3)0.6204 (2)0.11169 (8)0.0600 (6)
H5A1.12470.55350.09530.072*
C61.2045 (3)0.7111 (2)0.12710 (9)0.0718 (7)
H6A1.32950.70510.12100.086*
C70.6243 (3)0.48691 (17)0.12369 (7)0.0464 (5)
C80.5483 (3)0.39817 (17)0.08929 (6)0.0441 (5)
C90.6660 (3)0.40227 (18)0.04957 (7)0.0498 (5)
C100.6607 (4)0.3296 (2)0.00387 (8)0.0725 (7)
H10A0.75960.35520.01510.109*
H10B0.54240.34100.01480.109*
H10C0.67660.24560.01210.109*
C110.4038 (3)0.31978 (17)0.09954 (6)0.0447 (4)
C120.3277 (3)0.22780 (18)0.06380 (6)0.0456 (5)
C130.3630 (3)0.10682 (19)0.07272 (8)0.0581 (6)
H13A0.42530.08270.10230.070*
C140.3063 (4)0.0220 (2)0.03798 (9)0.0746 (7)
H14A0.33360.05930.04380.090*
C150.2096 (4)0.0564 (3)0.00520 (9)0.0771 (7)
H15A0.17200.00140.02870.092*
C160.1685 (4)0.1755 (3)0.01361 (8)0.0719 (7)
H16A0.09980.19840.04250.086*
C170.2282 (3)0.2620 (2)0.02036 (7)0.0617 (6)
H17A0.20180.34320.01420.074*
C180.1978 (3)0.25908 (17)0.16386 (7)0.0463 (5)
C190.2328 (3)0.21907 (19)0.21160 (7)0.0498 (5)
H19A0.34890.23330.22850.060*
C200.0977 (3)0.15856 (18)0.23422 (7)0.0491 (5)
H20A0.12310.13230.26640.059*
C210.0763 (3)0.13596 (17)0.20977 (6)0.0443 (4)
C220.1115 (3)0.17695 (19)0.16203 (7)0.0549 (5)
H22A0.22760.16310.14510.066*
C230.0252 (3)0.2384 (2)0.13947 (7)0.0550 (5)
H23A0.00010.26600.10750.066*
C240.3715 (3)0.02447 (19)0.21917 (8)0.0542 (5)
C250.4773 (3)0.0323 (2)0.25790 (9)0.0727 (7)
H25A0.59090.06730.24300.109*
H25B0.50680.02830.28110.109*
H25C0.40210.09420.27440.109*
O10.57427 (19)0.51393 (13)0.16510 (5)0.0552 (4)
O20.4273 (2)0.02170 (19)0.17623 (6)0.0864 (6)
N10.7704 (2)0.53743 (15)0.10245 (6)0.0514 (4)
N20.7976 (2)0.48311 (15)0.05741 (6)0.0551 (5)
N30.3406 (2)0.32684 (15)0.14348 (5)0.0518 (4)
H3A0.39410.38060.16260.062*
N40.2087 (2)0.07663 (15)0.23616 (5)0.0512 (4)
H4A0.18220.07320.26740.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0842 (18)0.0814 (18)0.0656 (15)0.0301 (15)0.0001 (13)0.0072 (13)
C20.0926 (19)0.0665 (16)0.0795 (16)0.0165 (14)0.0161 (14)0.0244 (13)
C30.0673 (14)0.0582 (14)0.0711 (14)0.0075 (11)0.0183 (11)0.0156 (11)
C40.0577 (12)0.0457 (12)0.0431 (10)0.0046 (9)0.0104 (9)0.0010 (8)
C50.0606 (13)0.0569 (14)0.0638 (13)0.0006 (11)0.0125 (11)0.0008 (10)
C60.0555 (14)0.0841 (18)0.0753 (15)0.0111 (13)0.0033 (12)0.0061 (14)
C70.0548 (11)0.0453 (11)0.0406 (9)0.0002 (9)0.0130 (8)0.0001 (8)
C80.0556 (11)0.0415 (11)0.0364 (9)0.0023 (9)0.0103 (8)0.0021 (8)
C90.0648 (13)0.0457 (11)0.0412 (10)0.0044 (10)0.0174 (9)0.0013 (8)
C100.0918 (17)0.0774 (17)0.0527 (12)0.0174 (14)0.0322 (12)0.0193 (11)
C110.0527 (11)0.0445 (11)0.0376 (9)0.0017 (9)0.0076 (8)0.0018 (8)
C120.0535 (11)0.0477 (11)0.0366 (9)0.0034 (9)0.0103 (8)0.0011 (8)
C130.0704 (14)0.0509 (13)0.0518 (11)0.0013 (11)0.0013 (10)0.0011 (10)
C140.0971 (19)0.0516 (14)0.0741 (16)0.0021 (13)0.0011 (14)0.0119 (12)
C150.0907 (18)0.0791 (19)0.0612 (14)0.0218 (15)0.0061 (13)0.0232 (13)
C160.0824 (17)0.090 (2)0.0408 (11)0.0137 (15)0.0053 (11)0.0003 (12)
C170.0786 (15)0.0601 (14)0.0458 (11)0.0037 (12)0.0027 (10)0.0091 (10)
C180.0537 (12)0.0461 (11)0.0410 (10)0.0025 (9)0.0143 (8)0.0015 (8)
C190.0500 (11)0.0606 (13)0.0391 (9)0.0010 (9)0.0068 (8)0.0012 (9)
C200.0556 (12)0.0570 (13)0.0349 (9)0.0007 (10)0.0061 (8)0.0057 (8)
C210.0516 (11)0.0429 (11)0.0392 (9)0.0005 (9)0.0087 (8)0.0020 (8)
C220.0566 (12)0.0653 (14)0.0429 (10)0.0089 (11)0.0052 (9)0.0079 (9)
C230.0600 (13)0.0674 (14)0.0375 (10)0.0052 (11)0.0042 (9)0.0098 (9)
C240.0538 (12)0.0580 (13)0.0509 (12)0.0018 (10)0.0055 (9)0.0094 (10)
C250.0667 (15)0.0776 (17)0.0745 (15)0.0185 (13)0.0091 (12)0.0209 (13)
O10.0633 (9)0.0631 (9)0.0418 (7)0.0091 (7)0.0185 (6)0.0139 (6)
O20.0724 (11)0.1269 (16)0.0576 (10)0.0295 (11)0.0074 (8)0.0188 (10)
N10.0626 (10)0.0486 (10)0.0458 (9)0.0102 (8)0.0200 (8)0.0080 (7)
N20.0714 (11)0.0540 (10)0.0429 (9)0.0074 (9)0.0226 (8)0.0058 (7)
N30.0621 (10)0.0549 (10)0.0404 (8)0.0136 (8)0.0161 (7)0.0061 (7)
N40.0578 (10)0.0577 (11)0.0386 (8)0.0110 (9)0.0070 (7)0.0064 (7)
Geometric parameters (Å, º) top
C1—C61.361 (4)C14—C151.371 (4)
C1—C21.380 (4)C14—H14A0.9300
C1—H1A0.9300C15—C161.365 (4)
C2—C31.376 (3)C15—H15A0.9300
C2—H2B0.9300C16—C171.376 (3)
C3—C41.373 (3)C16—H16A0.9300
C3—H3B0.9300C17—H17A0.9300
C4—C51.376 (3)C18—C231.374 (3)
C4—N11.418 (2)C18—C191.382 (3)
C5—C61.374 (3)C18—N31.424 (2)
C5—H5A0.9300C19—C201.371 (3)
C6—H6A0.9300C19—H19A0.9300
C7—O11.256 (2)C20—C211.386 (3)
C7—N11.364 (2)C20—H20A0.9300
C7—C81.434 (3)C21—C221.386 (3)
C8—C111.399 (3)C21—N41.407 (2)
C8—C91.437 (2)C22—C231.384 (3)
C9—N21.304 (3)C22—H22A0.9300
C9—C101.485 (3)C23—H23A0.9300
C10—H10A0.9600C24—O21.209 (3)
C10—H10B0.9600C24—N41.348 (3)
C10—H10C0.9600C24—C251.497 (3)
C11—N31.326 (2)C25—H25A0.9600
C11—C121.482 (3)C25—H25B0.9600
C12—C131.379 (3)C25—H25C0.9600
C12—C171.385 (3)N1—N21.401 (2)
C13—C141.372 (3)N3—H3A0.8600
C13—H13A0.9300N4—H4A0.8600
C6—C1—C2119.0 (2)C16—C15—H15A120.1
C6—C1—H1A120.5C14—C15—H15A120.1
C2—C1—H1A120.5C15—C16—C17120.5 (2)
C3—C2—C1120.7 (2)C15—C16—H16A119.8
C3—C2—H2B119.7C17—C16—H16A119.8
C1—C2—H2B119.7C16—C17—C12119.8 (2)
C2—C3—C4119.6 (2)C16—C17—H17A120.1
C2—C3—H3B120.2C12—C17—H17A120.1
C4—C3—H3B120.2C23—C18—C19119.12 (17)
C3—C4—C5119.8 (2)C23—C18—N3123.15 (17)
C3—C4—N1120.75 (18)C19—C18—N3117.60 (18)
C5—C4—N1119.38 (18)C20—C19—C18120.51 (19)
C4—C5—C6119.8 (2)C20—C19—H19A119.7
C4—C5—H5A120.1C18—C19—H19A119.7
C6—C5—H5A120.1C19—C20—C21120.86 (17)
C1—C6—C5121.0 (2)C19—C20—H20A119.6
C1—C6—H6A119.5C21—C20—H20A119.6
C5—C6—H6A119.5C22—C21—C20118.52 (17)
O1—C7—N1125.51 (18)C22—C21—N4124.24 (18)
O1—C7—C8129.31 (17)C20—C21—N4117.18 (16)
N1—C7—C8105.17 (15)C21—C22—C23120.34 (19)
C11—C8—C7122.49 (15)C21—C22—H22A119.8
C11—C8—C9131.94 (17)C23—C22—H22A119.8
C7—C8—C9105.13 (16)C18—C23—C22120.64 (18)
N2—C9—C8111.31 (16)C18—C23—H23A119.7
N2—C9—C10118.23 (16)C22—C23—H23A119.7
C8—C9—C10130.45 (19)O2—C24—N4123.28 (18)
C9—C10—H10A109.5O2—C24—C25122.3 (2)
C9—C10—H10B109.5N4—C24—C25114.45 (18)
H10A—C10—H10B109.5C24—C25—H25A109.5
C9—C10—H10C109.5C24—C25—H25B109.5
H10A—C10—H10C109.5H25A—C25—H25B109.5
H10B—C10—H10C109.5C24—C25—H25C109.5
N3—C11—C8117.75 (17)H25A—C25—H25C109.5
N3—C11—C12120.29 (16)H25B—C25—H25C109.5
C8—C11—C12121.91 (15)C7—N1—N2111.92 (15)
C13—C12—C17119.33 (19)C7—N1—C4129.48 (15)
C13—C12—C11119.85 (18)N2—N1—C4118.51 (14)
C17—C12—C11120.75 (18)C9—N2—N1106.42 (14)
C14—C13—C12120.1 (2)C11—N3—C18129.94 (17)
C14—C13—H13A119.9C11—N3—H3A115.0
C12—C13—H13A119.9C18—N3—H3A115.0
C15—C14—C13120.3 (2)C24—N4—C21128.81 (16)
C15—C14—H14A119.8C24—N4—H4A115.6
C13—C14—H14A119.8C21—N4—H4A115.6
C16—C15—C14119.9 (2)
C6—C1—C2—C31.3 (4)C11—C12—C17—C16176.10 (19)
C1—C2—C3—C40.5 (4)C23—C18—C19—C200.6 (3)
C2—C3—C4—C50.6 (3)N3—C18—C19—C20176.74 (17)
C2—C3—C4—N1177.2 (2)C18—C19—C20—C210.2 (3)
C3—C4—C5—C60.8 (3)C19—C20—C21—C220.6 (3)
N1—C4—C5—C6176.98 (19)C19—C20—C21—N4178.09 (18)
C2—C1—C6—C51.0 (4)C20—C21—C22—C230.3 (3)
C4—C5—C6—C10.1 (4)N4—C21—C22—C23177.62 (18)
O1—C7—C8—C113.9 (3)C19—C18—C23—C220.9 (3)
N1—C7—C8—C11174.95 (18)N3—C18—C23—C22176.79 (18)
O1—C7—C8—C9177.1 (2)C21—C22—C23—C180.4 (3)
N1—C7—C8—C91.7 (2)O1—C7—N1—N2176.45 (19)
C11—C8—C9—N2172.8 (2)C8—C7—N1—N22.4 (2)
C7—C8—C9—N20.5 (2)O1—C7—N1—C40.0 (3)
C11—C8—C9—C106.0 (4)C8—C7—N1—C4178.89 (19)
C7—C8—C9—C10178.3 (2)C3—C4—N1—C740.4 (3)
C7—C8—C11—N32.1 (3)C5—C4—N1—C7141.8 (2)
C9—C8—C11—N3169.1 (2)C3—C4—N1—N2143.3 (2)
C7—C8—C11—C12179.45 (18)C5—C4—N1—N234.5 (3)
C9—C8—C11—C128.3 (3)C8—C9—N2—N11.0 (2)
N3—C11—C12—C1367.8 (3)C10—C9—N2—N1179.88 (19)
C8—C11—C12—C13109.5 (2)C7—N1—N2—C92.2 (2)
N3—C11—C12—C17115.0 (2)C4—N1—N2—C9179.07 (18)
C8—C11—C12—C1767.7 (3)C8—C11—N3—C18179.58 (19)
C17—C12—C13—C142.6 (3)C12—C11—N3—C182.2 (3)
C11—C12—C13—C14174.6 (2)C23—C18—N3—C1147.3 (3)
C12—C13—C14—C151.9 (4)C19—C18—N3—C11136.7 (2)
C13—C14—C15—C160.3 (4)O2—C24—N4—C210.3 (4)
C14—C15—C16—C171.9 (4)C25—C24—N4—C21179.2 (2)
C15—C16—C17—C121.2 (4)C22—C21—N4—C2416.4 (3)
C13—C12—C17—C161.1 (3)C20—C21—N4—C24166.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.862.052.874 (2)161
N3—H3A···O10.861.962.696 (2)143
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H22N4O2
Mr410.47
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.1800 (4), 11.0562 (7), 27.3932 (16)
β (°) 95.138 (4)
V3)2165.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.19 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.985, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
19323, 5168, 3047
Rint0.037
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.169, 1.02
No. of reflections5168
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.862.052.874 (2)161
N3—H3A···O10.861.962.696 (2)143
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful for financial support from the Natural Science Foundation of Henan Province (No.12B150011).

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. & Yang, Z.-Y. (2005). Transition Met. Chem. 30, 902–906.  Web of Science CrossRef CAS Google Scholar
First citationZhang, Z.-P., Wang, Y., Li, X.-X. & Li, Y.-W. (2010). Acta Cryst. E66, o3326.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds