organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(2,3-Di­chloro­phen­yl)-2-fluoro­pyridine

aDepartment of Chemistry, Gomal University, Dera Ismail Khan, K.P.K., Pakistan, and bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 17 June 2012; accepted 19 June 2012; online 23 June 2012)

In the title compound, C11H6Cl2FN, the dichloro­benzene and the 2-fluoro­pyridine rings are oriented at a dihedral angle of 47.73 (3)°. In the crystal, pairs of C—H⋯N inter­actions link the mol­ecules into dimers with R22(12) motifs. Mol­ecules are arranged in stacks extending along [100] via ππ inter­actions with a centroid–centroid distance of 3.8889 (3) Å.

Related literature

For related structures, see: Adeel et al. (2012[Adeel, M., Elahi, F., Tahir, M. N., Khan, A. & Langer, P. (2012). Acta Cryst. E68, o2043.]); Elahi, Adeel & Tahir (2012[Elahi, F., Adeel, M. & Tahir, M. N. (2012). Acta Cryst. E68, o2124.]); Elahi, Adeel, Tahir et al. (2012[Elahi, F., Adeel, M., Tahir, M. N., Langer, P. & Ahmad, S. (2012). Acta Cryst. E68, o2070.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H6Cl2FN

  • Mr = 242.07

  • Triclinic, [P \overline 1]

  • a = 3.8889 (3) Å

  • b = 11.1006 (11) Å

  • c = 12.0542 (11) Å

  • α = 101.526 (5)°

  • β = 94.930 (4)°

  • γ = 92.057 (5)°

  • V = 507.24 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 296 K

  • 0.34 × 0.18 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.874, Tmax = 0.898

  • 6978 measured reflections

  • 1874 independent reflections

  • 1625 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.075

  • S = 1.04

  • 1874 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N1i 0.93 2.63 3.557 (2) 178
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported the crystal structure of 5-(4-chlorophenyl)-2-fluoropyridine (Adeel et al., 2012), 4-(2-fluoropyridin-5-yl)phenol (Elahi, Adeel & Tahir, 2012) and 5-(4-fluorophenyl)-2-fluoropyridine (Elahi, Adeel, Tahir et al., 2012)which have common moiety of 2-fluoropyridine as in (I).

In (I) the dichlorobenzene A (C1–C6/CL1/CL2) and the 2-fluoropyridine B (C7—C11/N1/F1) are planar with r.m.s. deviations of 0.0189 Å and 0.0042 Å, respectively. The dihedral angle between A/B is 47.73 (3)°. The molecules are stabilized in the form of dimers with R22(12) ring motif (Bernstein et al., 1995) due to hydrogen bonding of C—H···N type between dichlorophenyl and pyridine groups (Table 1, Fig. 2).

Related literature top

For related structures, see: Adeel et al. (2012); Elahi, Adeel & Tahir (2012); Elahi, Adeel, Tahir et al. (2012). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a 6 ml solution of 5-bromo-2-fluoropyridine (0.2 g, 1.136 mmol), 2,3-dichlorophynyl boronic acid (0.260 g, 1.36 mmol) in dioxane and K3PO4 (0.361 g, 1.5 mmol, in 1 ml H2O) was added Pd(PPh3)4 (1.5 mole %) at 373 K under N2 atmosphere. The reaction mixture was refluxed for 8 h. Then 20 ml of distilled water was added. The aqueous layer was extracted three times with ethyl acetate (3 × 15 ml). The organic layer was evaporated in vacuo and the crude product was obtained. Colorless needles of (I) were obtained by the recrystalization of crude product in a saturated CHCl3/CH3OH (m.p. 350-352 K).

Refinement top

The H atoms were positioned geometrically (C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.2 for aryl H atoms.

Structure description top

We have reported the crystal structure of 5-(4-chlorophenyl)-2-fluoropyridine (Adeel et al., 2012), 4-(2-fluoropyridin-5-yl)phenol (Elahi, Adeel & Tahir, 2012) and 5-(4-fluorophenyl)-2-fluoropyridine (Elahi, Adeel, Tahir et al., 2012)which have common moiety of 2-fluoropyridine as in (I).

In (I) the dichlorobenzene A (C1–C6/CL1/CL2) and the 2-fluoropyridine B (C7—C11/N1/F1) are planar with r.m.s. deviations of 0.0189 Å and 0.0042 Å, respectively. The dihedral angle between A/B is 47.73 (3)°. The molecules are stabilized in the form of dimers with R22(12) ring motif (Bernstein et al., 1995) due to hydrogen bonding of C—H···N type between dichlorophenyl and pyridine groups (Table 1, Fig. 2).

For related structures, see: Adeel et al. (2012); Elahi, Adeel & Tahir (2012); Elahi, Adeel, Tahir et al. (2012). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Dispalcement ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form dimers via R22(12) motif.
5-(2,3-Dichlorophenyl)-2-fluoropyridine top
Crystal data top
C11H6Cl2FNZ = 2
Mr = 242.07F(000) = 244
Triclinic, P1Dx = 1.585 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.8889 (3) ÅCell parameters from 869 reflections
b = 11.1006 (11) Åθ = 1.7–25.5°
c = 12.0542 (11) ŵ = 0.61 mm1
α = 101.526 (5)°T = 296 K
β = 94.930 (4)°Needle, colorless
γ = 92.057 (5)°0.34 × 0.18 × 0.16 mm
V = 507.24 (8) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1874 independent reflections
Radiation source: fine-focus sealed tube1625 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.10 pixels mm-1θmax = 25.5°, θmin = 1.7°
ω scansh = 44
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1313
Tmin = 0.874, Tmax = 0.898l = 1414
6978 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.1351P]
where P = (Fo2 + 2Fc2)/3
1874 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C11H6Cl2FNγ = 92.057 (5)°
Mr = 242.07V = 507.24 (8) Å3
Triclinic, P1Z = 2
a = 3.8889 (3) ÅMo Kα radiation
b = 11.1006 (11) ŵ = 0.61 mm1
c = 12.0542 (11) ÅT = 296 K
α = 101.526 (5)°0.34 × 0.18 × 0.16 mm
β = 94.930 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1874 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1625 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.898Rint = 0.023
6978 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
1874 reflectionsΔρmin = 0.22 e Å3
136 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.89637 (11)0.34986 (4)0.42850 (3)0.0469 (2)
Cl20.69950 (16)0.07317 (5)0.40724 (5)0.0705 (2)
F10.8508 (4)0.81300 (10)0.19925 (12)0.0787 (5)
N10.8522 (4)0.61337 (13)0.12178 (12)0.0454 (5)
C10.5754 (4)0.32731 (14)0.21540 (13)0.0333 (5)
C20.6680 (4)0.26882 (14)0.30479 (13)0.0355 (5)
C30.5869 (4)0.14425 (15)0.29533 (15)0.0441 (6)
C40.4176 (5)0.07576 (17)0.19693 (18)0.0535 (6)
C50.3322 (5)0.13175 (16)0.10746 (17)0.0518 (6)
C60.4073 (4)0.25512 (15)0.11605 (14)0.0421 (5)
C70.6503 (4)0.46004 (14)0.21958 (12)0.0329 (5)
C80.5751 (4)0.55329 (15)0.30850 (13)0.0393 (5)
C90.6419 (5)0.67424 (16)0.30366 (15)0.0469 (6)
C100.7801 (5)0.69556 (15)0.20828 (16)0.0475 (6)
C110.7863 (4)0.49632 (15)0.12855 (13)0.0383 (5)
H40.361560.007580.191060.0642*
H50.221870.085460.040100.0621*
H60.345000.291330.054560.0505*
H80.479570.533600.371170.0472*
H90.595790.738320.362090.0562*
H110.835120.435190.067970.0460*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0512 (3)0.0576 (3)0.0312 (2)0.0030 (2)0.0007 (2)0.0092 (2)
Cl20.0884 (4)0.0636 (3)0.0719 (4)0.0107 (3)0.0127 (3)0.0404 (3)
F10.1164 (11)0.0382 (6)0.0853 (9)0.0001 (6)0.0163 (8)0.0196 (6)
N10.0540 (9)0.0448 (8)0.0408 (8)0.0054 (7)0.0071 (7)0.0155 (6)
C10.0300 (8)0.0385 (8)0.0319 (8)0.0047 (6)0.0071 (6)0.0060 (6)
C20.0325 (8)0.0425 (9)0.0322 (8)0.0039 (6)0.0076 (6)0.0068 (6)
C30.0422 (10)0.0445 (9)0.0512 (10)0.0069 (7)0.0130 (8)0.0185 (8)
C40.0530 (11)0.0382 (9)0.0687 (13)0.0011 (8)0.0091 (9)0.0089 (9)
C50.0497 (11)0.0452 (10)0.0524 (11)0.0033 (8)0.0035 (8)0.0045 (8)
C60.0422 (9)0.0444 (9)0.0383 (9)0.0049 (7)0.0011 (7)0.0058 (7)
C70.0309 (8)0.0383 (8)0.0294 (8)0.0051 (6)0.0019 (6)0.0064 (6)
C80.0409 (9)0.0446 (9)0.0323 (8)0.0049 (7)0.0062 (7)0.0062 (7)
C90.0555 (11)0.0409 (9)0.0407 (10)0.0093 (8)0.0031 (8)0.0007 (7)
C100.0558 (11)0.0360 (9)0.0519 (10)0.0019 (8)0.0005 (8)0.0141 (8)
C110.0428 (9)0.0407 (9)0.0323 (8)0.0073 (7)0.0051 (7)0.0079 (7)
Geometric parameters (Å, º) top
Cl1—C21.7323 (16)C5—C61.372 (2)
Cl2—C31.7271 (18)C7—C81.392 (2)
F1—C101.350 (2)C7—C111.381 (2)
N1—C101.299 (2)C8—C91.372 (2)
N1—C111.335 (2)C9—C101.368 (3)
C1—C21.394 (2)C4—H40.9300
C1—C61.396 (2)C5—H50.9300
C1—C71.482 (2)C6—H60.9300
C2—C31.387 (2)C8—H80.9300
C3—C41.374 (3)C9—H90.9300
C4—C51.371 (3)C11—H110.9300
C10—N1—C11115.72 (15)C8—C9—C10116.44 (16)
C2—C1—C6117.42 (15)F1—C10—N1114.38 (16)
C2—C1—C7123.81 (14)F1—C10—C9118.82 (16)
C6—C1—C7118.76 (14)N1—C10—C9126.79 (17)
Cl1—C2—C1120.44 (12)N1—C11—C7124.31 (15)
Cl1—C2—C3118.82 (12)C3—C4—H4120.00
C1—C2—C3120.72 (15)C5—C4—H4120.00
Cl2—C3—C2120.27 (13)C4—C5—H5120.00
Cl2—C3—C4119.16 (14)C6—C5—H5120.00
C2—C3—C4120.57 (16)C1—C6—H6119.00
C3—C4—C5119.21 (18)C5—C6—H6119.00
C4—C5—C6120.85 (18)C7—C8—H8120.00
C1—C6—C5121.20 (16)C9—C8—H8120.00
C1—C7—C8123.79 (14)C8—C9—H9122.00
C1—C7—C11119.39 (14)C10—C9—H9122.00
C8—C7—C11116.74 (15)N1—C11—H11118.00
C7—C8—C9119.99 (15)C7—C11—H11118.00
C11—N1—C10—F1179.73 (16)Cl1—C2—C3—C4177.52 (14)
C11—N1—C10—C90.7 (3)C1—C2—C3—Cl2179.38 (12)
C10—N1—C11—C70.0 (2)C1—C2—C3—C40.9 (2)
C6—C1—C2—Cl1176.78 (12)Cl2—C3—C4—C5179.13 (15)
C6—C1—C2—C31.6 (2)C2—C3—C4—C50.6 (3)
C7—C1—C2—Cl12.2 (2)C3—C4—C5—C61.4 (3)
C7—C1—C2—C3179.45 (15)C4—C5—C6—C10.6 (3)
C2—C1—C6—C50.9 (2)C1—C7—C8—C9177.67 (16)
C7—C1—C6—C5179.88 (16)C11—C7—C8—C91.0 (2)
C2—C1—C7—C849.6 (2)C1—C7—C11—N1177.60 (15)
C2—C1—C7—C11133.83 (17)C8—C7—C11—N10.8 (2)
C6—C1—C7—C8131.43 (17)C7—C8—C9—C100.5 (3)
C6—C1—C7—C1145.1 (2)C8—C9—C10—F1179.97 (19)
Cl1—C2—C3—Cl22.22 (19)C8—C9—C10—N10.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N1i0.932.633.557 (2)178
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H6Cl2FN
Mr242.07
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)3.8889 (3), 11.1006 (11), 12.0542 (11)
α, β, γ (°)101.526 (5), 94.930 (4), 92.057 (5)
V3)507.24 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.34 × 0.18 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.874, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
6978, 1874, 1625
Rint0.023
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.04
No. of reflections1874
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N1i0.932.633.557 (2)178
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. MA also acknowledges financial support from the World University Service, Germany, for an equipment grant and the Higher Education Commission, Pakistan, for a resource grant.

References

First citationAdeel, M., Elahi, F., Tahir, M. N., Khan, A. & Langer, P. (2012). Acta Cryst. E68, o2043.  CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElahi, F., Adeel, M. & Tahir, M. N. (2012). Acta Cryst. E68, o2124.  CSD CrossRef IUCr Journals Google Scholar
First citationElahi, F., Adeel, M., Tahir, M. N., Langer, P. & Ahmad, S. (2012). Acta Cryst. E68, o2070.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds