organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

c-5-Hy­dr­oxy-r-2,c-4-bis­­(meth­­oxy­carbon­yl)-t-5-methyl-t-3-(3-nitro­phen­yl)cyclo­hexa­none

aDepartment of Physics, Seethalakshmi Ramaswami College (Autonomous), Tiruchirappalli 620 002, India, bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, India, and cLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India
*Correspondence e-mail: raghema2000@yahoo.co.in

(Received 25 May 2012; accepted 16 June 2012; online 27 June 2012)

In the title compound, C17H19NO8 [systematic name = dimethyl 4-hydroxy-4-methyl-2-(3-nitrophenyl)-6-oxocyclohexane-1,3-dicarboxylate], the cyclo­hexa­none ring exhibits a chair conformation. The meth­oxy­carbonyl groups are oriented in opposite directions with respect to the cyclo­hexa­none ring. In the crystal, O—H⋯O hydrogen bonds links the mol­ecules into chains running parallel to the a axis. These chains are connected by weak C—H⋯O hydrogen bonds, forming sheets parallel to the ab plane.

Related literature

For the pharmacological activity of cyclo­hexa­none derivatives, see: Puetz et al.(2003[Puetz, C., Buschmann, H. & Koegel, B. (2003). US Patent Appl. No. 20030096811.]); Danyi et al. (1989[Danyi, Q., Takayama, K. & Nagai, T. (1989). Drug Des. Deliv. 4, 323-330.]); For related structure, see: Hema et al. (2006[Hema, R., Parthasarathi, V., Ravikumar, K., Pandiarajan, K. & Murugavel, K. (2006). Acta Cryst. E62, o703-o705.]). For conformational analysis, see: Allinger (1977[Allinger, N. L. (1977). J. Am. Chem. Soc. 99, 8127-8134.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19NO8

  • Mr = 365.33

  • Monoclinic, C c

  • a = 20.1842 (18) Å

  • b = 5.7380 (5) Å

  • c = 15.5771 (14) Å

  • β = 108.357 (1)°

  • V = 1712.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 273 K

  • 0.3 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 7818 measured reflections

  • 1513 independent reflections

  • 1469 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 1.17

  • 1513 reflections

  • 239 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.98 2.46 3.374 (5) 154
C36—H36⋯O2i 0.93 2.51 3.414 (5) 164
O8—H8⋯O5ii 0.82 2.22 2.969 (5) 152
Symmetry codes: (i) x, y-1, z; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Cyclohexanone derivatives have potent pharmacological activity in the treatment of a broad spectrum of medical conditions(Puetz et al., 2003). Cyclohexanone derivatives penetrate into the stratum corneum and alter the skin permeability of indomethacin by fluidizing or modifying the hard hydrophobic barrier of the corneum(Danyi et al., 1989), thus giving an alternative method of administration of this compound which can cause serious gastric upsets.

In C17H19NO8, (I), (Fig. 1), the cyclohexanone ring adopts a chair conformation [Q=0.589 (4) Å, θ=173.0 (4)° and φ=16 (3)° (Cremer & Pople, 1975)]. The mean value [56.55 (16)°] of the endocyclic torsion angles of the cyclohexanone ring in (I) shows that it is slightly more puckered than the idealized cyclohexanone ring [54.1 (3)°, MM2 calculation; (Allinger, 1977)]. The two methoxycarbonyl groups at C2 (C4—C3—C2—C21=-178.4 (2)°) and at C4 (C2—C3—C4—C41=-179.2 (3)°) are substituted in β-equatorial positions. The nitrophenyl ring(ring A) attached to C3 adopts an α equatorial orientation. The methyl and hydroxyl groups at C5 are oriented in β axial and equatorial positions respectively. The mean planes through C1, C3, C4 and C6 and ring A make a dihedral angle of 82.06 (12)°. This value is greater than that reported for a similar structure (73.76°) (Hema et al., 2006). The dihedral angle between ring A and the carboxy groups O2–C21–O3 and O6–C41–O4 are 61.14 (24)° and 74.71 (27)°, respectively. These two carbonyl groups in (I) are twisted in opposite direction with C5–C4–C41–O7 and C1–C2–C21–O2 torsion angles of 75.8 (5)° and -73.0 (4)°, respectively.

The hydroxyl group forms a strong intermolecular hydrogen bond, O8–H8···O5(-0.5+x,0.5+y,z) linking the molecules into C(10) chains, (Bernstein et al., 1995), Table 1 and Figure 2. The weak hydrogen bonds C4-H2···O2(x,-1+y,z) and C36-H36···O2(x,-1+y,z) link these chains into sheets which lie parallel to theab-plane.

Related literature top

For the pharmacological activity of cyclohexanone derivatives, see: Puetz et al.(2003); Danyi et al. (1989); For related structure, see: Hema et al. (2006). For conformational analysis, see: Allinger (1977); Cremer & Pople (1975). For graph-set analysis, see: Bernstein et al. (1995)

Experimental top

A mixture of methyl acetoacetate(11.6 g, 100 mmol), 3-nitrobenzaldehyde(7.55 g, 50 mmol) and methylamine(1.55 g, 50 mmol) in ethanol(50 ml) was heated to boiling. The reaction mixture was allowed to stand overnight. The separated solid was filtered and purified by recrystallization from ethanol to yield the title compound (yield 11.2 g, 75%, mp 475K).

Refinement top

H atoms were treated as riding atoms with C—H(aromatic), 0.93Å and C—H (aliphatic), 0.98Å with Uiso = 1.2Ueq(C) and C—H(methyl), 0.96Å, O—H, 0.82Å with Uiso = 1.5Ueq(). Friedel pairs were merged.

Structure description top

Cyclohexanone derivatives have potent pharmacological activity in the treatment of a broad spectrum of medical conditions(Puetz et al., 2003). Cyclohexanone derivatives penetrate into the stratum corneum and alter the skin permeability of indomethacin by fluidizing or modifying the hard hydrophobic barrier of the corneum(Danyi et al., 1989), thus giving an alternative method of administration of this compound which can cause serious gastric upsets.

In C17H19NO8, (I), (Fig. 1), the cyclohexanone ring adopts a chair conformation [Q=0.589 (4) Å, θ=173.0 (4)° and φ=16 (3)° (Cremer & Pople, 1975)]. The mean value [56.55 (16)°] of the endocyclic torsion angles of the cyclohexanone ring in (I) shows that it is slightly more puckered than the idealized cyclohexanone ring [54.1 (3)°, MM2 calculation; (Allinger, 1977)]. The two methoxycarbonyl groups at C2 (C4—C3—C2—C21=-178.4 (2)°) and at C4 (C2—C3—C4—C41=-179.2 (3)°) are substituted in β-equatorial positions. The nitrophenyl ring(ring A) attached to C3 adopts an α equatorial orientation. The methyl and hydroxyl groups at C5 are oriented in β axial and equatorial positions respectively. The mean planes through C1, C3, C4 and C6 and ring A make a dihedral angle of 82.06 (12)°. This value is greater than that reported for a similar structure (73.76°) (Hema et al., 2006). The dihedral angle between ring A and the carboxy groups O2–C21–O3 and O6–C41–O4 are 61.14 (24)° and 74.71 (27)°, respectively. These two carbonyl groups in (I) are twisted in opposite direction with C5–C4–C41–O7 and C1–C2–C21–O2 torsion angles of 75.8 (5)° and -73.0 (4)°, respectively.

The hydroxyl group forms a strong intermolecular hydrogen bond, O8–H8···O5(-0.5+x,0.5+y,z) linking the molecules into C(10) chains, (Bernstein et al., 1995), Table 1 and Figure 2. The weak hydrogen bonds C4-H2···O2(x,-1+y,z) and C36-H36···O2(x,-1+y,z) link these chains into sheets which lie parallel to theab-plane.

For the pharmacological activity of cyclohexanone derivatives, see: Puetz et al.(2003); Danyi et al. (1989); For related structure, see: Hema et al. (2006). For conformational analysis, see: Allinger (1977); Cremer & Pople (1975). For graph-set analysis, see: Bernstein et al. (1995)

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecule of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii.
[Figure 2] Fig. 2. The O8–H8···O5 CHAINS, viewed along b axis. Dashed lines indicate hydrogen bonds.
c-5-Hydroxy-r-2,c-4-bis(methoxycarbonyl)- t-5-methyl-t-3-(3-nitrophenyl)cyclohexanone top
Crystal data top
C17H19NO8F(000) = 768
Mr = 365.33Dx = 1.417 Mg m3
Monoclinic, CcMelting point: 475 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 20.1842 (18) ÅCell parameters from 2970 reflections
b = 5.7380 (5) Åθ = 2.8–25°
c = 15.5771 (14) ŵ = 0.11 mm1
β = 108.357 (1)°T = 273 K
V = 1712.3 (3) Å3Prism, colourless
Z = 40.3 × 0.18 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1469 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω scanh = 2424
7818 measured reflectionsk = 66
1513 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.665P]
where P = (Fo2 + 2Fc2)/3
1513 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.27 e Å3
2 restraintsΔρmin = 0.15 e Å3
Crystal data top
C17H19NO8V = 1712.3 (3) Å3
Mr = 365.33Z = 4
Monoclinic, CcMo Kα radiation
a = 20.1842 (18) ŵ = 0.11 mm1
b = 5.7380 (5) ÅT = 273 K
c = 15.5771 (14) Å0.3 × 0.18 × 0.15 mm
β = 108.357 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1469 reflections with I > 2σ(I)
7818 measured reflectionsRint = 0.028
1513 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0442 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.17Δρmax = 0.27 e Å3
1513 reflectionsΔρmin = 0.15 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.12737 (18)0.5989 (6)0.1103 (2)0.0308 (7)
H30.09920.74120.09590.037*
C20.17193 (17)0.6084 (6)0.2116 (2)0.0316 (8)
H20.20080.46750.22500.038*
C10.12635 (19)0.6086 (6)0.2729 (2)0.0370 (8)
C60.0735 (2)0.4139 (7)0.2538 (3)0.0400 (9)
H610.04380.43250.29160.048*
H620.09750.26570.26860.048*
C50.02901 (18)0.4137 (6)0.1554 (3)0.0348 (8)
C40.07746 (18)0.3893 (6)0.0952 (2)0.0311 (7)
H40.10520.24670.11260.037*
C310.17510 (18)0.5939 (6)0.0524 (2)0.0312 (7)
C320.1713 (2)0.7685 (7)0.0109 (2)0.0381 (8)
H320.13750.88390.01970.046*
C330.2168 (2)0.7735 (8)0.0610 (3)0.0468 (10)
H330.21270.89030.10370.056*
C340.2678 (2)0.6082 (8)0.0482 (3)0.0444 (9)
H340.29920.61200.08090.053*
C350.27115 (19)0.4360 (7)0.0145 (3)0.0380 (8)
C360.22569 (18)0.4240 (6)0.0639 (2)0.0361 (8)
H360.22890.30290.10470.043*
C410.03373 (17)0.3699 (6)0.0021 (2)0.0317 (7)
C420.0151 (3)0.1008 (8)0.1194 (3)0.0558 (11)
H4210.06260.12880.12200.084*
H4220.01000.05900.13450.084*
H4230.00320.20080.16170.084*
C210.22025 (18)0.8146 (6)0.2304 (2)0.0335 (8)
C220.3365 (2)0.9385 (9)0.2956 (4)0.0607 (13)
H2210.34120.99990.24050.091*
H2220.38060.87820.33260.091*
H2230.32171.06030.32770.091*
C510.0253 (2)0.2189 (7)0.1379 (3)0.0452 (9)
H5110.05240.23610.17820.068*
H5120.00210.07060.14790.068*
H5130.05550.22780.07650.068*
N10.32670 (18)0.2619 (7)0.0308 (2)0.0492 (9)
O10.13259 (17)0.7525 (5)0.3311 (2)0.0556 (8)
O20.20216 (15)1.0111 (5)0.2094 (2)0.0485 (7)
O30.28532 (14)0.7538 (5)0.2748 (2)0.0472 (7)
O70.00392 (16)0.5267 (5)0.04872 (19)0.0502 (7)
O80.00399 (14)0.6359 (4)0.14196 (19)0.0415 (6)
H80.03310.64100.09150.062*
O60.03014 (14)0.1479 (4)0.03018 (19)0.0434 (7)
O40.32638 (19)0.1005 (7)0.0817 (3)0.0780 (12)
O50.37036 (18)0.2827 (8)0.0070 (2)0.0742 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0308 (17)0.0229 (15)0.0379 (19)0.0038 (13)0.0098 (14)0.0007 (14)
C20.0335 (18)0.0236 (16)0.0343 (19)0.0063 (13)0.0057 (15)0.0026 (14)
C10.039 (2)0.0347 (19)0.035 (2)0.0031 (16)0.0090 (16)0.0009 (17)
C60.050 (2)0.0342 (19)0.039 (2)0.0011 (16)0.0178 (17)0.0015 (15)
C50.0335 (18)0.0222 (17)0.050 (2)0.0015 (13)0.0144 (17)0.0028 (14)
C40.0281 (16)0.0228 (16)0.0383 (19)0.0020 (13)0.0045 (14)0.0022 (14)
C310.0296 (16)0.0269 (16)0.0316 (17)0.0010 (13)0.0017 (14)0.0028 (13)
C320.038 (2)0.034 (2)0.0384 (19)0.0075 (15)0.0061 (16)0.0040 (15)
C330.054 (2)0.049 (2)0.038 (2)0.0008 (19)0.0149 (19)0.0114 (17)
C340.039 (2)0.056 (2)0.041 (2)0.0011 (17)0.0170 (17)0.0022 (18)
C350.0299 (18)0.044 (2)0.0379 (19)0.0031 (15)0.0074 (15)0.0089 (16)
C360.0356 (19)0.0345 (19)0.0371 (19)0.0040 (15)0.0099 (16)0.0010 (15)
C410.0226 (16)0.0292 (17)0.0418 (19)0.0021 (13)0.0081 (14)0.0025 (15)
C420.062 (3)0.045 (2)0.050 (3)0.0019 (19)0.004 (2)0.012 (2)
C210.0342 (18)0.0328 (19)0.0324 (18)0.0013 (15)0.0090 (14)0.0007 (15)
C220.042 (2)0.067 (3)0.066 (3)0.017 (2)0.007 (2)0.006 (2)
C510.042 (2)0.036 (2)0.058 (3)0.0063 (16)0.0160 (19)0.0048 (18)
N10.0377 (18)0.060 (2)0.047 (2)0.0110 (16)0.0095 (16)0.0060 (17)
O10.066 (2)0.0561 (18)0.0502 (17)0.0150 (15)0.0260 (15)0.0196 (15)
O20.0460 (16)0.0306 (15)0.0640 (18)0.0004 (11)0.0102 (13)0.0031 (13)
O30.0317 (13)0.0435 (15)0.0584 (17)0.0014 (11)0.0027 (12)0.0060 (13)
O70.0573 (17)0.0346 (14)0.0435 (15)0.0095 (13)0.0060 (13)0.0020 (12)
O80.0380 (14)0.0319 (13)0.0539 (16)0.0078 (11)0.0135 (12)0.0042 (12)
O60.0487 (16)0.0309 (14)0.0432 (14)0.0031 (12)0.0039 (12)0.0083 (11)
O40.066 (2)0.067 (2)0.109 (3)0.0325 (18)0.039 (2)0.023 (2)
O50.0514 (19)0.118 (3)0.061 (2)0.033 (2)0.0295 (17)0.005 (2)
Geometric parameters (Å, º) top
C3—C311.513 (5)C34—C351.376 (6)
C3—C41.539 (5)C34—H340.9300
C3—C21.551 (5)C35—C361.372 (5)
C3—H30.9800C35—N11.463 (5)
C2—C211.502 (5)C36—H360.9300
C2—C11.521 (5)C41—O71.193 (4)
C2—H20.9800C41—O61.341 (4)
C1—O11.203 (4)C42—O61.428 (5)
C1—C61.508 (5)C42—H4210.9600
C6—C51.513 (5)C42—H4220.9600
C6—H610.9700C42—H4230.9600
C6—H620.9700C21—O21.199 (5)
C5—O81.423 (4)C21—O31.324 (4)
C5—C511.529 (5)C22—O31.444 (5)
C5—C41.559 (5)C22—H2210.9600
C4—C411.499 (5)C22—H2220.9600
C4—H40.9800C22—H2230.9600
C31—C361.382 (5)C51—H5110.9600
C31—C321.392 (5)C51—H5120.9600
C32—C331.378 (5)C51—H5130.9600
C32—H320.9300N1—O51.209 (5)
C33—C341.368 (6)N1—O41.221 (5)
C33—H330.9300O8—H80.8200
C31—C3—C4113.8 (3)C32—C33—H33119.7
C31—C3—C2109.4 (3)C33—C34—C35117.9 (4)
C4—C3—C2109.0 (3)C33—C34—H34121.1
C31—C3—H3108.2C35—C34—H34121.1
C4—C3—H3108.2C36—C35—C34122.8 (3)
C2—C3—H3108.2C36—C35—N1118.7 (3)
C21—C2—C1111.2 (3)C34—C35—N1118.5 (4)
C21—C2—C3111.0 (3)C35—C36—C31119.3 (3)
C1—C2—C3111.5 (3)C35—C36—H36120.3
C21—C2—H2107.6C31—C36—H36120.3
C1—C2—H2107.6O7—C41—O6123.5 (3)
C3—C2—H2107.6O7—C41—C4125.7 (3)
O1—C1—C6123.8 (3)O6—C41—C4110.8 (3)
O1—C1—C2122.2 (3)O6—C42—H421109.5
C6—C1—C2113.9 (3)O6—C42—H422109.5
C1—C6—C5111.0 (3)H421—C42—H422109.5
C1—C6—H61109.4O6—C42—H423109.5
C5—C6—H61109.4H421—C42—H423109.5
C1—C6—H62109.4H422—C42—H423109.5
C5—C6—H62109.4O2—C21—O3123.9 (3)
H61—C6—H62108.0O2—C21—C2124.4 (3)
O8—C5—C6104.4 (3)O3—C21—C2111.8 (3)
O8—C5—C51110.6 (3)O3—C22—H221109.5
C6—C5—C51110.1 (3)O3—C22—H222109.5
O8—C5—C4110.2 (3)H221—C22—H222109.5
C6—C5—C4109.0 (3)O3—C22—H223109.5
C51—C5—C4112.2 (3)H221—C22—H223109.5
C41—C4—C3111.2 (3)H222—C22—H223109.5
C41—C4—C5109.5 (3)C5—C51—H511109.5
C3—C4—C5110.0 (3)C5—C51—H512109.5
C41—C4—H4108.7H511—C51—H512109.5
C3—C4—H4108.7C5—C51—H513109.5
C5—C4—H4108.7H511—C51—H513109.5
C36—C31—C32118.2 (3)H512—C51—H513109.5
C36—C31—C3121.3 (3)O5—N1—O4123.0 (4)
C32—C31—C3120.4 (3)O5—N1—C35119.0 (4)
C33—C32—C31121.2 (3)O4—N1—C35118.0 (3)
C33—C32—H32119.4C21—O3—C22116.5 (3)
C31—C32—H32119.4C5—O8—H8109.5
C34—C33—C32120.5 (4)C41—O6—C42116.7 (3)
C34—C33—H33119.7
C31—C3—C2—C2156.6 (3)C36—C31—C32—C330.3 (5)
C4—C3—C2—C21178.4 (3)C3—C31—C32—C33176.6 (4)
C31—C3—C2—C1178.8 (3)C31—C32—C33—C341.1 (6)
C4—C3—C2—C153.8 (4)C32—C33—C34—C351.2 (6)
C21—C2—C1—O13.4 (5)C33—C34—C35—C360.1 (6)
C3—C2—C1—O1128.0 (4)C33—C34—C35—N1178.3 (4)
C21—C2—C1—C6176.5 (3)C34—C35—C36—C311.5 (6)
C3—C2—C1—C652.0 (4)N1—C35—C36—C31176.9 (3)
O1—C1—C6—C5125.7 (4)C32—C31—C36—C351.5 (5)
C2—C1—C6—C554.2 (4)C3—C31—C36—C35175.3 (3)
C1—C6—C5—O859.9 (4)C3—C4—C41—O746.0 (5)
C1—C6—C5—C51178.7 (3)C5—C4—C41—O775.8 (5)
C1—C6—C5—C457.9 (4)C3—C4—C41—O6136.2 (3)
C31—C3—C4—C4156.8 (4)C5—C4—C41—O6102.0 (3)
C2—C3—C4—C41179.2 (3)C1—C2—C21—O272.9 (4)
C31—C3—C4—C5178.2 (3)C3—C2—C21—O251.9 (5)
C2—C3—C4—C559.4 (3)C1—C2—C21—O3105.8 (3)
O8—C5—C4—C4170.4 (3)C3—C2—C21—O3129.4 (3)
C6—C5—C4—C41175.6 (3)C36—C35—N1—O5173.9 (4)
C51—C5—C4—C4153.3 (4)C34—C35—N1—O54.6 (5)
O8—C5—C4—C352.0 (4)C36—C35—N1—O46.6 (6)
C6—C5—C4—C362.0 (4)C34—C35—N1—O4174.9 (4)
C51—C5—C4—C3175.8 (3)O2—C21—O3—C221.9 (6)
C4—C3—C31—C3665.9 (4)C2—C21—O3—C22179.4 (4)
C2—C3—C31—C3656.3 (4)O7—C41—O6—C423.4 (5)
C4—C3—C31—C32117.4 (3)C4—C41—O6—C42174.5 (3)
C2—C3—C31—C32120.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.982.463.374 (5)154
C36—H36···O2i0.932.513.414 (5)164
O8—H8···O5ii0.822.222.969 (5)152
Symmetry codes: (i) x, y1, z; (ii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC17H19NO8
Mr365.33
Crystal system, space groupMonoclinic, Cc
Temperature (K)273
a, b, c (Å)20.1842 (18), 5.7380 (5), 15.5771 (14)
β (°) 108.357 (1)
V3)1712.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.3 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7818, 1513, 1469
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 1.17
No. of reflections1513
No. of parameters239
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.15

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1999), SHELXL97 and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.982.463.374 (5)154
C36—H36···O2i0.932.513.414 (5)164
O8—H8···O5ii0.822.222.969 (5)152
Symmetry codes: (i) x, y1, z; (ii) x1/2, y+1/2, z.
 

References

First citationAllinger, N. L. (1977). J. Am. Chem. Soc. 99, 8127–8134.  CrossRef CAS Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDanyi, Q., Takayama, K. & Nagai, T. (1989). Drug Des. Deliv. 4, 323–330.  CAS PubMed Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHema, R., Parthasarathi, V., Ravikumar, K., Pandiarajan, K. & Murugavel, K. (2006). Acta Cryst. E62, o703–o705.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPuetz, C., Buschmann, H. & Koegel, B. (2003). US Patent Appl. No. 20030096811.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds