organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diimidazolium phthalate monohydrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jxyuchunhua@163.com

(Received 29 May 2012; accepted 24 June 2012; online 30 June 2012)

In the title compound, 2C3H5N2+·C8H4O42−·H2O, the cations, anion and water mol­ecule are connected by N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

The title compound was synthesized during a search for ferroelectric materials. For background to ferroelectric organic materials with framework structures, see: Zhang et al. (2009[Zhang, W., Chen, L.-Z., Xiong, R.-G., Nakamura, T. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 12544-12545.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. D. (2010). J. Am. Chem. Soc. 132, 7300-7302.]); Zhang & Xiong (2012[Zhang, W. & Xiong, R.-G. (2012). Chem. Rev. 112, 1163-1195.]). For related structures, see: Yu & Zhu (2012[Yu, C.-H. & Zhu, R.-Q. (2012). Acta Cryst. E68, o1911.]); Zhu & Yu (2011[Zhu, R.-Q. & Yu, C.-H. (2011). Acta Cryst. E67, o2746.]).

[Scheme 1]

Experimental

Crystal data
  • 2C3H5N2+·C8H4O42−·H2O

  • Mr = 320.31

  • Monoclinic, P 21 /n

  • a = 9.1250 (18) Å

  • b = 12.979 (3) Å

  • c = 13.549 (3) Å

  • β = 103.85 (3)°

  • V = 1558.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.32 × 0.28 × 0.26 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.967, Tmax = 0.973

  • 15753 measured reflections

  • 3567 independent reflections

  • 2758 reflections with I > 2σ(I)

  • Rint = 0.044

  • 3 standard reflections every 180 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.141

  • S = 1.10

  • 3567 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.96 1.71 2.665 (2) 170
N2—H2A⋯O2i 0.91 1.75 2.655 (2) 172
N3—H3A⋯O3 0.95 1.80 2.747 (2) 177
N3—H3A⋯O4 0.95 2.56 3.191 (2) 124
N4—H4A⋯O3ii 0.86 1.93 2.774 (2) 168
O1W—H1WA⋯O4 0.86 1.98 2.834 (2) 170
O1W—H1WB⋯O2iii 0.90 1.94 2.8326 (19) 172
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In our search for potential ferroelectric phase change materials, the title compound was synthesized. This search is carried out by measurement of the dielectric constant of compounds on the basis of temperature, for eaxmple, (Zhang, Chen et al., 2009; Zhang, Ye et al., 2010; Zhang & Xiong, 2012), this has been carried out for C3H5N2+.C2HO4- (Yu & Zhu, 2012) and C5H9N2+.C8H5O4- (Zhu & Yu, 2011). In the case of the title compound no dielectric anomaly was observed ranging from 130 K to 375 K.

The crystal structure of the title compound contains two protonated imidazolium cations, one phthalate anion, losing two H atoms, and one molecule of water molecule is shown in Fig. 1. The asymmetric unit was selected with the cations, anion and water molecule connected by the intramolecular hydrogen bonds, N1–1A···O1, N3–H3A···O3, N3–H3A···O4 and O1W–H1WA···O4 all of which connect the cations and the water molecule to the anion, Table 1. These units are connected by the intermolecular hydrogen bonds, N2–H2A···O2(-1+x,y,z), N4-H4A···O3(-x+1/2,y-1/2,-z+1/2) and O1W–H1WB···O2(-x+2,-y+1,-z+1), to form a three-dimensional network Table2 and Figure 1.

Related literature top

The title compound was synthesized during a search for ferroelectric materials. For background to ferroelectric organic materials with framework structures, see: Zhang, Chen et al. (2009); Zhang, Ye et al. (2010); Zhang & Xiong (2012). For related structures, see: Yu & Zhu (2012); Zhu & Yu (2011).

Experimental top

0.83 g (5 mmol) of phthalic acid was added to in 10 ml water which was heated. A few drops of ethanol and 0.68 g (10 mmol) imidazole were added to the solution. The mixture was stirreduntil it reached ambient temperature, the liquid was filtered to give a clear solution. Colourless crystals suitable for X-ray structure analysis were obtained by the slow evaporation of the solution after several days at the ambient temperature.

Refinement top

H atoms attached to C were placed in calculated positions (C—H = 0.93 Å for Csp2 atoms) while those attached to N and O were found in positions derived from a difference electron density map, with Uiso(H) = 1.2 Uiso(C, N), Uiso(H) = 1.5 Uiso(O). The -2 0 2 reflection was omitted since its measured value appear to be anomalous.

Structure description top

In our search for potential ferroelectric phase change materials, the title compound was synthesized. This search is carried out by measurement of the dielectric constant of compounds on the basis of temperature, for eaxmple, (Zhang, Chen et al., 2009; Zhang, Ye et al., 2010; Zhang & Xiong, 2012), this has been carried out for C3H5N2+.C2HO4- (Yu & Zhu, 2012) and C5H9N2+.C8H5O4- (Zhu & Yu, 2011). In the case of the title compound no dielectric anomaly was observed ranging from 130 K to 375 K.

The crystal structure of the title compound contains two protonated imidazolium cations, one phthalate anion, losing two H atoms, and one molecule of water molecule is shown in Fig. 1. The asymmetric unit was selected with the cations, anion and water molecule connected by the intramolecular hydrogen bonds, N1–1A···O1, N3–H3A···O3, N3–H3A···O4 and O1W–H1WA···O4 all of which connect the cations and the water molecule to the anion, Table 1. These units are connected by the intermolecular hydrogen bonds, N2–H2A···O2(-1+x,y,z), N4-H4A···O3(-x+1/2,y-1/2,-z+1/2) and O1W–H1WB···O2(-x+2,-y+1,-z+1), to form a three-dimensional network Table2 and Figure 1.

The title compound was synthesized during a search for ferroelectric materials. For background to ferroelectric organic materials with framework structures, see: Zhang, Chen et al. (2009); Zhang, Ye et al. (2010); Zhang & Xiong (2012). For related structures, see: Yu & Zhu (2012); Zhu & Yu (2011).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A diagram of the title compound, with displacement ellipsoids drawn at the 30% probability level. The atomic numbering scheme is shown.
[Figure 2] Fig. 2. A view of the packing diagram of the title compound, stacking along the b axis. Hydrogen bonds are shown as dashed lines.
Diimidazolium phthalate monohydrate top
Crystal data top
2C3H5N2+·C8H4O42·H2OF(000) = 672
Mr = 320.31Dx = 1.366 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3567 reflections
a = 9.1250 (18) Åθ = 3.1–27.5°
b = 12.979 (3) ŵ = 0.11 mm1
c = 13.549 (3) ÅT = 293 K
β = 103.85 (3)°Block, colourless
V = 1558.0 (6) Å30.32 × 0.28 × 0.26 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2758 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1616
Tmin = 0.967, Tmax = 0.973l = 1717
15753 measured reflections3 standard reflections every 180 reflections
3567 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.3812P]
where P = (Fo2 + 2Fc2)/3
3567 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
2C3H5N2+·C8H4O42·H2OV = 1558.0 (6) Å3
Mr = 320.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1250 (18) ŵ = 0.11 mm1
b = 12.979 (3) ÅT = 293 K
c = 13.549 (3) Å0.32 × 0.28 × 0.26 mm
β = 103.85 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2758 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
Rint = 0.044
Tmin = 0.967, Tmax = 0.9733 standard reflections every 180 reflections
15753 measured reflections intensity decay: none
3567 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.10Δρmax = 0.32 e Å3
3567 reflectionsΔρmin = 0.50 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67631 (14)0.59458 (9)0.53305 (10)0.0375 (3)
O20.92261 (14)0.61977 (10)0.57079 (11)0.0423 (3)
O30.45616 (13)0.66464 (9)0.28714 (10)0.0386 (3)
O40.67947 (15)0.59102 (10)0.30286 (12)0.0466 (4)
C10.66990 (17)0.75577 (12)0.37728 (12)0.0242 (3)
C20.64193 (19)0.85209 (13)0.33196 (13)0.0310 (4)
H20.58090.85750.26650.037*
C30.7038 (2)0.93997 (13)0.38309 (14)0.0385 (4)
H30.68331.00410.35230.046*
C40.7959 (2)0.93247 (13)0.47976 (15)0.0417 (5)
H40.83720.99150.51440.050*
C50.8267 (2)0.83681 (14)0.52503 (13)0.0353 (4)
H50.88980.83190.58990.042*
C60.76452 (17)0.74796 (12)0.47483 (12)0.0254 (3)
C70.79001 (18)0.64612 (13)0.52933 (12)0.0266 (4)
C80.59838 (19)0.66201 (12)0.31870 (12)0.0275 (4)
N10.41475 (17)0.68481 (12)0.53530 (12)0.0390 (4)
H1A0.50800.65590.52680.047*
N20.18863 (17)0.69028 (12)0.55394 (12)0.0375 (4)
H2A0.09400.67030.55520.045*
C90.2907 (2)0.63160 (14)0.52810 (15)0.0385 (4)
H90.27700.56310.50790.046*
C100.2510 (2)0.78435 (16)0.58006 (18)0.0499 (5)
H100.20430.84060.60210.060*
C110.3926 (2)0.78088 (16)0.5680 (2)0.0548 (6)
H110.46250.83440.57990.066*
N30.37146 (18)0.46491 (12)0.23556 (11)0.0375 (4)
H3A0.40300.53390.25210.045*
N40.24322 (18)0.32527 (12)0.20991 (12)0.0403 (4)
H4A0.17100.28200.20700.048*
C120.2391 (2)0.42411 (14)0.23263 (15)0.0398 (4)
H120.15600.45900.24460.048*
C130.3841 (2)0.30217 (16)0.19825 (16)0.0446 (5)
H130.41790.23830.18200.053*
C140.4641 (2)0.39014 (16)0.21490 (16)0.0452 (5)
H140.56450.39830.21270.054*
O1W0.99551 (16)0.57033 (11)0.32839 (11)0.0479 (4)
H1WA0.90200.58410.32500.072*
H1WB1.02100.51310.36600.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0274 (6)0.0290 (6)0.0568 (8)0.0006 (5)0.0116 (6)0.0092 (6)
O20.0250 (6)0.0430 (8)0.0569 (8)0.0060 (6)0.0058 (6)0.0199 (6)
O30.0273 (7)0.0295 (7)0.0526 (8)0.0025 (5)0.0032 (6)0.0047 (6)
O40.0372 (8)0.0359 (7)0.0664 (9)0.0010 (6)0.0118 (7)0.0221 (6)
C10.0216 (7)0.0219 (8)0.0291 (8)0.0012 (6)0.0060 (6)0.0019 (6)
C20.0316 (9)0.0288 (9)0.0295 (9)0.0003 (7)0.0015 (7)0.0029 (7)
C30.0500 (12)0.0205 (8)0.0423 (10)0.0005 (8)0.0057 (8)0.0041 (7)
C40.0529 (12)0.0236 (9)0.0434 (11)0.0073 (8)0.0016 (9)0.0066 (7)
C50.0380 (10)0.0323 (9)0.0307 (9)0.0044 (8)0.0013 (7)0.0039 (7)
C60.0219 (8)0.0242 (8)0.0299 (8)0.0000 (6)0.0056 (6)0.0003 (6)
C70.0257 (8)0.0252 (8)0.0293 (8)0.0029 (7)0.0075 (6)0.0009 (6)
C80.0265 (8)0.0255 (8)0.0288 (8)0.0020 (7)0.0037 (6)0.0015 (6)
N10.0283 (8)0.0405 (9)0.0500 (9)0.0023 (7)0.0129 (7)0.0026 (7)
N20.0290 (8)0.0320 (8)0.0522 (9)0.0025 (6)0.0113 (7)0.0003 (7)
C90.0351 (10)0.0295 (9)0.0501 (11)0.0001 (8)0.0083 (8)0.0045 (8)
C100.0416 (12)0.0293 (10)0.0811 (16)0.0004 (9)0.0194 (11)0.0093 (10)
C110.0416 (12)0.0357 (11)0.0872 (17)0.0119 (9)0.0155 (11)0.0056 (11)
N30.0434 (9)0.0313 (8)0.0373 (8)0.0099 (7)0.0088 (7)0.0018 (6)
N40.0394 (9)0.0317 (8)0.0490 (10)0.0117 (7)0.0088 (7)0.0040 (7)
C120.0403 (11)0.0346 (10)0.0458 (11)0.0065 (8)0.0126 (9)0.0049 (8)
C130.0446 (11)0.0375 (10)0.0508 (12)0.0022 (9)0.0100 (9)0.0068 (9)
C140.0340 (10)0.0504 (12)0.0527 (12)0.0067 (9)0.0131 (9)0.0013 (10)
O1W0.0393 (8)0.0419 (8)0.0624 (10)0.0004 (6)0.0116 (7)0.0079 (7)
Geometric parameters (Å, º) top
O1—C71.246 (2)N2—C91.314 (2)
O2—C71.253 (2)N2—C101.358 (2)
O3—C81.266 (2)N2—H2A0.9055
O4—C81.232 (2)C9—H90.9300
C1—C21.389 (2)C10—C111.342 (3)
C1—C61.399 (2)C10—H100.9300
C1—C81.513 (2)C11—H110.9300
C2—C31.383 (2)N3—C121.310 (2)
C2—H20.9300N3—C141.360 (3)
C3—C41.380 (3)N3—H3A0.9507
C3—H30.9300N4—C121.322 (2)
C4—C51.384 (3)N4—C131.365 (3)
C4—H40.9300N4—H4A0.8591
C5—C61.389 (2)C12—H120.9300
C5—H50.9300C13—C141.345 (3)
C6—C71.505 (2)C13—H130.9300
N1—C91.309 (2)C14—H140.9300
N1—C111.355 (3)O1W—H1WA0.8623
N1—H1A0.9615O1W—H1WB0.8997
C2—C1—C6119.30 (14)C9—N2—H2A125.4
C2—C1—C8118.78 (14)C10—N2—H2A126.5
C6—C1—C8121.91 (14)N1—C9—N2109.25 (16)
C3—C2—C1120.73 (15)N1—C9—H9125.4
C3—C2—H2119.6N2—C9—H9125.4
C1—C2—H2119.6C11—C10—N2107.09 (18)
C4—C3—C2120.01 (16)C11—C10—H10126.5
C4—C3—H3120.0N2—C10—H10126.5
C2—C3—H3120.0C10—C11—N1107.11 (18)
C3—C4—C5119.80 (16)C10—C11—H11126.4
C3—C4—H4120.1N1—C11—H11126.4
C5—C4—H4120.1C12—N3—C14108.62 (16)
C4—C5—C6120.81 (16)C12—N3—H3A127.8
C4—C5—H5119.6C14—N3—H3A123.5
C6—C5—H5119.6C12—N4—C13108.66 (16)
C5—C6—C1119.34 (15)C12—N4—H4A125.5
C5—C6—C7119.47 (14)C13—N4—H4A125.7
C1—C6—C7121.02 (14)N3—C12—N4108.79 (18)
O1—C7—O2124.02 (15)N3—C12—H12125.6
O1—C7—C6117.34 (14)N4—C12—H12125.6
O2—C7—C6118.61 (14)C14—C13—N4106.43 (18)
O4—C8—O3124.83 (15)C14—C13—H13126.8
O4—C8—C1119.42 (15)N4—C13—H13126.8
O3—C8—C1115.72 (14)C13—C14—N3107.50 (18)
C9—N1—C11108.42 (17)C13—C14—H14126.2
C9—N1—H1A124.0N3—C14—H14126.2
C11—N1—H1A127.1H1WA—O1W—H1WB108.6
C9—N2—C10108.12 (16)
C6—C1—C2—C31.4 (3)C2—C1—C8—O4122.83 (18)
C8—C1—C2—C3179.38 (16)C6—C1—C8—O456.3 (2)
C1—C2—C3—C40.8 (3)C2—C1—C8—O355.5 (2)
C2—C3—C4—C50.3 (3)C6—C1—C8—O3125.37 (17)
C3—C4—C5—C60.7 (3)C11—N1—C9—N20.7 (2)
C4—C5—C6—C10.1 (3)C10—N2—C9—N10.9 (2)
C4—C5—C6—C7175.09 (17)C9—N2—C10—C110.7 (3)
C2—C1—C6—C51.0 (2)N2—C10—C11—N10.3 (3)
C8—C1—C6—C5179.85 (16)C9—N1—C11—C100.2 (3)
C2—C1—C6—C7176.10 (15)C14—N3—C12—N40.5 (2)
C8—C1—C6—C74.7 (2)C13—N4—C12—N30.2 (2)
C5—C6—C7—O1125.27 (18)C12—N4—C13—C140.1 (2)
C1—C6—C7—O149.8 (2)N4—C13—C14—N30.4 (2)
C5—C6—C7—O252.5 (2)C12—N3—C14—C130.6 (2)
C1—C6—C7—O2132.45 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.961.712.665 (2)170
N2—H2A···O2i0.911.752.655 (2)172
N3—H3A···O30.951.802.747 (2)177
N3—H3A···O40.952.563.191 (2)124
N4—H4A···O3ii0.861.932.774 (2)168
O1W—H1WA···O40.861.982.834 (2)170
O1W—H1WB···O2iii0.901.942.8326 (19)172
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula2C3H5N2+·C8H4O42·H2O
Mr320.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.1250 (18), 12.979 (3), 13.549 (3)
β (°) 103.85 (3)
V3)1558.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.32 × 0.28 × 0.26
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.967, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
15753, 3567, 2758
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.141, 1.10
No. of reflections3567
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.50

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.961.712.665 (2)170
N2—H2A···O2i0.911.752.655 (2)172
N3—H3A···O30.951.802.747 (2)177
N3—H3A···O40.952.563.191 (2)124
N4—H4A···O3ii0.861.932.774 (2)168
O1W—H1WA···O40.861.982.834 (2)170
O1W—H1WB···O2iii0.901.942.8326 (19)172
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+2, y+1, z+1.
 

Acknowledgements

The author thanks the Ordered Matter Science Research Center, Southeast University.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, C.-H. & Zhu, R.-Q. (2012). Acta Cryst. E68, o1911.  CSD CrossRef IUCr Journals Google Scholar
First citationZhang, W., Chen, L.-Z., Xiong, R.-G., Nakamura, T. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W. & Xiong, R.-G. (2012). Chem. Rev. 112, 1163–1195.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. D. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhu, R.-Q. & Yu, C.-H. (2011). Acta Cryst. E67, o2746.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds