organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl 2-[(1,3-dioxoisoindolin-2-yl)meth­yl]-3-phenyl­acrylate

aDepartment of Physics, C. Abdul Hakeem College of Engineering and Technology, Melvisharam, Vellore 632 509, India, bDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, and cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 14 June 2012; accepted 21 June 2012; online 27 June 2012)

In the title compound, C19H15NO4, the isoindole ring system is essentially planar [maximum deviation = 0.011 (1) Å] and is oriented at a dihedral angle of 75.7 (1)° with respect to the phenyl ring. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯O hydrogen bond. The crystal packing is stabilized by C—H⋯O hydrogen bonds, which generate zigzag chains along the a axis. The crystal packing is further stabilized by a C—H⋯π inter­action.

Related literature

For background to the applications of isoindolinones, see: Pendrak et al. (1994[Pendrak, L., Wittrock, S., Lambert, D. M. & Kingsbury, W. D. (1994). J. Org. Chem. 59, 2623-2625.]); De Clerck (1995[De Clerck, E. (1995). J. Med. Chem. 38, 2491-2517.]); Stowers (1996[Stowers, J. R. (1996). Tetrahedron, 52, 3339-3354.]); Heaney & Shuhaibar (1995[Heaney, H. & Shuhaibar, K. F. (1995). Synlett, pp. 47-48.]). For related structures, see: Kannan et al. (2012[Kannan, D., Bakthadoss, M., Lakshmanan, D. & Murugavel, S. (2012). Acta Cryst. E68, o1107.]); Liang & Li (2006[Liang, Z.-P. & Li, J. (2006). Acta Cryst. E62, o4436-o4437.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15NO4

  • Mr = 321.32

  • Orthorhombic, P 21 21 21

  • a = 8.682 (5) Å

  • b = 10.299 (4) Å

  • c = 17.903 (5) Å

  • V = 1600.8 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.984

  • 18727 measured reflections

  • 2694 independent reflections

  • 2062 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.02

  • 2694 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1 0.93 2.54 3.385 (3) 150
C9—H9A⋯O1i 0.97 2.59 3.217 (3) 122
C13—H13⋯Cgii 0.93 2.88 3.527 (3) 128
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isoindolinones and their derivatives have been investigated widely due to their profound physiological and chemotherapeutic properties. Many compounds containing the isoindolinone skeleton have shown antiviral, antileukemic, antiinflammatory, antipsychotic and antiulcer properties (Pendrak et al., 1994; De Clerck, 1995). Isoindolinones are useful for the synthesis of various drugs and naturally occurring compounds (Stowers, 1996; Heaney & Shuhaibar, 1995).

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The isoindole ring system is essentially planar [maximum deviation = 0.011 (2) Å for the C8 atom] and is oriented at a dihedral angle of 75.7 (1)° with respect to the benzene ring. The methyl acrylate (O3/O4/C10–C14) plane forms dihedral angles of 79.97 (7)° and 57.05 (9)° respectively, with the isoindole and benzene rings. The sum of bond angles around N1 (360.0°) indicates that N1 is in sp2 hybridization. The keto atoms O1 and O2 deviate by 0.023 (2) and -0.022 (2) Å, respectively, from the isoindole ring. The geometric parameters of the title molecule agree well with those reported for similar structures (Kannan et al., 2012, Liang & Li 2006).

The molecular structure is stabilized by C15—H15···O1 intramolecular hydrogen bond, forming S(9) ring motif, (Bernstein et al., 1995,) (Table 1). The crystal packing is stabilised by the intermolecular C9—H9A···O1(1/2+ x, 1/2-y,1-z), hydrogen bond which forms a C(5) zigzag chains along the a axis (Fig. 2). The crystal packing is further stabilised by C—H···π interactions, between H13 atom and the benzene ring (C2–C7) of an adjacent molecule, with a C13—H13···Cg(-1/2+X,1/2-Y,1-Z) separation of 2.88 Å, forming a chain along the a axis.(Table 1 and Fig. 3; Cg is the centroid of the (C2–C7) benzene ring. symmetry codes as in Fig. 3).

Related literature top

For background to the applications of isoindolins [isoindolinones?], see: Pendrak et al. (1994); De Clerck (1995); Stowers (1996); Heaney & Shuhaibar (1995). For related structures, see: Kannan et al. (2012); Liang & Li (2006). For graph-set analysis, see: Bernstein et al. (1995).

Experimental top

A solution of 2,3-dihydro-1H-isoindole-1,3-dione (1 mmol, 0.147 g) and potassium carbonate (1.5 mmol, 0.207 g) in acetonitrile as solvent was stirred for 15 minutes at room temperature. To this solution, methyl (2Z)-2-(bromomethyl)-3-phenylprop-2-enoate (1 mmol, 0.254 g) was added till the addition is complete. After the completion of the reaction as indicated by TLC, acetonitrile solvent was evaporated. Ethylacetate (15 ml) and water (15 ml) were added to the crude mass. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent led to the crude product, which was purified through pad of silica gel (100–200 mesh) using ethylacetate and hexanes (1:9) as solvents. The pure title compound was obtained as a colorless solid (0.3105 g, 96% yield). Recrystallization was carried out using ethylacetate as solvent.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93–0.98 Å and constrained to ride on their parent atom, with Uiso(H)=1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms. Friedel pairs were merged.

Structure description top

Isoindolinones and their derivatives have been investigated widely due to their profound physiological and chemotherapeutic properties. Many compounds containing the isoindolinone skeleton have shown antiviral, antileukemic, antiinflammatory, antipsychotic and antiulcer properties (Pendrak et al., 1994; De Clerck, 1995). Isoindolinones are useful for the synthesis of various drugs and naturally occurring compounds (Stowers, 1996; Heaney & Shuhaibar, 1995).

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The isoindole ring system is essentially planar [maximum deviation = 0.011 (2) Å for the C8 atom] and is oriented at a dihedral angle of 75.7 (1)° with respect to the benzene ring. The methyl acrylate (O3/O4/C10–C14) plane forms dihedral angles of 79.97 (7)° and 57.05 (9)° respectively, with the isoindole and benzene rings. The sum of bond angles around N1 (360.0°) indicates that N1 is in sp2 hybridization. The keto atoms O1 and O2 deviate by 0.023 (2) and -0.022 (2) Å, respectively, from the isoindole ring. The geometric parameters of the title molecule agree well with those reported for similar structures (Kannan et al., 2012, Liang & Li 2006).

The molecular structure is stabilized by C15—H15···O1 intramolecular hydrogen bond, forming S(9) ring motif, (Bernstein et al., 1995,) (Table 1). The crystal packing is stabilised by the intermolecular C9—H9A···O1(1/2+ x, 1/2-y,1-z), hydrogen bond which forms a C(5) zigzag chains along the a axis (Fig. 2). The crystal packing is further stabilised by C—H···π interactions, between H13 atom and the benzene ring (C2–C7) of an adjacent molecule, with a C13—H13···Cg(-1/2+X,1/2-Y,1-Z) separation of 2.88 Å, forming a chain along the a axis.(Table 1 and Fig. 3; Cg is the centroid of the (C2–C7) benzene ring. symmetry codes as in Fig. 3).

For background to the applications of isoindolins [isoindolinones?], see: Pendrak et al. (1994); De Clerck (1995); Stowers (1996); Heaney & Shuhaibar (1995). For related structures, see: Kannan et al. (2012); Liang & Li (2006). For graph-set analysis, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small circles of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing intermolecular C—H···O hydrogen bonds (dotted lines), forming C(5) zigzag chains along the a axis. For clarity H atoms involved in the hydrogen bonds are shown. [Symmetry codes:(i)1/2 + x, 1/2 - y, 1 - z; (iii)1 + x, y, z; (iv)3/2 + x, 1/2 - y, 1 - z].
[Figure 3] Fig. 3. A view of the C—H···π interactions (dotted lines) in the crystal structure of the title compound, showing the formation of a chain along the a axis. Cg denotes centroid of the C2–C7 benzene ring. [Symmetry codes: (ii)-1/2 + x, 1/2 - y, 1 - z; (v)-1 + x, y, z; (vi)-3/2 + x, 1/2 - y, 1 - z; (vii)-2 + x, y, z].
(E)-Methyl 2-[(1,3-dioxoisoindolin-2-yl)methyl]-3-phenylacrylate top
Crystal data top
C19H15NO4F(000) = 672
Mr = 321.32Dx = 1.333 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4756 reflections
a = 8.682 (5) Åθ = 2.3–30.2°
b = 10.299 (4) ŵ = 0.09 mm1
c = 17.903 (5) ÅT = 293 K
V = 1600.8 (12) Å3Block, colourless
Z = 40.24 × 0.22 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
2694 independent reflections
Radiation source: fine-focus sealed tube2062 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.0 pixels mm-1θmax = 30.2°, θmin = 2.3°
ω scansh = 712
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.978, Tmax = 0.984l = 2523
18727 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.1411P]
where P = (Fo2 + 2Fc2)/3
2694 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C19H15NO4V = 1600.8 (12) Å3
Mr = 321.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.682 (5) ŵ = 0.09 mm1
b = 10.299 (4) ÅT = 293 K
c = 17.903 (5) Å0.24 × 0.22 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
2694 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2062 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.984Rint = 0.032
18727 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.02Δρmax = 0.14 e Å3
2694 reflectionsΔρmin = 0.17 e Å3
218 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4553 (2)0.43112 (18)0.59855 (10)0.0420 (4)
C20.4172 (2)0.34803 (18)0.66357 (10)0.0409 (4)
C30.4672 (3)0.3534 (2)0.73676 (11)0.0507 (5)
H30.53640.41650.75270.061*
C40.4100 (3)0.2611 (2)0.78517 (11)0.0568 (5)
H40.44160.26210.83480.068*
C50.3071 (3)0.1671 (2)0.76190 (12)0.0543 (5)
H50.27020.10670.79610.065*
C60.2582 (2)0.1617 (2)0.68843 (11)0.0508 (5)
H60.18950.09830.67230.061*
C70.3151 (2)0.25355 (18)0.64031 (10)0.0408 (4)
C80.2867 (2)0.27202 (19)0.55914 (10)0.0432 (4)
C90.3800 (2)0.4375 (2)0.46398 (10)0.0420 (4)
H9A0.44780.38570.43290.050*
H9B0.42440.52360.46800.050*
C100.22571 (19)0.44775 (17)0.42645 (10)0.0395 (4)
C110.1140 (2)0.5312 (2)0.46622 (11)0.0501 (5)
C120.1422 (3)0.6087 (3)0.47327 (18)0.0915 (10)
H12A0.14750.58540.52510.137*
H12B0.24070.59420.45030.137*
H12C0.11510.69880.46880.137*
C130.1936 (2)0.39586 (17)0.35978 (10)0.0417 (4)
H130.09850.41740.33940.050*
C140.2911 (2)0.30857 (18)0.31481 (10)0.0424 (4)
C150.3622 (2)0.19997 (19)0.34530 (12)0.0507 (5)
H150.35100.18200.39590.061*
C160.4498 (3)0.1182 (2)0.30087 (14)0.0616 (6)
H160.49700.04580.32180.074*
C170.4671 (3)0.1438 (3)0.22615 (14)0.0654 (6)
H170.52750.08950.19670.078*
C180.3959 (3)0.2488 (2)0.19479 (13)0.0626 (6)
H180.40720.26520.14400.075*
C190.3068 (3)0.3311 (2)0.23827 (11)0.0530 (5)
H190.25730.40150.21640.064*
N10.37333 (17)0.37951 (15)0.53831 (8)0.0399 (3)
O10.20532 (18)0.20880 (16)0.51830 (8)0.0641 (4)
O20.53828 (19)0.52473 (14)0.59466 (8)0.0606 (4)
O30.1451 (2)0.5935 (2)0.52064 (11)0.0886 (7)
O40.02687 (17)0.53002 (17)0.43641 (9)0.0658 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0396 (9)0.0411 (9)0.0454 (9)0.0013 (8)0.0047 (8)0.0045 (8)
C20.0394 (8)0.0399 (9)0.0435 (9)0.0080 (8)0.0025 (7)0.0032 (8)
C30.0580 (11)0.0489 (11)0.0452 (10)0.0061 (10)0.0080 (9)0.0078 (9)
C40.0693 (13)0.0614 (13)0.0396 (9)0.0168 (12)0.0047 (10)0.0001 (9)
C50.0545 (11)0.0588 (12)0.0494 (10)0.0087 (11)0.0043 (9)0.0114 (10)
C60.0439 (9)0.0555 (11)0.0530 (11)0.0011 (9)0.0005 (8)0.0081 (10)
C70.0354 (8)0.0444 (9)0.0425 (9)0.0058 (8)0.0006 (7)0.0002 (8)
C80.0352 (8)0.0475 (10)0.0467 (9)0.0046 (8)0.0023 (8)0.0022 (8)
C90.0369 (8)0.0505 (10)0.0387 (8)0.0063 (8)0.0016 (7)0.0022 (8)
C100.0365 (8)0.0399 (9)0.0420 (9)0.0011 (7)0.0008 (7)0.0035 (8)
C110.0479 (10)0.0533 (11)0.0492 (10)0.0052 (9)0.0016 (9)0.0008 (10)
C120.0606 (14)0.113 (2)0.101 (2)0.0375 (17)0.0108 (15)0.0164 (19)
C130.0356 (8)0.0440 (9)0.0455 (9)0.0002 (8)0.0038 (8)0.0053 (8)
C140.0372 (9)0.0462 (10)0.0436 (9)0.0073 (8)0.0039 (8)0.0027 (8)
C150.0542 (11)0.0455 (10)0.0522 (11)0.0016 (9)0.0010 (9)0.0021 (9)
C160.0587 (12)0.0438 (11)0.0823 (16)0.0003 (10)0.0047 (12)0.0083 (11)
C170.0635 (13)0.0602 (14)0.0726 (15)0.0085 (12)0.0146 (12)0.0235 (12)
C180.0661 (14)0.0739 (15)0.0478 (11)0.0176 (13)0.0066 (10)0.0123 (11)
C190.0552 (11)0.0586 (12)0.0451 (10)0.0080 (11)0.0029 (9)0.0016 (9)
N10.0370 (7)0.0431 (8)0.0397 (7)0.0047 (7)0.0047 (6)0.0003 (6)
O10.0650 (9)0.0741 (10)0.0532 (8)0.0324 (9)0.0156 (8)0.0079 (7)
O20.0744 (10)0.0536 (8)0.0537 (8)0.0230 (8)0.0122 (8)0.0021 (7)
O30.0753 (11)0.1053 (16)0.0851 (12)0.0247 (12)0.0146 (10)0.0455 (12)
O40.0431 (7)0.0809 (11)0.0734 (10)0.0152 (8)0.0009 (7)0.0119 (9)
Geometric parameters (Å, º) top
C1—O21.206 (2)C10—C111.479 (3)
C1—N11.397 (2)C11—O31.198 (3)
C1—C21.482 (3)C11—O41.334 (3)
C2—C71.381 (3)C12—O41.448 (3)
C2—C31.382 (3)C12—H12A0.9600
C3—C41.379 (3)C12—H12B0.9600
C3—H30.9300C12—H12C0.9600
C4—C51.381 (3)C13—C141.474 (3)
C4—H40.9300C13—H130.9300
C5—C61.383 (3)C14—C151.389 (3)
C5—H50.9300C14—C191.396 (3)
C6—C71.372 (3)C15—C161.385 (3)
C6—H60.9300C15—H150.9300
C7—C81.486 (3)C16—C171.372 (3)
C8—O11.208 (2)C16—H160.9300
C8—N11.389 (2)C17—C181.367 (3)
C9—N11.460 (2)C17—H170.9300
C9—C101.502 (3)C18—C191.386 (3)
C9—H9A0.9700C18—H180.9300
C9—H9B0.9700C19—H190.9300
C10—C131.337 (2)
O2—C1—N1124.33 (18)O3—C11—C10123.70 (19)
O2—C1—C2129.82 (17)O4—C11—C10113.81 (18)
N1—C1—C2105.84 (15)O4—C12—H12A109.5
C7—C2—C3121.07 (19)O4—C12—H12B109.5
C7—C2—C1108.26 (15)H12A—C12—H12B109.5
C3—C2—C1130.67 (19)O4—C12—H12C109.5
C4—C3—C2117.1 (2)H12A—C12—H12C109.5
C4—C3—H3121.5H12B—C12—H12C109.5
C2—C3—H3121.5C10—C13—C14127.70 (16)
C3—C4—C5121.76 (19)C10—C13—H13116.2
C3—C4—H4119.1C14—C13—H13116.2
C5—C4—H4119.1C15—C14—C19118.41 (19)
C4—C5—C6120.9 (2)C15—C14—C13122.11 (17)
C4—C5—H5119.5C19—C14—C13119.39 (18)
C6—C5—H5119.5C16—C15—C14120.5 (2)
C7—C6—C5117.3 (2)C16—C15—H15119.8
C7—C6—H6121.4C14—C15—H15119.8
C5—C6—H6121.4C17—C16—C15120.2 (2)
C6—C7—C2121.87 (17)C17—C16—H16119.9
C6—C7—C8129.99 (18)C15—C16—H16119.9
C2—C7—C8108.13 (16)C18—C17—C16120.2 (2)
O1—C8—N1125.72 (17)C18—C17—H17119.9
O1—C8—C7128.32 (18)C16—C17—H17119.9
N1—C8—C7105.95 (15)C17—C18—C19120.4 (2)
N1—C9—C10113.66 (15)C17—C18—H18119.8
N1—C9—H9A108.8C19—C18—H18119.8
C10—C9—H9A108.8C18—C19—C14120.3 (2)
N1—C9—H9B108.8C18—C19—H19119.9
C10—C9—H9B108.8C14—C19—H19119.9
H9A—C9—H9B107.7C8—N1—C1111.81 (15)
C13—C10—C11121.68 (17)C8—N1—C9126.31 (15)
C13—C10—C9123.85 (17)C1—N1—C9121.87 (15)
C11—C10—C9114.24 (16)C11—O4—C12116.5 (2)
O3—C11—O4122.5 (2)
O2—C1—C2—C7179.2 (2)C11—C10—C13—C14178.15 (18)
N1—C1—C2—C70.7 (2)C9—C10—C13—C147.6 (3)
O2—C1—C2—C31.0 (3)C10—C13—C14—C1548.2 (3)
N1—C1—C2—C3179.0 (2)C10—C13—C14—C19135.2 (2)
C7—C2—C3—C40.4 (3)C19—C14—C15—C161.7 (3)
C1—C2—C3—C4179.94 (19)C13—C14—C15—C16178.30 (18)
C2—C3—C4—C50.1 (3)C14—C15—C16—C170.0 (3)
C3—C4—C5—C60.5 (3)C15—C16—C17—C181.1 (3)
C4—C5—C6—C70.5 (3)C16—C17—C18—C190.6 (3)
C5—C6—C7—C20.0 (3)C17—C18—C19—C141.1 (3)
C5—C6—C7—C8179.04 (19)C15—C14—C19—C182.2 (3)
C3—C2—C7—C60.4 (3)C13—C14—C19—C18178.92 (18)
C1—C2—C7—C6179.85 (17)O1—C8—N1—C1179.99 (19)
C3—C2—C7—C8178.81 (18)C7—C8—N1—C10.4 (2)
C1—C2—C7—C80.95 (19)O1—C8—N1—C91.2 (3)
C6—C7—C8—O10.4 (3)C7—C8—N1—C9178.40 (17)
C2—C7—C8—O1179.5 (2)O2—C1—N1—C8179.76 (18)
C6—C7—C8—N1179.94 (19)C2—C1—N1—C80.2 (2)
C2—C7—C8—N10.83 (19)O2—C1—N1—C90.9 (3)
N1—C9—C10—C13123.38 (19)C2—C1—N1—C9179.02 (16)
N1—C9—C10—C1162.0 (2)C10—C9—N1—C842.5 (3)
C13—C10—C11—O3169.5 (2)C10—C9—N1—C1136.12 (18)
C9—C10—C11—O35.3 (3)O3—C11—O4—C120.1 (4)
C13—C10—C11—O411.2 (3)C10—C11—O4—C12179.4 (2)
C9—C10—C11—O4174.02 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O10.932.543.385 (3)150
C9—H9A···O1i0.972.593.217 (3)122
C13—H13···Cgii0.932.883.527 (3)128
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC19H15NO4
Mr321.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.682 (5), 10.299 (4), 17.903 (5)
V3)1600.8 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.22 × 0.17
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
18727, 2694, 2062
Rint0.032
(sin θ/λ)max1)0.708
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.02
No. of reflections2694
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.17

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O10.932.543.385 (3)150
C9—H9A···O1i0.972.593.217 (3)122
C13—H13···Cgii0.932.883.527 (3)128.0
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z+1.
 

Footnotes

Additional correspondence author, e-mail: bhakthadoss@yahoo.com.

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Clerck, E. (1995). J. Med. Chem. 38, 2491–2517.  PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHeaney, H. & Shuhaibar, K. F. (1995). Synlett, pp. 47–48.  CrossRef Google Scholar
First citationKannan, D., Bakthadoss, M., Lakshmanan, D. & Murugavel, S. (2012). Acta Cryst. E68, o1107.  CSD CrossRef IUCr Journals Google Scholar
First citationLiang, Z.-P. & Li, J. (2006). Acta Cryst. E62, o4436–o4437.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPendrak, L., Wittrock, S., Lambert, D. M. & Kingsbury, W. D. (1994). J. Org. Chem. 59, 2623–2625.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStowers, J. R. (1996). Tetrahedron, 52, 3339–3354.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds