organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-4-Chloro-N-(1-{2-[3-(4-chloro­benzoyl)ureido]eth­yl}imidazolidin-2-yl­­idene)benzamide

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43500 Bangi Selangor, Malaysia, and bDepartment of Chemistry, Universiti Malaya, Kuala Lumpur, 50603 Malaysia.
*Correspondence e-mail: bohari@ukm.my

(Received 18 June 2012; accepted 21 June 2012; online 27 June 2012)

The title compound, C20H19Cl2N5O2S, was obtained from the reaction of 4-chloro­benzoyl isothio­cyanate with diethyl­ene­triamine. The imidazolidine ring is slightly twisted with an N—C—C—N torsion angle of 15.4 (4)°, while the thio­urea moiety maintains its transcis geometry. The mol­ecule is stabilized by intramolecular N—H⋯O hydrogen bonds. The crystal structure features N—H⋯O, N—H⋯S and C—H⋯O hydrogen bonds and ππ interactions between benzene rings with a centroid–centroid distance of 3.607 (3) Å.

Related literature

For the structures of bis­(N-benzoyl­thio­ureas) derived from aliphatic diamines, see: Ding et al. (2008[Ding, Y.-J., Chang, X.-B., Yang, X.-Q. & Dong, W.-K. (2008). Acta Cryst. E64, o658.]). For those derived from cyclo­hexane diamine, see: Jumal et al. (2011[Jumal, J., Ibrahim, A. R. & Yamin, B. M. (2011). Acta Cryst. E67, o1256.]). For those derived from aromatic diamines, see: Osman & Yamin (2011[Osman, U. M. & Yamin, B. M. (2011). Acta Cryst. E67, o2583.]); Dong et al. (2008[Dong, W.-K., Yan, H.-B., Chai, L.-Q., Lv, Z.-W. & Zhao, C.-Y. (2008). Acta Cryst. E64, o1097.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19Cl2N5O2S

  • Mr = 464.36

  • Monoclinic, C c

  • a = 24.488 (7) Å

  • b = 6.645 (2) Å

  • c = 13.108 (4) Å

  • β = 97.16 (2)°

  • V = 2116.2 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 296 K

  • 0.22 × 0.08 × 0.07 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.911, Tmax = 0.970

  • 8499 measured reflections

  • 4165 independent reflections

  • 2855 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.090

  • S = 0.93

  • 4165 reflections

  • 283 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) 1987 Friedel pairs

  • Flack parameter: 0.06 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.87 (1) 2.00 (4) 2.637 (4) 130 (4)
N2—H2A⋯S1i 0.87 (1) 2.85 (4) 3.438 (3) 127 (4)
N4—H4A⋯O2 0.86 (1) 1.87 (2) 2.614 (3) 143 (3)
N5—H5A⋯O1ii 0.86 (1) 2.09 (2) 2.898 (4) 157 (5)
C17—H17A⋯O2iii 0.93 2.46 3.118 (4) 128
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}]; (iii) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Some bis(thiourea) compounds with several bridges such as 3,3'-dibenzoyl-1,1'-(butane-1,4-diyl)-dithiourea (Ding et al., 2008) 1,2-bis(N'-benzoylthioureido)cyclohexane (Jumal et al., 2011) and 1-(4-methylbenzoyl)-3-{2-[3-(4-methylbenzoyl)thioureido]phenyl}thiourea (Osman & Yamin, 2011) have been synthesized by the established reaction between carbonoyl isothiocyanate with the diamines. However,the reaction of 4-chlorobenzoyl isothiocyanate with diethylenetriamine(DIEN) did not give the expected bis or tris(thiourea) but instead, the title compound was obtained indicating a cyclization by the middle nitrogen atom of DIEN to the thiono carbon forming the azomethine funtional group (Fig.1). The molecule consists of the substituted 4-chlorobenzoylimidazolidin-2-ylidene and 4-chlorobenzoylthioureido moiety connected by the ethylene bridge. The N2—C8 and C8—N1 bond lengths of 1.321 (6) and 1.344 (6) Å respectively which are slightly shorter than C8—N3 bond length (1.364 (6) Å) indicates some degree of delocalization along the bonds. The five membered ring N2/N3/C8/C9/C10 is slightly twisted about the C9—C10 bond with these atoms having deviations of of 0.095 (5)Å and -0.091Å from the mean plane of the 5 atoms. The thiourea moiety S1/N4/N5/C13 is planar (maximum deviation 0.003 (3) Å) for atom C13 from the mean plane. The cis-trans geometry of the thiourea moeity is maintained. The benzene rings of the two hanging arms are nearly co-planar with dihedral angle of 4.88 (19)° between them so forming an intramolecular ππ interaction with a centroid to centroid distance of 3.607 (3)°. There are four intramolecular short contacts, N2—H2A··· O1, N4—H4A···O2,in the molecule. In the crystal sructure, the molecules are linked by N5—H5A···O1(x,-y,1/2+z), N2···H2A···S1(x,-y,-1/2+z) to form a one dimensional zig-zag chain which runs parallel to the c axis, Figure 2. These chains are linked and C17—H17A···O2(x,-1+y,z) hydrogen bond forming a two-dimensional sheet which runs parallel to the bc plane.

Related literature top

For the structures of bis(N-benzoylthioureas) derived from aliphatic diamines, see: Ding et al. (2008). For those derived from cyclohexane diamine, see: Jumal et al. (2011). For those derived from aromatic diamines, see: Osman & Yamin (2011); Dong et al. (2008).

Experimental top

A solution of 4-chlorobenzoylisothiocyanate (1.9162 g, 0.015 mol) in 30 ml acetone was added into a flask containing 20 ml acetone solution of diethylenetriamine (0.543 g, 0.005 mol). The solution mixture was stirred in ice bath for 1 h. The resulting solution was poured onto an ice cubes to yield a yellow precipitate.The precipitated was filtered off, washed with distilled water and left to dried in atmosphere. Good quality crystal were obtained by recrystallization from ethanol.

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H= 0.93 Å(aromatic) or 0.97 Å(methylene)and N—H= 0.86 Å with Uiso(H)=1.2Ueq(C or N). There were 2174 Friedel Pairs.

Structure description top

Some bis(thiourea) compounds with several bridges such as 3,3'-dibenzoyl-1,1'-(butane-1,4-diyl)-dithiourea (Ding et al., 2008) 1,2-bis(N'-benzoylthioureido)cyclohexane (Jumal et al., 2011) and 1-(4-methylbenzoyl)-3-{2-[3-(4-methylbenzoyl)thioureido]phenyl}thiourea (Osman & Yamin, 2011) have been synthesized by the established reaction between carbonoyl isothiocyanate with the diamines. However,the reaction of 4-chlorobenzoyl isothiocyanate with diethylenetriamine(DIEN) did not give the expected bis or tris(thiourea) but instead, the title compound was obtained indicating a cyclization by the middle nitrogen atom of DIEN to the thiono carbon forming the azomethine funtional group (Fig.1). The molecule consists of the substituted 4-chlorobenzoylimidazolidin-2-ylidene and 4-chlorobenzoylthioureido moiety connected by the ethylene bridge. The N2—C8 and C8—N1 bond lengths of 1.321 (6) and 1.344 (6) Å respectively which are slightly shorter than C8—N3 bond length (1.364 (6) Å) indicates some degree of delocalization along the bonds. The five membered ring N2/N3/C8/C9/C10 is slightly twisted about the C9—C10 bond with these atoms having deviations of of 0.095 (5)Å and -0.091Å from the mean plane of the 5 atoms. The thiourea moiety S1/N4/N5/C13 is planar (maximum deviation 0.003 (3) Å) for atom C13 from the mean plane. The cis-trans geometry of the thiourea moeity is maintained. The benzene rings of the two hanging arms are nearly co-planar with dihedral angle of 4.88 (19)° between them so forming an intramolecular ππ interaction with a centroid to centroid distance of 3.607 (3)°. There are four intramolecular short contacts, N2—H2A··· O1, N4—H4A···O2,in the molecule. In the crystal sructure, the molecules are linked by N5—H5A···O1(x,-y,1/2+z), N2···H2A···S1(x,-y,-1/2+z) to form a one dimensional zig-zag chain which runs parallel to the c axis, Figure 2. These chains are linked and C17—H17A···O2(x,-1+y,z) hydrogen bond forming a two-dimensional sheet which runs parallel to the bc plane.

For the structures of bis(N-benzoylthioureas) derived from aliphatic diamines, see: Ding et al. (2008). For those derived from cyclohexane diamine, see: Jumal et al. (2011). For those derived from aromatic diamines, see: Osman & Yamin (2011); Dong et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsods are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) viewed down b axis. The dashed lines indicate intermolecular hydrogen bonds. Black cross-hatched atoms are S, blue atoms are N and green atoms are Cl.
(Z)-4-Chloro-N-(1-{2-[3-(4- chlorobenzoyl)ureido]ethyl}imidazolidin-2-ylidene)benzamide top
Crystal data top
C20H19Cl2N5O2SF(000) = 960
Mr = 464.36Dx = 1.457 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2230 reflections
a = 24.488 (7) Åθ = 3.1–26.4°
b = 6.645 (2) ŵ = 0.43 mm1
c = 13.108 (4) ÅT = 296 K
β = 97.16 (2)°Slab, colourless
V = 2116.2 (11) Å30.22 × 0.08 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4165 independent reflections
Radiation source: fine-focus sealed tube2855 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 83.66 pixels mm-1θmax = 26.4°, θmin = 3.1°
ω scanh = 3030
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 88
Tmin = 0.911, Tmax = 0.970l = 1616
8499 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0374P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
4165 reflectionsΔρmax = 0.18 e Å3
283 parametersΔρmin = 0.28 e Å3
5 restraintsAbsolute structure: Flack (1983) ???? Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (6)
Crystal data top
C20H19Cl2N5O2SV = 2116.2 (11) Å3
Mr = 464.36Z = 4
Monoclinic, CcMo Kα radiation
a = 24.488 (7) ŵ = 0.43 mm1
b = 6.645 (2) ÅT = 296 K
c = 13.108 (4) Å0.22 × 0.08 × 0.07 mm
β = 97.16 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4165 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2855 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.970Rint = 0.055
8499 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090Δρmax = 0.18 e Å3
S = 0.93Δρmin = 0.28 e Å3
4165 reflectionsAbsolute structure: Flack (1983) ???? Friedel pairs
283 parametersAbsolute structure parameter: 0.06 (6)
5 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.84274 (4)0.3989 (2)0.19364 (9)0.0858 (4)
Cl20.83019 (4)0.17344 (19)0.37999 (10)0.0887 (4)
S10.47526 (3)0.21472 (13)0.36669 (7)0.0574 (3)
O10.59035 (9)0.0679 (4)0.0292 (2)0.0654 (7)
O20.63898 (9)0.5325 (3)0.35719 (19)0.0536 (6)
N10.56767 (10)0.3697 (4)0.1039 (2)0.0456 (7)
N20.48754 (11)0.1718 (5)0.0424 (2)0.0564 (8)
H2A0.5083 (15)0.083 (5)0.018 (3)0.100 (16)*
N30.47666 (10)0.4668 (4)0.1099 (2)0.0478 (7)
N40.53148 (11)0.5442 (4)0.3285 (2)0.0479 (7)
H4A0.5640 (7)0.584 (5)0.319 (3)0.053 (10)*
N50.58290 (10)0.2711 (4)0.3890 (2)0.0426 (6)
H5A0.583 (2)0.153 (3)0.415 (4)0.13 (2)*
C10.70080 (13)0.1240 (6)0.1077 (3)0.0509 (9)
H1B0.68920.00660.09140.061*
C20.75617 (14)0.1603 (6)0.1344 (3)0.0550 (9)
H2B0.78170.05610.13680.066*
C30.77275 (14)0.3549 (6)0.1573 (3)0.0566 (10)
C40.73592 (13)0.5075 (5)0.1551 (3)0.0534 (9)
H4B0.74810.63770.17100.064*
C50.68087 (14)0.4709 (5)0.1295 (2)0.0496 (8)
H5B0.65590.57640.12880.060*
C60.66193 (13)0.2761 (5)0.1045 (2)0.0434 (8)
C70.60276 (13)0.2283 (5)0.0752 (2)0.0444 (8)
C80.51449 (13)0.3336 (5)0.0849 (2)0.0433 (8)
C90.42894 (14)0.2020 (6)0.0255 (3)0.0606 (9)
H9A0.40950.08710.04880.073*
H9B0.41640.22590.04660.073*
C100.42110 (14)0.3873 (6)0.0898 (3)0.0624 (10)
H10A0.39640.48320.05200.075*
H10B0.40680.35190.15320.075*
C110.48875 (14)0.6591 (5)0.1608 (3)0.0538 (9)
H11A0.46330.75940.12940.065*
H11B0.52560.70060.15040.065*
C120.48476 (14)0.6519 (5)0.2745 (3)0.0516 (9)
H12A0.48390.78780.30110.062*
H12B0.45090.58510.28620.062*
C130.53131 (12)0.3544 (5)0.3597 (2)0.0420 (7)
C140.63297 (12)0.3540 (5)0.3762 (2)0.0412 (7)
C150.68047 (12)0.2137 (5)0.3839 (2)0.0419 (7)
C160.67515 (12)0.0123 (5)0.3578 (2)0.0443 (8)
H16A0.64030.04240.34020.053*
C170.72101 (13)0.1086 (5)0.3576 (3)0.0483 (8)
H17A0.71730.24390.33980.058*
C180.77199 (13)0.0256 (6)0.3840 (3)0.0516 (8)
C190.77881 (13)0.1758 (5)0.4111 (3)0.0524 (8)
H19A0.81370.22950.42940.063*
C200.73277 (12)0.2930 (5)0.4101 (2)0.0473 (8)
H20A0.73660.42850.42740.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0511 (5)0.1137 (9)0.0944 (8)0.0131 (6)0.0161 (5)0.0142 (7)
Cl20.0558 (6)0.0981 (9)0.1106 (9)0.0265 (6)0.0045 (5)0.0239 (8)
S10.0419 (4)0.0488 (5)0.0824 (7)0.0017 (4)0.0109 (4)0.0106 (5)
O10.0544 (13)0.0527 (15)0.0894 (19)0.0025 (11)0.0106 (12)0.0293 (14)
O20.0536 (13)0.0330 (13)0.0734 (17)0.0069 (10)0.0045 (11)0.0035 (12)
N10.0427 (15)0.0405 (16)0.0538 (18)0.0054 (12)0.0067 (13)0.0050 (13)
N20.0456 (16)0.0532 (19)0.071 (2)0.0027 (14)0.0082 (14)0.0145 (16)
N30.0490 (15)0.0394 (16)0.0549 (18)0.0093 (12)0.0058 (13)0.0024 (14)
N40.0479 (16)0.0333 (15)0.0626 (19)0.0049 (12)0.0068 (14)0.0006 (13)
N50.0381 (14)0.0378 (15)0.0518 (17)0.0011 (12)0.0055 (12)0.0054 (14)
C10.054 (2)0.050 (2)0.049 (2)0.0073 (16)0.0064 (16)0.0063 (17)
C20.053 (2)0.065 (2)0.049 (2)0.0126 (17)0.0112 (16)0.0059 (19)
C30.050 (2)0.074 (3)0.047 (2)0.0066 (19)0.0136 (17)0.004 (2)
C40.056 (2)0.049 (2)0.058 (2)0.0078 (17)0.0134 (17)0.0080 (18)
C50.059 (2)0.046 (2)0.046 (2)0.0006 (16)0.0140 (16)0.0008 (16)
C60.0538 (19)0.044 (2)0.0344 (19)0.0026 (15)0.0130 (15)0.0008 (15)
C70.0492 (18)0.0414 (19)0.043 (2)0.0021 (14)0.0071 (15)0.0056 (16)
C80.0509 (19)0.0421 (19)0.0378 (18)0.0025 (15)0.0090 (15)0.0011 (15)
C90.0486 (19)0.062 (2)0.072 (3)0.0022 (16)0.0121 (18)0.008 (2)
C100.048 (2)0.068 (3)0.070 (3)0.0153 (17)0.0064 (18)0.003 (2)
C110.061 (2)0.0326 (18)0.068 (3)0.0122 (15)0.0082 (18)0.0048 (17)
C120.063 (2)0.0361 (19)0.055 (2)0.0175 (15)0.0035 (17)0.0065 (16)
C130.0421 (16)0.0401 (19)0.044 (2)0.0069 (13)0.0053 (14)0.0033 (15)
C140.0422 (17)0.0419 (19)0.0393 (19)0.0029 (14)0.0041 (13)0.0008 (16)
C150.0432 (16)0.0407 (18)0.0420 (19)0.0046 (13)0.0060 (14)0.0014 (15)
C160.0411 (16)0.0443 (19)0.048 (2)0.0046 (14)0.0074 (14)0.0008 (16)
C170.0473 (18)0.0401 (18)0.058 (2)0.0011 (15)0.0101 (16)0.0010 (17)
C180.0441 (17)0.060 (2)0.051 (2)0.0098 (16)0.0082 (15)0.0001 (18)
C190.0387 (17)0.059 (2)0.058 (2)0.0068 (16)0.0023 (15)0.0031 (19)
C200.0448 (18)0.0454 (19)0.051 (2)0.0051 (15)0.0033 (15)0.0003 (16)
Geometric parameters (Å, º) top
Cl1—C31.745 (4)C4—H4B0.9300
Cl2—C181.737 (3)C5—C61.400 (4)
S1—C131.669 (3)C5—H5B0.9300
O1—C71.243 (4)C6—C71.486 (4)
O2—C141.224 (3)C9—C101.518 (5)
N1—C81.317 (4)C9—H9A0.9700
N1—C71.358 (4)C9—H9B0.9700
N2—C81.346 (4)C10—H10A0.9700
N2—C91.438 (4)C10—H10B0.9700
N2—H2A0.865 (10)C11—C121.505 (5)
N3—C81.351 (4)C11—H11A0.9700
N3—C101.453 (4)C11—H11B0.9700
N3—C111.455 (4)C12—H12A0.9700
N4—C131.326 (4)C12—H12B0.9700
N4—C121.456 (4)C14—C151.484 (4)
N4—H4A0.864 (10)C15—C161.384 (4)
N5—C141.374 (4)C15—C201.388 (4)
N5—C131.389 (4)C16—C171.381 (4)
N5—H5A0.857 (10)C16—H16A0.9300
C1—C21.378 (5)C17—C181.369 (4)
C1—C61.385 (4)C17—H17A0.9300
C1—H1B0.9300C18—C191.389 (5)
C2—C31.378 (5)C19—C201.369 (4)
C2—H2B0.9300C19—H19A0.9300
C3—C41.355 (5)C20—H20A0.9300
C4—C51.370 (4)
C8—N1—C7117.8 (3)N3—C10—C9102.4 (3)
C8—N2—C9112.4 (3)N3—C10—H10A111.3
C8—N2—H2A115 (3)C9—C10—H10A111.3
C9—N2—H2A131 (3)N3—C10—H10B111.3
C8—N3—C10111.9 (3)C9—C10—H10B111.3
C8—N3—C11125.5 (3)H10A—C10—H10B109.2
C10—N3—C11122.3 (3)N3—C11—C12113.1 (3)
C13—N4—C12125.8 (3)N3—C11—H11A109.0
C13—N4—H4A112 (2)C12—C11—H11A109.0
C12—N4—H4A118 (2)N3—C11—H11B109.0
C14—N5—C13127.0 (3)C12—C11—H11B109.0
C14—N5—H5A117 (3)H11A—C11—H11B107.8
C13—N5—H5A116 (3)N4—C12—C11110.7 (3)
C2—C1—C6122.1 (3)N4—C12—H12A109.5
C2—C1—H1B119.0C11—C12—H12A109.5
C6—C1—H1B119.0N4—C12—H12B109.5
C3—C2—C1118.2 (3)C11—C12—H12B109.5
C3—C2—H2B120.9H12A—C12—H12B108.1
C1—C2—H2B120.9N4—C13—N5115.3 (3)
C4—C3—C2121.4 (3)N4—C13—S1125.5 (2)
C4—C3—Cl1120.6 (3)N5—C13—S1119.3 (2)
C2—C3—Cl1118.0 (3)O2—C14—N5123.0 (3)
C3—C4—C5120.3 (3)O2—C14—C15120.6 (3)
C3—C4—H4B119.8N5—C14—C15116.3 (3)
C5—C4—H4B119.8C16—C15—C20118.9 (3)
C4—C5—C6120.6 (3)C16—C15—C14122.8 (3)
C4—C5—H5B119.7C20—C15—C14118.0 (3)
C6—C5—H5B119.7C17—C16—C15120.8 (3)
C1—C6—C5117.4 (3)C17—C16—H16A119.6
C1—C6—C7119.7 (3)C15—C16—H16A119.6
C5—C6—C7122.8 (3)C18—C17—C16118.8 (3)
O1—C7—N1127.1 (3)C18—C17—H17A120.6
O1—C7—C6118.7 (3)C16—C17—H17A120.6
N1—C7—C6114.2 (3)C17—C18—C19122.0 (3)
N1—C8—N2130.2 (3)C17—C18—Cl2119.4 (3)
N1—C8—N3121.8 (3)C19—C18—Cl2118.7 (3)
N2—C8—N3107.9 (3)C20—C19—C18118.2 (3)
N2—C9—C10102.7 (3)C20—C19—H19A120.9
N2—C9—H9A111.2C18—C19—H19A120.9
C10—C9—H9A111.2C19—C20—C15121.3 (3)
N2—C9—H9B111.2C19—C20—H20A119.3
C10—C9—H9B111.2C15—C20—H20A119.3
H9A—C9—H9B109.1
C6—C1—C2—C30.7 (5)C11—N3—C10—C9173.4 (3)
C1—C2—C3—C40.7 (5)N2—C9—C10—N315.4 (4)
C1—C2—C3—Cl1178.7 (3)C8—N3—C11—C1299.4 (4)
C2—C3—C4—C50.1 (5)C10—N3—C11—C1273.8 (4)
Cl1—C3—C4—C5178.0 (3)C13—N4—C12—C11100.0 (4)
C3—C4—C5—C60.6 (5)N3—C11—C12—N473.6 (4)
C2—C1—C6—C50.0 (5)C12—N4—C13—N5166.5 (3)
C2—C1—C6—C7180.0 (3)C12—N4—C13—S114.0 (5)
C4—C5—C6—C10.6 (4)C14—N5—C13—N49.4 (5)
C4—C5—C6—C7179.4 (3)C14—N5—C13—S1171.1 (3)
C8—N1—C7—O12.4 (5)C13—N5—C14—O216.6 (5)
C8—N1—C7—C6176.9 (3)C13—N5—C14—C15161.9 (3)
C1—C6—C7—O118.3 (4)O2—C14—C15—C16149.1 (3)
C5—C6—C7—O1161.6 (3)N5—C14—C15—C1629.5 (5)
C1—C6—C7—N1161.0 (3)O2—C14—C15—C2025.3 (5)
C5—C6—C7—N119.0 (4)N5—C14—C15—C20156.2 (3)
C7—N1—C8—N21.9 (5)C20—C15—C16—C170.1 (5)
C7—N1—C8—N3179.3 (3)C14—C15—C16—C17174.3 (3)
C9—N2—C8—N1173.8 (3)C15—C16—C17—C180.1 (5)
C9—N2—C8—N37.3 (4)C16—C17—C18—C190.2 (5)
C10—N3—C8—N1175.0 (3)C16—C17—C18—Cl2177.9 (2)
C11—N3—C8—N11.2 (5)C17—C18—C19—C200.6 (5)
C10—N3—C8—N24.0 (4)Cl2—C18—C19—C20177.5 (3)
C11—N3—C8—N2177.8 (3)C18—C19—C20—C150.7 (5)
C8—N2—C9—C1014.6 (4)C16—C15—C20—C190.4 (5)
C8—N3—C10—C912.6 (4)C14—C15—C20—C19174.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.87 (1)2.00 (4)2.637 (4)130 (4)
N2—H2A···S1i0.87 (1)2.85 (4)3.438 (3)127 (4)
N4—H4A···O20.86 (1)1.87 (2)2.614 (3)143 (3)
N5—H5A···O1ii0.86 (1)2.09 (2)2.898 (4)157 (5)
C17—H17A···O2iii0.932.463.118 (4)128
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC20H19Cl2N5O2S
Mr464.36
Crystal system, space groupMonoclinic, Cc
Temperature (K)296
a, b, c (Å)24.488 (7), 6.645 (2), 13.108 (4)
β (°) 97.16 (2)
V3)2116.2 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.22 × 0.08 × 0.07
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.911, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
8499, 4165, 2855
Rint0.055
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.090, 0.93
No. of reflections4165
No. of parameters283
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.28
Absolute structureFlack (1983) ???? Friedel pairs
Absolute structure parameter0.06 (6)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.865 (10)2.00 (4)2.637 (4)130 (4)
N2—H2A···S1i0.865 (10)2.85 (4)3.438 (3)127 (4)
N4—H4A···O20.864 (10)1.87 (2)2.614 (3)143 (3)
N5—H5A···O1ii0.857 (10)2.09 (2)2.898 (4)157 (5)
C17—H17A···O2iii0.932.463.118 (4)128
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1/2; (iii) x, y1, z.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for research grant No. UKM-GUP-NBT-08-27-110.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, Y.-J., Chang, X.-B., Yang, X.-Q. & Dong, W.-K. (2008). Acta Cryst. E64, o658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., Yan, H.-B., Chai, L.-Q., Lv, Z.-W. & Zhao, C.-Y. (2008). Acta Cryst. E64, o1097.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJumal, J., Ibrahim, A. R. & Yamin, B. M. (2011). Acta Cryst. E67, o1256.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOsman, U. M. & Yamin, B. M. (2011). Acta Cryst. E67, o2583.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds