organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Cyano-N′-[(E)-1-(2-oxo-2H-chromen-3-yl)ethyl­­idene]acetohydrazide

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bPharmaceutical Design and Simulation (PhDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 24 April 2012; accepted 3 May 2012; online 13 June 2012)

In the title compound, C14H11N3O3, the chromene ring is almost planar, with a maximum deviation of 0.065 (2) Å from the mean plane for one of the C atoms. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops. The dimers are linked by C—H⋯N and C—H⋯O inter­actions into a three-dimensional network. An aromatic ππ stacking inter­action, with a centroid–centroid distance of 3.562 (10) Å, is also observed.

Related literature

For related structures and background to coumarin, see: Yusufzai, Osman, Sulaiman et al. (2012[Yusufzai, S. K., Osman, H., Sulaiman, O., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o473-o474.]); Yusufzai, Osman, Abdul Rahim et al. (2012[Yusufzai, S. K., Osman, H., Abdul Rahim, A. S., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o1056-o1057.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N3O3

  • Mr = 269.26

  • Monoclinic, P 21 /c

  • a = 10.4755 (2) Å

  • b = 15.8283 (3) Å

  • c = 8.2650 (2) Å

  • β = 106.982 (2)°

  • V = 1310.66 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.20 × 0.18 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.988

  • 13242 measured reflections

  • 3020 independent reflections

  • 1987 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.120

  • S = 1.03

  • 3020 reflections

  • 225 parameters

  • All H-atom parameters refined

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O3i 0.96 (2) 1.91 (2) 2.870 (2) 174 (2)
C3—H3A⋯N3ii 1.00 (2) 2.53 (2) 3.446 (3) 152.9 (12)
C4—H4A⋯N3iii 0.96 (2) 2.62 (2) 3.404 (3) 139.2 (16)
C6—H6A⋯O2iv 0.96 (2) 2.56 (2) 3.494 (3) 164.7 (17)
C13—H13A⋯O2v 0.96 (2) 2.38 (2) 3.328 (3) 171.7 (18)
C13—H13B⋯N3vi 1.00 (2) 2.46 (2) 3.409 (3) 159.3 (18)
Symmetry codes: (i) -x, -y, -z+2; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+1, -y, -z+2; (vi) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our previous work of coumarin derivatives (Yusufzai, Osman, Sulaiman et al., 2012; Yusufzai, Osman, Abdul Rahim et al., 2012) we have synthesized the title compound: its melting point found to be 175–178°C. Synthesis of other derivatives of coumarin cyanoacetohydrazone and their biological activities are under progress.

The chromene ring is almost planar with the maximum deviation of 0.065 (2) Å from atom C1. In the crystal structure, N2—H1N2···O3i, C3—H3A···N3ii, C4—H4A···N3iii and C6—H6A···O2 interactions link the molecules into layers parallel to the (1 0 2) plane (Table 1, Fig. 2). These layers are further connected by C13—H13A···O2v and C13—H13B···N3vi intermolecular interactions to form a three-dimensional network (Table 1, Fig. 2). A ππ interaction with centroid-centroid distance of 3.562 (10) Å is also observed (Cg1 = O1/C1—C2/C7—C9, Cg2 = C2—C7, 1 - x, -y,1 - z).

Related literature top

For related structures and background to coumarin, see: Yusufzai, Osman, Sulaiman et al. (2012); Yusufzai, Osman, Abdul Rahim et al. (2012).

Experimental top

To a solution of 3-acetyl-2H-chromen-2-one. (0.188 g, 0.001 mol) in methanol (20 ml), cyanoacetic acid hydrazide (0.98 g m, 0.001 mol) was added with stirring at room temperature. Hydrochloric acid (0.5 ml) was added and the reaction mixture was stirred at 5–10 ° C for 30 min. The solid product thus formed was collected by filtration, dried in vacuum and recrystallized from ethanol-dioxane (2:1) solution to give the title compound as shiny light yellow blocks.

Refinement top

All H atoms were located in a difference Fourier map and freely refined.

Structure description top

In continuation of our previous work of coumarin derivatives (Yusufzai, Osman, Sulaiman et al., 2012; Yusufzai, Osman, Abdul Rahim et al., 2012) we have synthesized the title compound: its melting point found to be 175–178°C. Synthesis of other derivatives of coumarin cyanoacetohydrazone and their biological activities are under progress.

The chromene ring is almost planar with the maximum deviation of 0.065 (2) Å from atom C1. In the crystal structure, N2—H1N2···O3i, C3—H3A···N3ii, C4—H4A···N3iii and C6—H6A···O2 interactions link the molecules into layers parallel to the (1 0 2) plane (Table 1, Fig. 2). These layers are further connected by C13—H13A···O2v and C13—H13B···N3vi intermolecular interactions to form a three-dimensional network (Table 1, Fig. 2). A ππ interaction with centroid-centroid distance of 3.562 (10) Å is also observed (Cg1 = O1/C1—C2/C7—C9, Cg2 = C2—C7, 1 - x, -y,1 - z).

For related structures and background to coumarin, see: Yusufzai, Osman, Sulaiman et al. (2012); Yusufzai, Osman, Abdul Rahim et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot.
[Figure 2] Fig. 2. Packing diagram.
2-Cyano-N'-[(E)-1-(2-oxo-2H-chromen- 3-yl)ethylidene]acetohydrazide top
Crystal data top
C14H11N3O3F(000) = 560
Mr = 269.26Dx = 1.365 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1883 reflections
a = 10.4755 (2) Åθ = 2.9–32.3°
b = 15.8283 (3) ŵ = 0.10 mm1
c = 8.2650 (2) ÅT = 100 K
β = 106.982 (2)°Block, yellow
V = 1310.66 (5) Å30.20 × 0.18 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3020 independent reflections
Radiation source: fine-focus sealed tube1987 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
φ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1311
Tmin = 0.980, Tmax = 0.988k = 2020
13242 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.221P]
where P = (Fo2 + 2Fc2)/3
3020 reflections(Δ/σ)max < 0.001
225 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C14H11N3O3V = 1310.66 (5) Å3
Mr = 269.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4755 (2) ŵ = 0.10 mm1
b = 15.8283 (3) ÅT = 100 K
c = 8.2650 (2) Å0.20 × 0.18 × 0.13 mm
β = 106.982 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3020 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1987 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.988Rint = 0.061
13242 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.120All H-atom parameters refined
S = 1.03Δρmax = 0.27 e Å3
3020 reflectionsΔρmin = 0.26 e Å3
225 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.63816 (12)0.09170 (8)0.75003 (16)0.0247 (3)
O20.51923 (13)0.17039 (9)0.87086 (18)0.0315 (4)
O30.00031 (13)0.10885 (9)1.00205 (17)0.0299 (4)
N10.26272 (15)0.03027 (11)0.86808 (19)0.0240 (4)
N20.14627 (15)0.02929 (11)0.9143 (2)0.0248 (4)
N30.05268 (18)0.31915 (12)0.9689 (2)0.0381 (5)
C10.52801 (19)0.10271 (13)0.8072 (2)0.0244 (4)
C20.67126 (19)0.01490 (12)0.6931 (2)0.0225 (4)
C30.7888 (2)0.01131 (14)0.6498 (2)0.0266 (5)
C40.8249 (2)0.06527 (14)0.5953 (2)0.0290 (5)
C50.7453 (2)0.13655 (14)0.5845 (2)0.0287 (5)
C60.6272 (2)0.13152 (14)0.6261 (2)0.0271 (5)
C70.58787 (19)0.05499 (12)0.6825 (2)0.0223 (4)
C80.46742 (19)0.04304 (13)0.7273 (2)0.0228 (4)
C90.43492 (18)0.03136 (12)0.7863 (2)0.0225 (4)
C100.31072 (18)0.04074 (13)0.8374 (2)0.0220 (4)
C110.2471 (2)0.12496 (14)0.8465 (3)0.0289 (5)
C120.09542 (19)0.10427 (13)0.9446 (2)0.0241 (4)
C130.1621 (2)0.18236 (13)0.9000 (3)0.0261 (5)
C140.09896 (19)0.25873 (14)0.9385 (2)0.0267 (5)
H3A0.8460 (19)0.0623 (14)0.658 (2)0.029 (6)*
H4A0.906 (2)0.0682 (13)0.564 (2)0.031 (6)*
H6A0.571 (2)0.1803 (14)0.617 (2)0.033 (6)*
H5A0.7711 (19)0.1885 (14)0.543 (2)0.030 (6)*
H8A0.4042 (19)0.0902 (13)0.714 (2)0.026 (5)*
H11A0.153 (2)0.1204 (14)0.794 (3)0.035 (6)*
H11B0.284 (2)0.1687 (15)0.787 (3)0.045 (7)*
H11C0.257 (3)0.1423 (17)0.966 (4)0.075 (9)*
H13A0.255 (2)0.1847 (14)0.962 (3)0.040 (6)*
H13B0.155 (2)0.1803 (14)0.777 (3)0.043 (6)*
H1N20.102 (2)0.0198 (16)0.941 (3)0.049 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0218 (7)0.0214 (8)0.0357 (7)0.0000 (6)0.0159 (6)0.0019 (6)
O20.0266 (8)0.0227 (8)0.0483 (8)0.0012 (6)0.0160 (7)0.0072 (7)
O30.0265 (8)0.0287 (9)0.0423 (8)0.0002 (6)0.0224 (6)0.0001 (6)
N10.0211 (8)0.0269 (10)0.0284 (8)0.0005 (7)0.0137 (7)0.0006 (7)
N20.0215 (9)0.0242 (10)0.0340 (9)0.0006 (8)0.0161 (7)0.0002 (7)
N30.0403 (11)0.0299 (12)0.0514 (11)0.0052 (9)0.0246 (9)0.0030 (9)
C10.0232 (10)0.0214 (11)0.0302 (10)0.0036 (8)0.0104 (8)0.0023 (8)
C20.0248 (10)0.0186 (11)0.0258 (9)0.0048 (8)0.0097 (8)0.0000 (8)
C30.0241 (10)0.0275 (13)0.0313 (10)0.0003 (9)0.0131 (8)0.0005 (9)
C40.0231 (11)0.0334 (13)0.0348 (11)0.0039 (9)0.0153 (9)0.0005 (9)
C50.0317 (12)0.0251 (12)0.0331 (11)0.0064 (10)0.0152 (9)0.0009 (9)
C60.0319 (11)0.0201 (12)0.0329 (10)0.0008 (9)0.0154 (9)0.0008 (9)
C70.0238 (10)0.0199 (11)0.0259 (9)0.0023 (8)0.0113 (8)0.0015 (8)
C80.0252 (10)0.0188 (11)0.0278 (10)0.0016 (9)0.0130 (8)0.0019 (8)
C90.0220 (10)0.0211 (11)0.0272 (9)0.0002 (8)0.0116 (8)0.0017 (8)
C100.0207 (10)0.0241 (12)0.0242 (9)0.0009 (8)0.0113 (8)0.0002 (8)
C110.0279 (12)0.0255 (12)0.0398 (12)0.0032 (9)0.0200 (10)0.0034 (9)
C120.0226 (10)0.0251 (12)0.0277 (9)0.0006 (9)0.0118 (8)0.0004 (8)
C130.0252 (11)0.0229 (12)0.0357 (11)0.0032 (9)0.0175 (9)0.0032 (9)
C140.0239 (10)0.0265 (12)0.0331 (10)0.0024 (9)0.0137 (8)0.0049 (9)
Geometric parameters (Å, º) top
O1—C11.379 (2)C5—C61.380 (3)
O1—C21.384 (2)C5—H5A0.96 (2)
O2—C11.209 (2)C6—C71.402 (3)
O3—C121.225 (2)C6—H6A0.96 (2)
N1—C101.287 (2)C7—C81.428 (3)
N1—N21.381 (2)C8—C91.356 (3)
N2—C121.354 (2)C8—H8A0.98 (2)
N2—H1N20.96 (2)C9—C101.488 (3)
N3—C141.133 (3)C10—C111.502 (3)
C1—C91.469 (3)C11—H11A0.95 (2)
C2—C31.380 (3)C11—H11B0.99 (2)
C2—C71.396 (3)C11—H11C1.00 (3)
C3—C41.384 (3)C12—C131.517 (3)
C3—H3A1.00 (2)C13—C141.457 (3)
C4—C51.390 (3)C13—H13A0.96 (2)
C4—H4A0.96 (2)C13—H13B1.00 (2)
C1—O1—C2123.02 (15)C9—C8—C7122.84 (19)
C10—N1—N2118.20 (17)C9—C8—H8A117.9 (12)
C12—N2—N1117.93 (17)C7—C8—H8A119.3 (12)
C12—N2—H1N2114.9 (14)C8—C9—C1118.83 (18)
N1—N2—H1N2126.7 (14)C8—C9—C10121.40 (18)
O2—C1—O1116.01 (17)C1—C9—C10119.72 (17)
O2—C1—C9126.87 (18)N1—C10—C9113.17 (17)
O1—C1—C9117.12 (17)N1—C10—C11124.11 (18)
C3—C2—O1117.10 (18)C9—C10—C11122.70 (18)
C3—C2—C7122.69 (19)C10—C11—H11A108.8 (13)
O1—C2—C7120.21 (17)C10—C11—H11B110.5 (13)
C2—C3—C4118.0 (2)H11A—C11—H11B109.1 (18)
C2—C3—H3A120.9 (12)C10—C11—H11C112.0 (16)
C4—C3—H3A121.1 (12)H11A—C11—H11C105 (2)
C3—C4—C5121.1 (2)H11B—C11—H11C111 (2)
C3—C4—H4A118.5 (13)O3—C12—N2122.15 (18)
C5—C4—H4A120.4 (13)O3—C12—C13122.03 (18)
C6—C5—C4120.1 (2)N2—C12—C13115.81 (17)
C6—C5—H5A120.3 (12)C14—C13—C12110.63 (16)
C4—C5—H5A119.6 (12)C14—C13—H13A107.8 (13)
C5—C6—C7120.3 (2)C12—C13—H13A111.6 (13)
C5—C6—H6A120.7 (12)C14—C13—H13B110.2 (13)
C7—C6—H6A119.0 (12)C12—C13—H13B108.4 (13)
C2—C7—C6117.80 (18)H13A—C13—H13B108.2 (18)
C2—C7—C8117.57 (18)N3—C14—C13178.3 (2)
C6—C7—C8124.62 (19)
C10—N1—N2—C12179.26 (16)C7—C8—C9—C10.7 (3)
C2—O1—C1—O2171.92 (16)C7—C8—C9—C10177.89 (17)
C2—O1—C1—C97.4 (2)O2—C1—C9—C8173.41 (19)
C1—O1—C2—C3175.90 (16)O1—C1—C9—C85.9 (3)
C1—O1—C2—C73.7 (2)O2—C1—C9—C103.8 (3)
O1—C2—C3—C4178.95 (16)O1—C1—C9—C10176.90 (15)
C7—C2—C3—C40.6 (3)N2—N1—C10—C9179.11 (15)
C2—C3—C4—C50.1 (3)N2—N1—C10—C110.8 (3)
C3—C4—C5—C61.0 (3)C8—C9—C10—N119.6 (2)
C4—C5—C6—C71.2 (3)C1—C9—C10—N1157.52 (16)
C3—C2—C7—C60.4 (3)C8—C9—C10—C11158.73 (18)
O1—C2—C7—C6179.18 (16)C1—C9—C10—C1124.1 (3)
C3—C2—C7—C8178.66 (17)N1—N2—C12—O3172.68 (16)
O1—C2—C7—C81.8 (3)N1—N2—C12—C138.4 (2)
C5—C6—C7—C20.5 (3)O3—C12—C13—C141.2 (3)
C5—C6—C7—C8179.50 (18)N2—C12—C13—C14179.88 (16)
C2—C7—C8—C93.2 (3)C12—C13—C14—N3154 (7)
C6—C7—C8—C9177.89 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O3i0.96 (2)1.91 (2)2.870 (2)174 (2)
C3—H3A···N3ii1.00 (2)2.53 (2)3.446 (3)152.9 (12)
C4—H4A···N3iii0.96 (2)2.62 (2)3.404 (3)139.2 (16)
C6—H6A···O2iv0.96 (2)2.56 (2)3.494 (3)164.7 (17)
C13—H13A···O2v0.96 (2)2.38 (2)3.328 (3)171.7 (18)
C13—H13B···N3vi1.00 (2)2.46 (2)3.409 (3)159.3 (18)
Symmetry codes: (i) x, y, z+2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y1/2, z1/2; (iv) x+1, y1/2, z+3/2; (v) x+1, y, z+2; (vi) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H11N3O3
Mr269.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.4755 (2), 15.8283 (3), 8.2650 (2)
β (°) 106.982 (2)
V3)1310.66 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.980, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
13242, 3020, 1987
Rint0.061
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.120, 1.03
No. of reflections3020
No. of parameters225
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.27, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O3i0.96 (2)1.91 (2)2.870 (2)174 (2)
C3—H3A···N3ii1.00 (2)2.53 (2)3.446 (3)152.9 (12)
C4—H4A···N3iii0.96 (2)2.62 (2)3.404 (3)139.2 (16)
C6—H6A···O2iv0.96 (2)2.56 (2)3.494 (3)164.7 (17)
C13—H13A···O2v0.96 (2)2.38 (2)3.328 (3)171.7 (18)
C13—H13B···N3vi1.00 (2)2.46 (2)3.409 (3)159.3 (18)
Symmetry codes: (i) x, y, z+2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y1/2, z1/2; (iv) x+1, y1/2, z+3/2; (v) x+1, y, z+2; (vi) x, y1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Fundamental Research Grant Scheme (FRGS) grant (No. 203/PKIMIA/6711179) and MOSTI Grant (No. 09-05-lfn-meb-004) to conduct this work. SKY thanks USM for providing Graduate Assistance financial support.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYusufzai, S. K., Osman, H., Abdul Rahim, A. S., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o1056–o1057.  CSD CrossRef IUCr Journals Google Scholar
First citationYusufzai, S. K., Osman, H., Sulaiman, O., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o473–o474.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds