organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A hydrogen sulfate salt of chlordiazepoxide

aDivision of Applied Physical Chemistry, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden
*Correspondence e-mail: afischer@kth.se

(Received 8 May 2012; accepted 31 May 2012; online 13 June 2012)

Crystals of the hydrogen sulfate salt of chlordiazepoxide (systematic name: 7-chloro-N-methyl-5-phenyl-2,3-dihydro-1H-1,4-benzodiazepin-2-iminium 4-oxide hydrogen sulfate), C16H15ClN3O+·HSO4, were obtained from a solution of chlordiazepoxide and sulfuric acid in methanol. The structure features chlordiazepoxide mol­ecules that are protonated at the imine N atom. The seven-membered ring adopts a boat conformation with the CH2 group as the prow and the two aryl C atoms as the stern. The dihedral angle between the benzene rings is 72.41 (6)°. In the crystal, the HSO4 anion acts as a bridging group between two chlordiazepoxide cations. The H atom of the protonated imino N forms an N—H⋯O hydrogen bond with a hydrogen sulfate ion. The anion in turn forms two hydrogen bonds, O—H⋯O with the anion as donor and N—H⋯O with the anion as acceptor, to generate an R22(10) loop. Each HSO4 anion connects two chlordiazepoxide moieties of the same chirality.

Related literature

For general background to benzodiazepines, the structures of two polymorphs of chlordiazepoxide and a chlordiazepoxide dichloro­methane solvate, see: Fischer (2012[Fischer, A. (2012). Acta Cryst. E68, o1011.]) and references therein. For the structure of chlordiazepoxide hydro­chloride, see: Herrnstadt et al. (1979[Herrnstadt, C., Mootz, D., Wunderlich, H. & Möhrle, H. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 735-740.]). For the synthesis of chlordiazepoxide, see: Sternbach et al. (1961[Sternbach, L. H., Reeder, E., Keller, O. & Metlesics, W. (1961). J. Org. Chem. 26, 4488-4497.]). For acid–base equlibria of chlordiazepoxide and related compounds, see: Yang (1995[Yang, S. K. (1995). J. Pharm. Pharmacol. 47, 442-446.]). For the graph-set motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15ClN3O+·HSO4

  • Mr = 397.84

  • Monoclinic, P 21 /c

  • a = 13.9899 (6) Å

  • b = 8.7579 (10) Å

  • c = 13.9084 (6) Å

  • β = 99.657 (9)°

  • V = 1679.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 173 K

  • 0.58 × 0.54 × 0.14 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.806, Tmax = 0.947

  • 23827 measured reflections

  • 3835 independent reflections

  • 2802 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.088

  • S = 1.03

  • 3835 reflections

  • 245 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O5 0.82 (2) 1.95 (2) 2.764 (2) 171 (2)
N1—H1⋯O3i 0.84 (2) 1.93 (2) 2.741 (2) 162 (2)
O2—H2A⋯O1 0.81 (3) 1.78 (3) 2.583 (2) 170 (3)
Symmetry code: (i) x, y+1, z.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Since chlordiazepoxide first was released into the market, benzodiazepines have become the most important pharmaceutical compounds being used as anxiolytics, hypnotics and anti-convulsants. However, the knowledge of benzodiazepine salts is still limited.

Chlordiazepoxide can be easily protonated and the protonation appears to occur on the imine nitrogen atom, which could be shown both by the structure determination of the hydrochloride (Herrnstadt et al. 1979) and by solution studies (Yang, 1995). In chlordiazepoxide, the dichloromethane solvate and the hydrochloride, dimers of chlordiazepoxide moieties are observed. In order to study the influence of the counterion on the hydrogen bonding pattern, we crystallized chlordiazepoxide hydrogen sulfate from a methanol solution.

The structure of the title compound features chlordiazepoxide molecules, that are protonated at N1 (Fig. 1). The seven-membered ring adopts a boat conformation with the CH2 group as the prow and the two aromatic C atoms as the stern. The HSO4- acts as a bridging group between two chlordiazepoxide cations. The hydrogen atom of the protonated imino-N forms a N–H···O bond with a hydrogen sulfate ion. The anion forms in turn two hydrogen bonds, one O–H···O group where the anion acts as donor and one N–H···O group where it acts as acceptor. These three H bonds yield a R22(10) loop. Each HSO4- group connects two chlordiazepoxide moieties of the same chirality. Thus, each hydrogen sulfate group acts as a bridging group, linking two chlordiazepoxide moieties yielding infinite chains (Fig. 2). Each chain contains only one enantiomer of the molecule. The dihedral angle between the benzene rings is 72.41 (6)°.

Related literature top

For general background to benzodiazepines, the structures of two polymorphs of chlordiazepoxide and a chlordiazepoxide dichloromethane solvate, see: Fischer (2012) and references therein. For the structure of chlordiazepoxide hydrochloride, see: Herrnstadt et al. (1979). For the synthesis of chlordiazepoxide, see: Sternbach et al. (1961). For acid–base equlibria of chlordiazepoxide and related compounds, see: Yang (1995). For the graph-set motifs, see: Etter et al. (1990).

Experimental top

Chlordiazepoxide was synthesized according to the procedure described by Sternbach et al. (1961). Crystals of the title compound were obtained as hexagonal, yellow plates by slow evaporation of a solution of 25 mg chlordiazepoxide and 7.7 mg sulfuric acid (95%) in 5 ml of methanol at room temperature.

Refinement top

C–H hydrogen atoms were placed at calculated positions and refined riding on the respective carrier atom with Uiso=1.2Ueq of the carrier atom (1.5 Ueq for the methyl group) and with d(C–H)=0.95Å for aromatic H atoms, 0.99Å for methylene-H atoms and 0.98Å for methyl-H atoms. The torsion angle between the NH group the methyl group in the NHCH3 side chain was refined as well. O–H and N–H hydrogen atoms were located from the difference-Fourier map and the respective bond lengths were refined. The interatomic distance N1–H1 was restrained to 0.88 (2) Å because free refinement did not yield a satisfactory result.

Structure description top

Since chlordiazepoxide first was released into the market, benzodiazepines have become the most important pharmaceutical compounds being used as anxiolytics, hypnotics and anti-convulsants. However, the knowledge of benzodiazepine salts is still limited.

Chlordiazepoxide can be easily protonated and the protonation appears to occur on the imine nitrogen atom, which could be shown both by the structure determination of the hydrochloride (Herrnstadt et al. 1979) and by solution studies (Yang, 1995). In chlordiazepoxide, the dichloromethane solvate and the hydrochloride, dimers of chlordiazepoxide moieties are observed. In order to study the influence of the counterion on the hydrogen bonding pattern, we crystallized chlordiazepoxide hydrogen sulfate from a methanol solution.

The structure of the title compound features chlordiazepoxide molecules, that are protonated at N1 (Fig. 1). The seven-membered ring adopts a boat conformation with the CH2 group as the prow and the two aromatic C atoms as the stern. The HSO4- acts as a bridging group between two chlordiazepoxide cations. The hydrogen atom of the protonated imino-N forms a N–H···O bond with a hydrogen sulfate ion. The anion forms in turn two hydrogen bonds, one O–H···O group where the anion acts as donor and one N–H···O group where it acts as acceptor. These three H bonds yield a R22(10) loop. Each HSO4- group connects two chlordiazepoxide moieties of the same chirality. Thus, each hydrogen sulfate group acts as a bridging group, linking two chlordiazepoxide moieties yielding infinite chains (Fig. 2). Each chain contains only one enantiomer of the molecule. The dihedral angle between the benzene rings is 72.41 (6)°.

For general background to benzodiazepines, the structures of two polymorphs of chlordiazepoxide and a chlordiazepoxide dichloromethane solvate, see: Fischer (2012) and references therein. For the structure of chlordiazepoxide hydrochloride, see: Herrnstadt et al. (1979). For the synthesis of chlordiazepoxide, see: Sternbach et al. (1961). For acid–base equlibria of chlordiazepoxide and related compounds, see: Yang (1995). For the graph-set motifs, see: Etter et al. (1990).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds shown as dashed lines.
[Figure 2] Fig. 2. The chains formed by hydrogen bonding between chlordiazepoxide cations and hydrogen sulfate anions. The figure shows two unit cells. H atoms (except those involved in H bonds) are omitted. Hydrogen bonds shown as dashed lines.
7-chloro-N-methyl-5-phenyl-2,3-dihydro-1H- 1,4-benzodiazepin-2-iminium 4-oxide hydrogen sulfate top
Crystal data top
C16H15ClN3O+·HSO4F(000) = 824
Mr = 397.84Dx = 1.573 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 84 reflections
a = 13.9899 (6) Åθ = 4.2–20.7°
b = 8.7579 (10) ŵ = 0.39 mm1
c = 13.9084 (6) ÅT = 173 K
β = 99.657 (9)°Plate, yellow
V = 1679.9 (2) Å30.58 × 0.54 × 0.14 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2802 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
φ and ω scansθmax = 27.5°, θmin = 4.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1817
Tmin = 0.806, Tmax = 0.947k = 1111
23827 measured reflectionsl = 1818
3835 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0365P)2 + 1.1198P]
where P = (Fo2 + 2Fc2)/3
3835 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.33 e Å3
1 restraintΔρmin = 0.39 e Å3
13 constraints
Crystal data top
C16H15ClN3O+·HSO4V = 1679.9 (2) Å3
Mr = 397.84Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.9899 (6) ŵ = 0.39 mm1
b = 8.7579 (10) ÅT = 173 K
c = 13.9084 (6) Å0.58 × 0.54 × 0.14 mm
β = 99.657 (9)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3835 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2802 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 0.947Rint = 0.052
23827 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.33 e Å3
3835 reflectionsΔρmin = 0.39 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.29397 (13)0.9226 (2)0.03883 (14)0.0192 (4)
C20.23368 (14)1.0175 (2)0.08120 (14)0.0196 (4)
C30.18881 (14)0.9588 (2)0.15418 (14)0.0189 (4)
C40.20316 (13)0.8080 (2)0.18584 (13)0.0154 (4)
C50.26573 (13)0.7120 (2)0.14382 (13)0.0157 (4)
C60.31045 (13)0.7742 (2)0.06926 (14)0.0185 (4)
C70.29408 (13)0.5551 (2)0.17423 (13)0.0147 (4)
C80.39263 (13)0.5004 (2)0.16413 (13)0.0163 (4)
C90.40329 (14)0.3805 (2)0.10173 (14)0.0192 (4)
C100.49545 (14)0.3410 (2)0.08574 (15)0.0233 (4)
C110.57571 (14)0.4185 (3)0.13293 (15)0.0253 (5)
C120.56519 (15)0.5383 (3)0.19530 (16)0.0288 (5)
C130.47339 (14)0.5800 (3)0.21034 (15)0.0251 (5)
C140.13111 (13)0.5056 (2)0.20202 (13)0.0161 (4)
C150.12400 (12)0.6247 (2)0.27772 (13)0.0144 (4)
C160.06161 (16)0.6949 (3)0.42636 (15)0.0252 (5)
Cl10.35131 (4)0.99179 (6)0.05429 (4)0.02899 (14)
N10.15794 (11)0.76324 (19)0.26510 (11)0.0159 (3)
N20.23277 (11)0.46083 (18)0.20355 (11)0.0149 (3)
N30.08275 (12)0.5887 (2)0.35181 (12)0.0173 (3)
O10.25496 (9)0.32031 (15)0.23206 (10)0.0211 (3)
O20.21788 (10)0.2042 (2)0.39254 (12)0.0328 (4)
O30.08836 (10)0.02501 (17)0.33641 (11)0.0304 (4)
O40.12080 (11)0.1162 (2)0.50292 (11)0.0361 (4)
O50.04859 (11)0.28024 (17)0.37061 (12)0.0309 (4)
S10.11383 (3)0.15276 (5)0.40179 (3)0.01669 (12)
H20.22341.12040.06050.024*
H30.14711.02270.18370.023*
H60.35290.71230.03930.022*
H90.34810.32590.07020.023*
H100.50330.26020.04210.028*
H110.63860.38950.12250.030*
H120.62060.59150.22750.035*
H130.46560.66310.25230.030*
H14A0.09280.41490.21450.019*
H14B0.10370.54610.13680.019*
H16A0.11940.75620.45000.038*
H16B0.04290.63750.48080.038*
H16C0.00830.76250.39830.038*
H10.1412 (14)0.834 (2)0.2988 (14)0.019*
H3A0.0662 (16)0.499 (3)0.3548 (16)0.021*
H2A0.2223 (18)0.242 (3)0.340 (2)0.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0178 (9)0.0210 (11)0.0193 (10)0.0002 (8)0.0049 (7)0.0032 (8)
C20.0213 (10)0.0141 (10)0.0233 (10)0.0017 (8)0.0030 (8)0.0017 (8)
C30.0186 (10)0.0169 (10)0.0212 (10)0.0034 (8)0.0035 (7)0.0027 (8)
C40.0146 (9)0.0157 (10)0.0157 (9)0.0002 (7)0.0023 (7)0.0015 (8)
C50.0159 (9)0.0139 (10)0.0171 (9)0.0013 (7)0.0025 (7)0.0013 (8)
C60.0181 (9)0.0186 (11)0.0197 (10)0.0026 (8)0.0061 (7)0.0007 (8)
C70.0167 (9)0.0152 (10)0.0124 (9)0.0013 (7)0.0029 (7)0.0020 (7)
C80.0157 (9)0.0164 (10)0.0178 (9)0.0042 (8)0.0056 (7)0.0035 (8)
C90.0192 (10)0.0170 (11)0.0223 (10)0.0011 (8)0.0065 (8)0.0017 (8)
C100.0261 (11)0.0204 (11)0.0258 (11)0.0076 (9)0.0109 (8)0.0006 (9)
C110.0168 (10)0.0330 (13)0.0273 (11)0.0091 (9)0.0076 (8)0.0065 (10)
C120.0162 (10)0.0372 (14)0.0318 (12)0.0031 (9)0.0001 (8)0.0023 (10)
C130.0224 (11)0.0259 (12)0.0270 (11)0.0004 (9)0.0044 (8)0.0089 (9)
C140.0136 (9)0.0176 (10)0.0178 (9)0.0003 (7)0.0052 (7)0.0031 (8)
C150.0110 (8)0.0165 (10)0.0159 (9)0.0035 (7)0.0023 (7)0.0004 (8)
C160.0315 (11)0.0263 (12)0.0201 (10)0.0063 (9)0.0113 (8)0.0000 (9)
Cl10.0333 (3)0.0255 (3)0.0325 (3)0.0051 (2)0.0179 (2)0.0108 (2)
N10.0191 (8)0.0146 (9)0.0156 (8)0.0026 (7)0.0073 (6)0.0036 (7)
N20.0178 (8)0.0125 (8)0.0151 (8)0.0032 (6)0.0048 (6)0.0009 (6)
N30.0202 (8)0.0142 (9)0.0191 (8)0.0019 (7)0.0082 (6)0.0007 (7)
O10.0272 (7)0.0124 (7)0.0265 (8)0.0044 (6)0.0123 (6)0.0029 (6)
O20.0210 (8)0.0484 (11)0.0283 (8)0.0117 (7)0.0018 (6)0.0130 (8)
O30.0296 (8)0.0227 (8)0.0402 (9)0.0017 (6)0.0100 (7)0.0145 (7)
O40.0409 (9)0.0502 (11)0.0195 (8)0.0005 (8)0.0113 (6)0.0093 (7)
O50.0319 (8)0.0177 (8)0.0434 (9)0.0045 (6)0.0071 (7)0.0043 (7)
S10.0206 (2)0.0146 (2)0.0162 (2)0.00200 (19)0.00691 (17)0.00031 (19)
Geometric parameters (Å, º) top
C1—C61.375 (3)N2—O11.314 (2)
C1—C21.384 (3)O2—S11.5495 (15)
C1—Cl11.7426 (19)O3—S11.4481 (15)
C2—C31.379 (3)O4—S11.4299 (15)
C3—C41.396 (3)O5—S11.4611 (15)
C4—C51.409 (3)C2—H20.9500
C4—N11.415 (2)C3—H30.9500
C5—C61.407 (3)C6—H60.9500
C5—C71.473 (3)C9—H90.9500
C7—N21.304 (2)C10—H100.9500
C7—C81.488 (2)C11—H110.9500
C8—C91.386 (3)C12—H120.9500
C8—C131.390 (3)C13—H130.9500
C9—C101.388 (3)C14—H14A0.9900
C10—C111.381 (3)C14—H14B0.9900
C11—C121.385 (3)C16—H16A0.9800
C12—C131.384 (3)C16—H16B0.9800
C14—N21.472 (2)C16—H16C0.9800
C14—C151.497 (3)N1—H10.837 (15)
C15—N31.301 (2)N3—H3A0.82 (2)
C15—N11.325 (2)O2—H2A0.81 (3)
C16—N31.460 (3)
C6—C1—C2121.28 (18)O4—S1—O2103.70 (9)
C6—C1—Cl1118.89 (15)O3—S1—O2107.94 (9)
C2—C1—Cl1119.83 (16)O5—S1—O2107.58 (9)
C3—C2—C1118.37 (18)C3—C2—H2120.8
C2—C3—C4121.68 (18)C1—C2—H2120.8
C3—C4—C5120.00 (17)C2—C3—H3119.2
C3—C4—N1116.63 (16)C4—C3—H3119.2
C5—C4—N1123.22 (17)C1—C6—H6119.3
C6—C5—C4117.30 (17)C5—C6—H6119.3
C6—C5—C7116.17 (16)C8—C9—H9120.4
C4—C5—C7126.42 (17)C10—C9—H9120.4
C1—C6—C5121.36 (18)C11—C10—H10119.9
N2—C7—C5121.40 (16)C9—C10—H10119.9
N2—C7—C8119.59 (17)C10—C11—H11119.8
C5—C7—C8118.85 (16)C12—C11—H11119.8
C9—C8—C13120.34 (17)C13—C12—H12120.2
C9—C8—C7120.11 (17)C11—C12—H12120.2
C13—C8—C7119.25 (17)C12—C13—H13120.0
C8—C9—C10119.30 (18)C8—C13—H13120.0
C11—C10—C9120.29 (19)N2—C14—H14A109.5
C10—C11—C12120.47 (18)C15—C14—H14A109.5
C13—C12—C11119.6 (2)N2—C14—H14B109.5
C12—C13—C8120.01 (19)C15—C14—H14B109.5
N2—C14—C15110.70 (15)H14A—C14—H14B108.1
N3—C15—N1122.88 (17)N3—C16—H16A109.5
N3—C15—C14118.61 (17)N3—C16—H16B109.5
N1—C15—C14118.50 (16)H16A—C16—H16B109.5
C15—N1—C4125.00 (16)N3—C16—H16C109.5
C7—N2—O1123.56 (15)H16A—C16—H16C109.5
C7—N2—C14120.75 (16)H16B—C16—H16C109.5
O1—N2—C14115.63 (14)C15—N1—H1117.9 (15)
C15—N3—C16125.30 (18)C4—N1—H1115.7 (15)
O4—S1—O3114.42 (10)C15—N3—H3A116.0 (16)
O4—S1—O5113.54 (10)C16—N3—H3A118.7 (16)
O3—S1—O5109.17 (9)S1—O2—H2A114.0 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O50.82 (2)1.95 (2)2.764 (2)171 (2)
N1—H1···O3i0.84 (2)1.93 (2)2.741 (2)162 (2)
O2—H2A···O10.81 (3)1.78 (3)2.583 (2)170 (3)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H15ClN3O+·HSO4
Mr397.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)13.9899 (6), 8.7579 (10), 13.9084 (6)
β (°) 99.657 (9)
V3)1679.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.58 × 0.54 × 0.14
Data collection
DiffractometerBruker–Nonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.806, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
23827, 3835, 2802
Rint0.052
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.088, 1.03
No. of reflections3835
No. of parameters245
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.39

Computer programs: COLLECT (Nonius, 1999), DIRAX (Duisenberg, 1992), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2007), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O50.82 (2)1.95 (2)2.764 (2)171 (2)
N1—H1···O3i0.837 (15)1.932 (16)2.741 (2)162 (2)
O2—H2A···O10.81 (3)1.78 (3)2.583 (2)170 (3)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The Swedish Research Council is acknowledged for providing funding for the single-crystal diffractometer.

References

First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFischer, A. (2012). Acta Cryst. E68, o1011.  CSD CrossRef IUCr Journals Google Scholar
First citationHerrnstadt, C., Mootz, D., Wunderlich, H. & Möhrle, H. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 735–740.  CSD CrossRef Web of Science Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSternbach, L. H., Reeder, E., Keller, O. & Metlesics, W. (1961). J. Org. Chem. 26, 4488–4497.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, S. K. (1995). J. Pharm. Pharmacol. 47, 442–446.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds