metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(benzil bis­{[(pyridin-2-yl)methyl­idene]hydrazone}-κ4N,N′,N′′,N′′′)mercury(II)]-μ-chlorido-[di­chloridomercury(II)]-μ-chlorido]

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran, and cDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 10 May 2012; accepted 6 June 2012; online 13 June 2012)

In the title coordination polymer, [Hg2Cl4(C26H20N6)]n, one HgII ion is coordinated by four N atoms from the benzylbis((pyridin-2-yl)methyl­idenehydrazone) ligand and two Cl ions in a very distorted cis-HgCl2N4 octa­hedral geometry. The other HgII ion is coordinated in a distorted tetra­hedral geometry by four Cl ions. Bridging chloride ions link the HgII ions into a chain propagating in [010]: the Hg—Cl bridging bonds are significantly longer than the terminal bonds. The dihedral angle between the central benzene rings of the ligand is 83.3 (2)°. The packing is consolidated by weak C—H⋯Cl hydrogen bonds and C—H⋯π inter­actions.

Related literature

For background to polyimine ligands, see: Bai et al. (2005[Bai, Y., Duan, C. Y., Cai, P., Dang, D. B. & Meng, Q. J. (2005). Dalton Trans. pp. 2678-2680.]); Chowdhury et al. (2003[Chowdhury, S., Iveson, P. B., Drew, M. G. B., Tocher, D. A. & Datta, D. (2003). New J. Chem. 27, 193-196.]); Drew et al. (2006[Drew, M. G. B., Parui, D., Naskar, J. P. & Datta, D. (2006). Eur. J. Inorg. Chem. pp. 4026-4028.]); Pal et al. (2000[Pal, P. K., Chowdhury, S., Drew, M. G. B. & Datta, D. (2000). New J. Chem. 24, 931-933.]); Sun et al. (2006[Sun, Q. Z., Bai, Y., He, G. J., Duan, C. Y., Lin, Z. H. & Meng, Q. J. (2006). Chem. Commun. pp. 2777-2779.]).

[Scheme 1]

Experimental

Crystal data
  • [HgCl4(C26H20N6)]

  • Mr = 959.46

  • Monoclinic, P 21 /c

  • a = 8.8560 (2) Å

  • b = 13.8093 (4) Å

  • c = 23.6960 (7) Å

  • β = 96.702 (1)°

  • V = 2878.10 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 11.06 mm−1

  • T = 296 K

  • 0.36 × 0.18 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.106, Tmax = 0.171

  • 26994 measured reflections

  • 7066 independent reflections

  • 5295 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.049

  • S = 1.02

  • 7066 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Selected bond lengths (Å)

Hg1—Cl1 2.5560 (10)
Hg1—Cl2 2.5488 (11)
Hg1—N2 2.471 (3)
Hg1—N3 2.499 (3)
Hg1—N5 2.558 (3)
Hg1—N6 2.435 (3)
Hg2—Cl1 2.7777 (10)
Hg2—Cl3 2.3328 (12)
Hg2—Cl4 2.3308 (12)
Hg2—Cl2i 2.7227 (11)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cl3ii 0.93 2.82 3.647 (4) 149
C25—H25⋯Cg5iii 0.93 2.96 3.814 (5) 153
Symmetry codes: (ii) -x+1, -y+2, -z+1; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Research of polyimmine compound is well established currently of great interest because of their potential applications as useful organic ligands, in which the amine nitrogen atoms have strong coordination ability to transition metal ions and recongnition function (Bai et al., 2005; Pal et al., 2000; Chowdhury et al., 2003; Drew et al., 2006; Sun et al., 2006). In this paper, we report the synthesis and crystal structure of the title compound.

The molecular structure of the title bimetallic coordination polymer Cl2Hg— Cl— (C26H20N6)Hg—Cl—HgCl2 (I) is shown in Fig. 1. Atom Hg2 is four-coordinated in a distorted tetrahedral coordination geometry by two bridging Cl atoms and two terminal Cl atoms. The bond distances of Hg—N are in the range of 2.435 (3) – 2.5558 (3) Å, the bond distances of Hg—Cl are in the range of 2.3308 (12) – 2.7777 (10) Å. N',N'-bis[1-(pyridin-2-yl)methylidene]benzil dihydrazone acts as cleating ligand here. The packing and hydrogen bonding (Table 1) is shown in Fig. 2. In addition, a C—H···π interaction contributes to the stabilization of the crystal packing.

Related literature top

For background to polyimmine ligands, see: Bai et al. (2005); Chowdhury et al. (2003); Drew et al. (2006); Pal et al. (2000); Sun et al. (2006).

Experimental top

Benzilbis((pyridin-2-yl)methylidenehydrazone) (L) was readily prepared by the reaction of benzil dihydrazone with 2-pyridinecarbpxaldehyde in a 1:2 ratio. The ligand L (0.5 mmol, 0.208 g) and HgCl2 (0.5 mmol, 0.135 g) were mixed in methanol (40 ml). The solution was left for 10 d at room temperature to afford green prisms (yield 75%). Analysis calculated for C26H20Cl4Hg2N6: C 66.2, H 4.0, N 11.0%; found: C 66.3, H 4.1, N 10.9%.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Research of polyimmine compound is well established currently of great interest because of their potential applications as useful organic ligands, in which the amine nitrogen atoms have strong coordination ability to transition metal ions and recongnition function (Bai et al., 2005; Pal et al., 2000; Chowdhury et al., 2003; Drew et al., 2006; Sun et al., 2006). In this paper, we report the synthesis and crystal structure of the title compound.

The molecular structure of the title bimetallic coordination polymer Cl2Hg— Cl— (C26H20N6)Hg—Cl—HgCl2 (I) is shown in Fig. 1. Atom Hg2 is four-coordinated in a distorted tetrahedral coordination geometry by two bridging Cl atoms and two terminal Cl atoms. The bond distances of Hg—N are in the range of 2.435 (3) – 2.5558 (3) Å, the bond distances of Hg—Cl are in the range of 2.3308 (12) – 2.7777 (10) Å. N',N'-bis[1-(pyridin-2-yl)methylidene]benzil dihydrazone acts as cleating ligand here. The packing and hydrogen bonding (Table 1) is shown in Fig. 2. In addition, a C—H···π interaction contributes to the stabilization of the crystal packing.

For background to polyimmine ligands, see: Bai et al. (2005); Chowdhury et al. (2003); Drew et al. (2006); Pal et al. (2000); Sun et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing and hydrogen bonding (dashed lines) of (I) viewing down a axis. H atoms not involved in hydrogen bonding are omitted.
catena-Poly[[(benzil bis{[(pyridin-2-yl)methylidene]hydrazone}- κ4N,N',N'',N''')mercury(II)]-µ-chlorido- [dichloridomercury(II)]-µ-chlorido] top
Crystal data top
[HgCl4(C26H20N6)]F(000) = 1784
Mr = 959.46Dx = 2.214 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 700 reflections
a = 8.8560 (2) Åθ = 3.5–20.5°
b = 13.8093 (4) ŵ = 11.06 mm1
c = 23.6960 (7) ÅT = 296 K
β = 96.702 (1)°Prism, green
V = 2878.10 (14) Å30.36 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
7066 independent reflections
Radiation source: fine-focus sealed tube5295 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.106, Tmax = 0.171k = 1818
26994 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0162P)2 + 0.1878P]
where P = (Fo2 + 2Fc2)/3
7066 reflections(Δ/σ)max = 0.002
343 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.85 e Å3
Crystal data top
[HgCl4(C26H20N6)]V = 2878.10 (14) Å3
Mr = 959.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8560 (2) ŵ = 11.06 mm1
b = 13.8093 (4) ÅT = 296 K
c = 23.6960 (7) Å0.36 × 0.18 × 0.16 mm
β = 96.702 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
7066 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5295 reflections with I > 2σ(I)
Tmin = 0.106, Tmax = 0.171Rint = 0.035
26994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.049H-atom parameters constrained
S = 1.02Δρmax = 0.85 e Å3
7066 reflectionsΔρmin = 0.85 e Å3
343 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.62651 (2)0.77072 (1)0.34093 (1)0.0365 (1)
Hg20.40107 (2)1.03230 (1)0.29193 (1)0.0478 (1)
Cl10.68420 (11)0.94448 (7)0.31308 (5)0.0508 (4)
Cl20.47008 (11)0.68234 (8)0.25964 (5)0.0501 (3)
Cl30.37878 (15)1.09629 (9)0.38169 (5)0.0692 (5)
Cl40.29001 (14)0.94051 (8)0.21557 (5)0.0598 (4)
N10.7872 (3)0.8179 (2)0.47703 (13)0.0386 (11)
N20.6483 (4)0.8111 (2)0.44313 (12)0.0361 (10)
N30.3796 (3)0.8157 (2)0.37525 (13)0.0376 (11)
N40.7524 (3)0.5949 (2)0.44393 (12)0.0382 (11)
N50.7914 (4)0.6422 (2)0.39605 (12)0.0370 (10)
N60.8447 (3)0.7191 (2)0.29480 (13)0.0395 (11)
C10.9891 (4)0.7451 (3)0.53615 (14)0.0346 (11)
C21.0814 (4)0.6645 (3)0.54636 (16)0.0443 (14)
C31.2180 (5)0.6703 (4)0.58042 (18)0.0551 (17)
C41.2655 (5)0.7574 (4)0.60399 (18)0.0572 (18)
C51.1760 (5)0.8389 (3)0.59423 (16)0.0518 (16)
C61.0372 (4)0.8329 (3)0.56081 (15)0.0431 (14)
C70.8431 (4)0.7388 (3)0.49870 (14)0.0316 (11)
C80.7681 (4)0.6415 (3)0.49102 (15)0.0331 (11)
C90.7156 (4)0.5941 (3)0.54105 (15)0.0351 (12)
C100.6896 (5)0.4958 (3)0.54188 (18)0.0520 (17)
C110.6362 (5)0.4532 (3)0.5883 (2)0.0650 (19)
C120.6057 (5)0.5077 (4)0.6335 (2)0.0641 (19)
C130.6267 (5)0.6055 (4)0.63283 (17)0.0541 (18)
C140.6849 (4)0.6493 (3)0.58726 (16)0.0436 (14)
C150.5333 (5)0.8437 (3)0.46300 (16)0.0450 (16)
C160.3852 (4)0.8468 (3)0.42897 (15)0.0392 (12)
C170.2613 (5)0.8829 (3)0.45179 (19)0.0579 (17)
C180.1243 (5)0.8889 (3)0.4169 (2)0.0631 (19)
C190.1184 (5)0.8602 (3)0.3623 (2)0.0598 (19)
C200.2472 (5)0.8220 (3)0.34252 (18)0.0502 (17)
C210.8909 (4)0.6034 (3)0.36920 (16)0.0417 (12)
C220.9269 (4)0.6436 (3)0.31518 (15)0.0362 (12)
C231.0385 (4)0.6025 (3)0.28678 (18)0.0510 (16)
C241.0661 (5)0.6424 (4)0.23574 (19)0.0589 (19)
C250.9829 (5)0.7200 (3)0.21479 (18)0.0569 (18)
C260.8728 (5)0.7570 (3)0.24518 (17)0.0516 (16)
H21.050600.605500.529900.0530*
H31.278000.615300.587400.0660*
H41.358400.761600.626600.0690*
H51.208900.897900.610100.0620*
H60.976100.887600.554900.0520*
H100.708000.457900.511000.0620*
H110.621000.386600.588800.0780*
H120.570500.478300.664800.0770*
H130.601900.643000.663000.0650*
H140.703300.715600.587700.0520*
H150.542700.866400.500200.0540*
H170.268800.902800.489500.0690*
H180.037700.912400.431000.0750*
H190.028400.866100.338000.0720*
H200.240800.800000.305200.0600*
H210.942000.548500.384000.0500*
H231.093600.549300.301800.0610*
H241.141000.616600.215700.0710*
H251.000200.747600.180300.0690*
H260.816200.810000.230700.0620*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0406 (1)0.0377 (1)0.0319 (1)0.0028 (1)0.0073 (1)0.0034 (1)
Hg20.0651 (1)0.0414 (1)0.0374 (1)0.0024 (1)0.0082 (1)0.0028 (1)
Cl10.0480 (6)0.0347 (6)0.0703 (7)0.0031 (5)0.0096 (5)0.0021 (5)
Cl20.0486 (6)0.0474 (6)0.0531 (6)0.0031 (5)0.0014 (5)0.0196 (5)
Cl30.1034 (10)0.0603 (8)0.0489 (7)0.0135 (7)0.0297 (7)0.0188 (6)
Cl40.0793 (8)0.0545 (7)0.0430 (6)0.0037 (6)0.0032 (6)0.0048 (5)
N10.0452 (19)0.037 (2)0.0329 (17)0.0006 (16)0.0013 (15)0.0003 (15)
N20.0432 (19)0.0331 (18)0.0310 (17)0.0027 (15)0.0001 (15)0.0007 (14)
N30.0425 (19)0.0355 (19)0.0342 (18)0.0027 (15)0.0019 (15)0.0019 (14)
N40.0486 (19)0.0345 (19)0.0313 (17)0.0030 (15)0.0041 (15)0.0012 (14)
N50.0472 (19)0.0383 (19)0.0258 (16)0.0045 (15)0.0051 (14)0.0060 (14)
N60.0398 (18)0.047 (2)0.0325 (17)0.0084 (16)0.0071 (14)0.0015 (15)
C10.040 (2)0.042 (2)0.0216 (18)0.0065 (18)0.0033 (16)0.0001 (16)
C20.044 (2)0.047 (3)0.040 (2)0.004 (2)0.0032 (19)0.0044 (19)
C30.044 (3)0.064 (3)0.055 (3)0.001 (2)0.004 (2)0.002 (2)
C40.052 (3)0.081 (4)0.037 (2)0.015 (3)0.002 (2)0.001 (2)
C50.065 (3)0.057 (3)0.034 (2)0.029 (2)0.009 (2)0.011 (2)
C60.048 (2)0.046 (3)0.035 (2)0.008 (2)0.0037 (19)0.0015 (19)
C70.0364 (19)0.032 (2)0.0267 (18)0.0028 (17)0.0056 (16)0.0003 (16)
C80.0323 (19)0.032 (2)0.034 (2)0.0006 (16)0.0002 (16)0.0004 (17)
C90.034 (2)0.036 (2)0.035 (2)0.0006 (17)0.0023 (16)0.0039 (17)
C100.069 (3)0.042 (3)0.047 (3)0.005 (2)0.015 (2)0.003 (2)
C110.072 (3)0.047 (3)0.079 (4)0.005 (2)0.021 (3)0.022 (3)
C120.056 (3)0.088 (4)0.050 (3)0.001 (3)0.013 (2)0.031 (3)
C130.048 (3)0.081 (4)0.035 (2)0.001 (2)0.012 (2)0.005 (2)
C140.045 (2)0.047 (3)0.039 (2)0.0078 (19)0.0054 (19)0.0036 (19)
C150.058 (3)0.047 (3)0.031 (2)0.005 (2)0.009 (2)0.0040 (19)
C160.045 (2)0.045 (2)0.029 (2)0.0008 (19)0.0098 (18)0.0050 (18)
C170.054 (3)0.076 (3)0.048 (3)0.004 (2)0.024 (2)0.003 (2)
C180.045 (3)0.065 (3)0.083 (4)0.002 (2)0.023 (3)0.004 (3)
C190.041 (3)0.052 (3)0.083 (4)0.010 (2)0.007 (3)0.004 (3)
C200.057 (3)0.040 (3)0.052 (3)0.011 (2)0.000 (2)0.001 (2)
C210.045 (2)0.039 (2)0.040 (2)0.0019 (19)0.0000 (19)0.0002 (19)
C220.035 (2)0.038 (2)0.035 (2)0.0014 (17)0.0018 (17)0.0053 (17)
C230.042 (2)0.058 (3)0.054 (3)0.016 (2)0.010 (2)0.001 (2)
C240.048 (3)0.078 (4)0.054 (3)0.005 (2)0.020 (2)0.012 (3)
C250.061 (3)0.077 (4)0.035 (2)0.005 (3)0.015 (2)0.001 (2)
C260.053 (3)0.067 (3)0.035 (2)0.009 (2)0.006 (2)0.005 (2)
Geometric parameters (Å, º) top
Hg1—Cl12.5560 (10)C12—C131.364 (8)
Hg1—Cl22.5488 (11)C13—C141.388 (6)
Hg1—N22.471 (3)C15—C161.458 (6)
Hg1—N32.499 (3)C16—C171.372 (6)
Hg1—N52.558 (3)C17—C181.389 (6)
Hg1—N62.435 (3)C18—C191.348 (7)
Hg2—Cl12.7777 (10)C19—C201.387 (6)
Hg2—Cl32.3328 (12)C21—C221.464 (5)
Hg2—Cl42.3308 (12)C22—C231.381 (5)
Hg2—Cl2i2.7227 (11)C23—C241.377 (6)
N1—N21.392 (4)C24—C251.361 (7)
N1—C71.282 (5)C25—C261.376 (6)
N2—C151.254 (5)C2—H20.9300
N3—C161.339 (5)C3—H30.9300
N3—C201.331 (5)C4—H40.9300
N4—N51.387 (4)C5—H50.9300
N4—C81.282 (5)C6—H60.9300
N5—C211.265 (5)C10—H100.9300
N6—C221.330 (5)C11—H110.9300
N6—C261.337 (5)C12—H120.9300
C1—C21.385 (6)C13—H130.9300
C1—C61.391 (6)C14—H140.9300
C1—C71.483 (5)C15—H150.9300
C2—C31.376 (6)C17—H170.9300
C3—C41.371 (7)C18—H180.9300
C4—C51.380 (7)C19—H190.9300
C5—C61.385 (6)C20—H200.9300
C7—C81.501 (6)C21—H210.9300
C8—C91.476 (5)C23—H230.9300
C9—C101.377 (6)C24—H240.9300
C9—C141.387 (5)C25—H250.9300
C10—C111.379 (6)C26—H260.9300
C11—C121.362 (7)
Cl1—Hg1—Cl2111.21 (4)C9—C14—C13120.0 (4)
Cl1—Hg1—N292.64 (7)N2—C15—C16121.4 (3)
Cl1—Hg1—N393.41 (7)N3—C16—C15116.6 (3)
Cl1—Hg1—N5131.59 (8)N3—C16—C17123.3 (3)
Cl1—Hg1—N688.05 (7)C15—C16—C17120.1 (4)
Cl2—Hg1—N2145.31 (8)C16—C17—C18118.1 (4)
Cl2—Hg1—N386.90 (7)C17—C18—C19119.2 (4)
Cl2—Hg1—N5106.34 (7)C18—C19—C20119.7 (4)
Cl2—Hg1—N684.86 (7)N3—C20—C19122.1 (4)
N2—Hg1—N366.18 (11)N5—C21—C22121.0 (4)
N2—Hg1—N571.43 (9)N6—C22—C21116.7 (3)
N2—Hg1—N6122.06 (11)N6—C22—C23122.5 (3)
N3—Hg1—N5118.39 (10)C21—C22—C23120.8 (4)
N3—Hg1—N6171.59 (10)C22—C23—C24118.3 (4)
N5—Hg1—N665.83 (10)C23—C24—C25119.4 (4)
Cl1—Hg2—Cl399.87 (4)C24—C25—C26119.2 (4)
Cl1—Hg2—Cl4101.12 (4)N6—C26—C25122.1 (4)
Cl1—Hg2—Cl2i89.80 (3)C1—C2—H2119.00
Cl3—Hg2—Cl4147.23 (5)C3—C2—H2119.00
Cl2i—Hg2—Cl3101.86 (4)C2—C3—H3120.00
Cl2i—Hg2—Cl4103.09 (4)C4—C3—H3120.00
Hg1—Cl1—Hg2104.66 (3)C3—C4—H4120.00
Hg1—Cl2—Hg2ii118.96 (4)C5—C4—H4120.00
N2—N1—C7116.6 (3)C4—C5—H5120.00
Hg1—N2—N1122.9 (2)C6—C5—H5120.00
Hg1—N2—C15118.4 (3)C1—C6—H6120.00
N1—N2—C15117.4 (3)C5—C6—H6120.00
Hg1—N3—C16116.9 (2)C9—C10—H10120.00
Hg1—N3—C20124.9 (3)C11—C10—H10120.00
C16—N3—C20117.7 (3)C10—C11—H11120.00
N5—N4—C8117.6 (3)C12—C11—H11120.00
Hg1—N5—N4124.2 (2)C11—C12—H12120.00
Hg1—N5—C21115.3 (2)C13—C12—H12120.00
N4—N5—C21117.8 (3)C12—C13—H13120.00
Hg1—N6—C22119.7 (2)C14—C13—H13120.00
Hg1—N6—C26121.3 (2)C9—C14—H14120.00
C22—N6—C26118.4 (3)C13—C14—H14120.00
C2—C1—C6118.8 (3)N2—C15—H15119.00
C2—C1—C7120.9 (4)C16—C15—H15119.00
C6—C1—C7120.4 (4)C16—C17—H17121.00
C1—C2—C3121.1 (4)C18—C17—H17121.00
C2—C3—C4119.8 (5)C17—C18—H18120.00
C3—C4—C5120.3 (4)C19—C18—H18120.00
C4—C5—C6120.1 (4)C18—C19—H19120.00
C1—C6—C5120.0 (4)C20—C19—H19120.00
N1—C7—C1117.3 (3)N3—C20—H20119.00
N1—C7—C8124.7 (3)C19—C20—H20119.00
C1—C7—C8117.9 (3)N5—C21—H21120.00
N4—C8—C7123.8 (3)C22—C21—H21120.00
N4—C8—C9117.7 (3)C22—C23—H23121.00
C7—C8—C9118.4 (3)C24—C23—H23121.00
C8—C9—C10121.2 (4)C23—C24—H24120.00
C8—C9—C14120.0 (4)C25—C24—H24120.00
C10—C9—C14118.8 (4)C24—C25—H25120.00
C9—C10—C11120.4 (4)C26—C25—H25120.00
C10—C11—C12120.6 (4)N6—C26—H26119.00
C11—C12—C13119.9 (4)C25—C26—H26119.00
C12—C13—C14120.3 (4)
Cl2—Hg1—Cl1—Hg262.36 (4)C16—N3—C20—C190.7 (6)
N2—Hg1—Cl1—Hg291.91 (9)Hg1—N3—C16—C17173.4 (3)
N3—Hg1—Cl1—Hg225.64 (8)C20—N3—C16—C171.2 (6)
N5—Hg1—Cl1—Hg2159.25 (9)C20—N3—C16—C15177.0 (4)
N6—Hg1—Cl1—Hg2146.07 (8)Hg1—N3—C20—C19170.8 (3)
N3—Hg1—N2—N1173.7 (3)N5—N4—C8—C77.7 (5)
N5—Hg1—N2—N152.1 (2)C8—N4—N5—C21122.7 (4)
Cl1—Hg1—N5—N4125.2 (2)N5—N4—C8—C9175.4 (3)
Cl1—Hg1—Cl2—Hg2ii112.83 (5)C8—N4—N5—Hg176.8 (4)
N2—Hg1—Cl2—Hg2ii116.81 (13)Hg1—N5—C21—C2211.5 (5)
N3—Hg1—Cl2—Hg2ii154.71 (8)N4—N5—C21—C22173.7 (3)
N5—Hg1—Cl2—Hg2ii36.01 (9)Hg1—N6—C22—C217.5 (4)
N6—Hg1—Cl2—Hg2ii26.94 (8)C22—N6—C26—C250.4 (6)
Cl2—Hg1—N5—C2165.9 (3)C26—N6—C22—C230.7 (5)
N2—Hg1—N5—C21150.4 (3)Hg1—N6—C26—C25171.1 (3)
N3—Hg1—N5—C21161.3 (3)C26—N6—C22—C21179.1 (3)
N6—Hg1—N5—C2110.5 (3)Hg1—N6—C22—C23170.9 (3)
Cl1—Hg1—N6—C22147.2 (3)C7—C1—C6—C5177.9 (3)
Cl1—Hg1—N2—N181.1 (2)C7—C1—C2—C3179.1 (4)
Cl2—Hg1—N2—N1144.20 (19)C2—C1—C7—N1158.9 (3)
N5—Hg1—N3—C20132.0 (3)C6—C1—C7—C8157.5 (3)
N5—Hg1—N6—C229.2 (3)C6—C1—C7—N119.8 (5)
N6—Hg1—N2—N18.2 (3)C6—C1—C2—C30.3 (6)
Cl1—Hg1—N2—C1585.7 (3)C2—C1—C7—C823.8 (5)
Cl2—Hg1—N2—C1549.0 (3)C2—C1—C6—C50.9 (5)
N3—Hg1—N2—C156.9 (3)C1—C2—C3—C41.1 (6)
N5—Hg1—N2—C15141.1 (3)C2—C3—C4—C50.8 (6)
N6—Hg1—N2—C15175.0 (3)C3—C4—C5—C60.4 (6)
Cl1—Hg1—N3—C1685.6 (3)C4—C5—C6—C11.2 (6)
Cl2—Hg1—N3—C16163.4 (3)N1—C7—C8—C9113.3 (4)
N2—Hg1—N3—C165.8 (2)C1—C7—C8—C963.8 (4)
N5—Hg1—N3—C1656.5 (3)C1—C7—C8—N4113.1 (4)
Cl1—Hg1—N3—C2086.0 (3)N1—C7—C8—N469.8 (5)
Cl2—Hg1—N3—C2025.1 (3)N4—C8—C9—C14159.8 (3)
N2—Hg1—N3—C20177.4 (3)C7—C8—C9—C1423.0 (5)
N2—Hg1—N6—C2255.3 (3)N4—C8—C9—C1017.2 (5)
Cl1—Hg1—N5—C2173.9 (3)C7—C8—C9—C10159.9 (4)
Cl1—Hg1—N6—C2641.4 (3)C10—C9—C14—C131.0 (6)
Cl2—Hg1—N6—C2670.1 (3)C8—C9—C14—C13176.1 (4)
Cl2—Hg1—N5—N495.0 (2)C8—C9—C10—C11178.0 (4)
N2—Hg1—N5—N448.7 (2)C14—C9—C10—C111.0 (6)
N3—Hg1—N5—N40.4 (3)C9—C10—C11—C121.2 (7)
N6—Hg1—N5—N4171.5 (3)C10—C11—C12—C130.6 (7)
Cl2—Hg1—N6—C22101.3 (3)C11—C12—C13—C142.6 (7)
N2—Hg1—N6—C26133.3 (3)C12—C13—C14—C92.9 (6)
N5—Hg1—N6—C26179.5 (3)N2—C15—C16—C17180.0 (4)
Cl4—Hg2—Cl1—Hg162.53 (5)N2—C15—C16—N31.8 (6)
Cl1ii—Hg2ii—Cl2—Hg1148.59 (5)N3—C16—C17—C181.2 (6)
Cl3ii—Hg2ii—Cl2—Hg1111.36 (5)C15—C16—C17—C18176.8 (4)
Cl4ii—Hg2ii—Cl2—Hg147.22 (6)C16—C17—C18—C190.6 (6)
Cl3—Hg2—Cl1—Hg192.17 (5)C17—C18—C19—C202.4 (6)
Cl2i—Hg2—Cl1—Hg1165.83 (4)C18—C19—C20—N32.5 (6)
C7—N1—N2—Hg185.4 (3)N5—C21—C22—C23178.3 (4)
N2—N1—C7—C1178.5 (3)N5—C21—C22—N63.3 (5)
C7—N1—N2—C15107.7 (4)C21—C22—C23—C24179.1 (4)
N2—N1—C7—C81.4 (5)N6—C22—C23—C240.8 (6)
N1—N2—C15—C16175.1 (3)C22—C23—C24—C250.4 (6)
Hg1—N2—C15—C167.5 (5)C23—C24—C25—C260.0 (7)
Hg1—N3—C16—C154.7 (4)C24—C25—C26—N60.0 (7)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cl3iii0.932.823.647 (4)149
C25—H25···Cg5iv0.932.963.814 (5)153
Symmetry codes: (iii) x+1, y+2, z+1; (iv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[HgCl4(C26H20N6)]
Mr959.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.8560 (2), 13.8093 (4), 23.6960 (7)
β (°) 96.702 (1)
V3)2878.10 (14)
Z4
Radiation typeMo Kα
µ (mm1)11.06
Crystal size (mm)0.36 × 0.18 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.106, 0.171
No. of measured, independent and
observed [I > 2σ(I)] reflections
26994, 7066, 5295
Rint0.035
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.049, 1.02
No. of reflections7066
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.85

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Hg1—Cl12.5560 (10)Hg1—N62.435 (3)
Hg1—Cl22.5488 (11)Hg2—Cl12.7777 (10)
Hg1—N22.471 (3)Hg2—Cl32.3328 (12)
Hg1—N32.499 (3)Hg2—Cl42.3308 (12)
Hg1—N52.558 (3)Hg2—Cl2i2.7227 (11)
Symmetry code: (i) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cl3ii0.932.823.647 (4)149
C25—H25···Cg5iii0.932.963.814 (5)153
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBai, Y., Duan, C. Y., Cai, P., Dang, D. B. & Meng, Q. J. (2005). Dalton Trans. pp. 2678–2680.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChowdhury, S., Iveson, P. B., Drew, M. G. B., Tocher, D. A. & Datta, D. (2003). New J. Chem. 27, 193–196.  Web of Science CSD CrossRef CAS Google Scholar
First citationDrew, M. G. B., Parui, D., Naskar, J. P. & Datta, D. (2006). Eur. J. Inorg. Chem. pp. 4026–4028.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPal, P. K., Chowdhury, S., Drew, M. G. B. & Datta, D. (2000). New J. Chem. 24, 931–933.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Q. Z., Bai, Y., He, G. J., Duan, C. Y., Lin, Z. H. & Meng, Q. J. (2006). Chem. Commun. pp. 2777–2779.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds