organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Chloro­phen­yl)-5-methyl-1,3-dioxane-5-carboxylic acid

aCollege of Chemistry, Xiangtan University, Xiangtan Hunan 411105, People's Republic of China, and bDepartment of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou Hunan 425100, People's Republic of China
*Correspondence e-mail: yuanxianzhangmin@163.com

(Received 14 May 2012; accepted 1 June 2012; online 13 June 2012)

In the title compound, C12H13ClO4, the 1,3-dioxane ring adopts a chair conformation and the 2-chloro­benzene and methyl substituents occupy equatorial sites. The carboxyl group is in an axial inclination. In the crystal, carb­oxy­lic acid inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R22(8) loops.

Related literature

For background to protecting groups, see: He et al. (2004[He, M. H. & Liao, Q. J. (2004). Chin. J. Med. Chem. 14, 350-354.]). For related structures, see: Laing et al. (1984[Laing, M., Sommerville, P., Drewes, S. E. & Drewes, M. W. (1984). S. Afr. J. Chem. 37, 27-30.]); Sun et al. (2010[Sun, X. Q., Yu, S. L., Li, Z. Y. & Yang, Y. (2010). J. Mol. Struct. 973, 152-155.]); Wang et al. (2010[Wang, X.-Y., Shi, J.-H., Zhang, M. & Ng, S. W. (2010). Acta Cryst. E66, o426.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13ClO4

  • Mr = 256.67

  • Monoclinic, P 21 /c

  • a = 9.4452 (3) Å

  • b = 13.9413 (5) Å

  • c = 9.37059 (18) Å

  • β = 102.145 (2)°

  • V = 1206.28 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.83 mm−1

  • T = 153 K

  • 0.46 × 0.42 × 0.23 mm

Data collection
  • Agilent Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2006[Agilent (2006). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.356, Tmax = 0.562

  • 5864 measured reflections

  • 2089 independent reflections

  • 1902 reflections with I > 2σ(I)

  • Rint = 0.023

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.07

  • 2089 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O3i 0.72 (2) 1.92 (2) 2.6323 (18) 170 (3)
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2006[Agilent (2006). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound was synthesized to be used as a protection of carbonyl or synthetic intermediate in organic syntheses (He et al., 2004).

In the title compound, C12H13ClO4, the 1,3-dioxane ring adopts a chair conformation and the 2-chlorophenyl substituent occupies an equatorial site (Fig. 1). In the crystal, adjacent molecules are connected by O—H···O hydrogen bonding interactions between the oxygen atoms O3 and O4 into a dimer (Fig. 2). The crystal structures of some similar 1,3-dioxanes have been reported (Laing et al., 1984; Sun et al., 2010; Wang et al., 2010).

Related literature top

For background to protecting groups, see: He et al. (2004). For related structures, see: Laing et al. (1984); Sun et al. (2010); Wang et al. (2010).

Experimental top

2,2-bis(hydroxymethyl propionic acid (6.7 g, 0.05 mol), 2-chlorobenzaldehyde (7.0 g, 0.05 mol), N,N-dimethylformamide (30 ml), cyclohexane (15 ml), and p-toluenesulfonic acid monohydrate (1 g, 0.005 mol) were heated and stirred at 353 K for 5 h. Diethyl ether (50 ml) and NaHCO3 (0.42 g, 5 mmol) were added to dissolve the residue after DMF and cyclohexane were evaporated under reduced pressure. The organic solution was washed with water (100 ml), and dried with anhydrous sodium sulfate for 3 h. The resulting solution was filtered and evaporated, and the product was recrystallized from ethyl acetate to give 8.3 g of colorless blocks (yield 65%; m.p. 424.2 K).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation, Uiso(H) = 1.2–1.5 Ueq(C). The H-atoms of the hydroxyl groups were placed at calculated positions and then refined as riding; O—H =0.72 Å and Uiso(H) = 1.5 Ueq(O).

Structure description top

The title compound was synthesized to be used as a protection of carbonyl or synthetic intermediate in organic syntheses (He et al., 2004).

In the title compound, C12H13ClO4, the 1,3-dioxane ring adopts a chair conformation and the 2-chlorophenyl substituent occupies an equatorial site (Fig. 1). In the crystal, adjacent molecules are connected by O—H···O hydrogen bonding interactions between the oxygen atoms O3 and O4 into a dimer (Fig. 2). The crystal structures of some similar 1,3-dioxanes have been reported (Laing et al., 1984; Sun et al., 2010; Wang et al., 2010).

For background to protecting groups, see: He et al. (2004). For related structures, see: Laing et al. (1984); Sun et al. (2010); Wang et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2006); cell refinement: CrysAlis PRO (Agilent, 2006); data reduction: CrysAlis PRO (Agilent, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A view of the packing of the title compound
2-(2-Chlorophenyl)-5-methyl-1,3-dioxane-5-carboxylic acid top
Crystal data top
C12H13ClO4F(000) = 536
Mr = 256.67Dx = 1.413 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.4452 (3) ÅCell parameters from 5864 reflections
b = 13.9413 (5) Åθ = 4.8–67.0°
c = 9.37059 (18) ŵ = 2.83 mm1
β = 102.145 (2)°T = 153 K
V = 1206.28 (6) Å3Block, colorless
Z = 40.46 × 0.42 × 0.23 mm
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
2089 independent reflections
Radiation source: fine-focus sealed tube1902 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 67.0°, θmin = 4.8°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2006)
h = 1011
Tmin = 0.356, Tmax = 0.562k = 1615
5864 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.6772P]
where P = (Fo2 + 2Fc2)/3
2089 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C12H13ClO4V = 1206.28 (6) Å3
Mr = 256.67Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.4452 (3) ŵ = 2.83 mm1
b = 13.9413 (5) ÅT = 153 K
c = 9.37059 (18) Å0.46 × 0.42 × 0.23 mm
β = 102.145 (2)°
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
2089 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2006)
1902 reflections with I > 2σ(I)
Tmin = 0.356, Tmax = 0.562Rint = 0.023
5864 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.33 e Å3
2089 reflectionsΔρmin = 0.30 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.64679 (5)0.45963 (3)0.15200 (5)0.02559 (15)
O10.83817 (12)0.26839 (8)0.27910 (12)0.0143 (3)
C90.95610 (17)0.13397 (12)0.18663 (17)0.0139 (3)
C80.96031 (17)0.24125 (12)0.22005 (18)0.0149 (3)
H8A1.05080.25690.29090.018*
H8B0.95960.27790.12940.018*
C100.80794 (17)0.11189 (12)0.08981 (17)0.0147 (4)
H10A0.80030.14300.00650.018*
H10B0.79780.04180.07410.018*
C70.54853 (18)0.37904 (12)0.23610 (19)0.0193 (4)
C30.50347 (18)0.22009 (12)0.31020 (18)0.0181 (4)
H30.52530.15350.31510.022*
C50.3595 (2)0.35127 (14)0.3641 (2)0.0296 (5)
H50.28320.37480.40620.036*
C40.39209 (19)0.25432 (14)0.3718 (2)0.0233 (4)
H40.33850.21150.41900.028*
C60.43677 (19)0.41421 (14)0.2957 (2)0.0275 (4)
H60.41350.48060.28970.033*
C10.70735 (17)0.24594 (11)0.17837 (18)0.0141 (3)
H10.70620.27860.08310.017*
O20.69428 (12)0.14595 (8)0.15653 (12)0.0144 (3)
C20.58361 (17)0.28173 (12)0.24141 (18)0.0153 (3)
O41.05941 (15)0.10910 (10)0.43964 (14)0.0264 (3)
O30.91722 (14)0.00573 (9)0.32146 (14)0.0271 (3)
C120.97688 (17)0.07531 (12)0.32671 (17)0.0138 (3)
C111.07850 (19)0.10862 (13)0.10860 (19)0.0202 (4)
H11A1.17030.13400.16450.030*
H11B1.05800.13690.01070.030*
H11C1.08540.03880.10080.030*
H4B1.073 (2)0.0772 (17)0.502 (3)0.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0236 (2)0.0145 (2)0.0385 (3)0.00062 (17)0.00616 (19)0.00353 (18)
O10.0115 (6)0.0153 (6)0.0155 (6)0.0004 (5)0.0014 (4)0.0026 (4)
C90.0145 (8)0.0154 (8)0.0122 (8)0.0008 (7)0.0038 (6)0.0004 (6)
C80.0143 (8)0.0152 (8)0.0159 (8)0.0003 (7)0.0046 (6)0.0015 (7)
C100.0171 (8)0.0154 (8)0.0117 (8)0.0013 (7)0.0034 (6)0.0018 (6)
C70.0146 (8)0.0167 (8)0.0245 (9)0.0009 (7)0.0010 (7)0.0001 (7)
C30.0170 (8)0.0169 (8)0.0188 (8)0.0004 (7)0.0000 (7)0.0010 (7)
C50.0179 (9)0.0291 (11)0.0442 (12)0.0047 (8)0.0118 (8)0.0053 (9)
C40.0162 (9)0.0256 (10)0.0283 (10)0.0016 (8)0.0052 (7)0.0016 (8)
C60.0196 (9)0.0185 (9)0.0442 (12)0.0057 (8)0.0062 (8)0.0027 (8)
C10.0147 (8)0.0111 (8)0.0148 (8)0.0009 (7)0.0010 (6)0.0002 (6)
O20.0135 (6)0.0126 (6)0.0172 (6)0.0000 (5)0.0032 (4)0.0029 (4)
C20.0119 (8)0.0166 (8)0.0152 (8)0.0010 (7)0.0025 (6)0.0025 (7)
O40.0412 (8)0.0197 (7)0.0134 (6)0.0008 (6)0.0053 (6)0.0030 (5)
O30.0298 (7)0.0195 (7)0.0278 (7)0.0068 (6)0.0038 (6)0.0077 (5)
C120.0129 (8)0.0138 (8)0.0149 (8)0.0028 (7)0.0038 (6)0.0015 (6)
C110.0201 (9)0.0241 (9)0.0183 (9)0.0028 (7)0.0081 (7)0.0014 (7)
Geometric parameters (Å, º) top
Cl—C71.7472 (18)C3—H30.9500
O1—C11.4230 (19)C5—C61.382 (3)
O1—C81.4314 (18)C5—C41.385 (3)
C9—C121.524 (2)C5—H50.9500
C9—C81.527 (2)C4—H40.9500
C9—C101.530 (2)C6—H60.9500
C9—C111.534 (2)C1—O21.4106 (19)
C8—H8A0.9900C1—C21.501 (2)
C8—H8B0.9900C1—H11.0000
C10—O21.4322 (19)O4—C121.266 (2)
C10—H10A0.9900O4—H4B0.72 (2)
C10—H10B0.9900O3—C121.259 (2)
C7—C61.384 (2)C11—H11A0.9800
C7—C21.395 (2)C11—H11B0.9800
C3—C41.387 (2)C11—H11C0.9800
C3—C21.390 (2)
C1—O1—C8110.09 (12)C4—C5—H5119.6
C12—C9—C8110.85 (13)C5—C4—C3119.60 (17)
C12—C9—C10109.80 (13)C5—C4—H4120.2
C8—C9—C10107.44 (13)C3—C4—H4120.2
C12—C9—C11108.28 (13)C5—C6—C7118.96 (17)
C8—C9—C11109.50 (13)C5—C6—H6120.5
C10—C9—C11110.98 (13)C7—C6—H6120.5
O1—C8—C9110.48 (13)O2—C1—O1110.54 (12)
O1—C8—H8A109.6O2—C1—C2109.51 (13)
C9—C8—H8A109.6O1—C1—C2107.77 (13)
O1—C8—H8B109.6O2—C1—H1109.7
C9—C8—H8B109.6O1—C1—H1109.7
H8A—C8—H8B108.1C2—C1—H1109.7
O2—C10—C9110.51 (12)C1—O2—C10109.89 (12)
O2—C10—H10A109.5C3—C2—C7117.99 (15)
C9—C10—H10A109.5C3—C2—C1121.46 (15)
O2—C10—H10B109.5C7—C2—C1120.52 (15)
C9—C10—H10B109.5C12—O4—H4B114.9 (19)
H10A—C10—H10B108.1O3—C12—O4123.95 (15)
C6—C7—C2121.73 (16)O3—C12—C9118.20 (14)
C6—C7—Cl118.49 (14)O4—C12—C9117.75 (15)
C2—C7—Cl119.78 (13)C9—C11—H11A109.5
C4—C3—C2121.00 (16)C9—C11—H11B109.5
C4—C3—H3119.5H11A—C11—H11B109.5
C2—C3—H3119.5C9—C11—H11C109.5
C6—C5—C4120.71 (17)H11A—C11—H11C109.5
C6—C5—H5119.6H11B—C11—H11C109.5
C1—O1—C8—C959.01 (16)C4—C3—C2—C70.1 (2)
C12—C9—C8—O166.61 (16)C4—C3—C2—C1178.11 (15)
C10—C9—C8—O153.36 (16)C6—C7—C2—C30.6 (3)
C11—C9—C8—O1173.98 (13)Cl—C7—C2—C3179.55 (12)
C12—C9—C10—O267.01 (16)C6—C7—C2—C1178.79 (16)
C8—C9—C10—O253.64 (16)Cl—C7—C2—C11.4 (2)
C11—C9—C10—O2173.32 (13)O2—C1—C2—C319.6 (2)
C6—C5—C4—C30.0 (3)O1—C1—C2—C3100.69 (17)
C2—C3—C4—C50.4 (3)O2—C1—C2—C7162.29 (14)
C4—C5—C6—C70.6 (3)O1—C1—C2—C777.43 (18)
C2—C7—C6—C51.0 (3)C8—C9—C12—O3149.70 (15)
Cl—C7—C6—C5179.21 (15)C10—C9—C12—O331.1 (2)
C8—O1—C1—O264.06 (15)C11—C9—C12—O390.17 (18)
C8—O1—C1—C2176.31 (12)C8—C9—C12—O433.9 (2)
O1—C1—O2—C1064.23 (15)C10—C9—C12—O4152.45 (14)
C2—C1—O2—C10177.19 (12)C11—C9—C12—O486.24 (18)
C9—C10—O2—C159.63 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O3i0.72 (2)1.92 (2)2.6323 (18)170 (3)
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H13ClO4
Mr256.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)9.4452 (3), 13.9413 (5), 9.37059 (18)
β (°) 102.145 (2)
V3)1206.28 (6)
Z4
Radiation typeCu Kα
µ (mm1)2.83
Crystal size (mm)0.46 × 0.42 × 0.23
Data collection
DiffractometerAgilent Xcalibur Atlas Gemini ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2006)
Tmin, Tmax0.356, 0.562
No. of measured, independent and
observed [I > 2σ(I)] reflections
5864, 2089, 1902
Rint0.023
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.07
No. of reflections2089
No. of parameters158
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.30

Computer programs: CrysAlis PRO (Agilent, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O3i0.72 (2)1.92 (2)2.6323 (18)170 (3)
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

The authors thank the Construction Program of Key Disciplines in Hunan Province (2011–76), the Science and Technology Planning Project of Yongzhou (No. 2011–6), the Key Project of Hunan University of Science and Engineering (No. 2011) and the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province (2012–318) for financial support.

References

First citationAgilent (2006). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationHe, M. H. & Liao, Q. J. (2004). Chin. J. Med. Chem. 14, 350–354.  Google Scholar
First citationLaing, M., Sommerville, P., Drewes, S. E. & Drewes, M. W. (1984). S. Afr. J. Chem. 37, 27–30.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, X. Q., Yu, S. L., Li, Z. Y. & Yang, Y. (2010). J. Mol. Struct. 973, 152–155.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, X.-Y., Shi, J.-H., Zhang, M. & Ng, S. W. (2010). Acta Cryst. E66, o426.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds