organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

11-[(E)-Benzyl­­idene]-14-hy­dr­oxy-8-phenyl-6-thia-3,13-di­aza­hepta­cyclo­[13.7.1.19,13.02,9.02,14.03,7.019,23]tetra­cosa-1(22),15(23),16,18,20-pentaen-10-one

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, College of Sciences, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia, and cSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 16 May 2012; accepted 28 May 2012; online 13 June 2012)

In the title compound, C34H28N2O2S, the piperidine ring adopts a chair conformation. One of the pyrrolidine rings adopts an envelope conformation with the methyl­ene C atom at the flap whereas the other pyrrolidine ring and the thia­zolidine ring adopt half-chair conformations. The mean plane of the dihydro­acenaphthyl­ene ring system [maximum deviation = 0.067 (1) Å] makes dihedral angles of 28.31 (5) and 31.32 (6)° with the two terminal benzene rings. An intra­molecular O—H⋯N hydrogen bond forms an S(5) ring motif. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯S hydrogen bonds into layers lying parallel to the ac plane.

Related literature

For general background to heterocycles, see: Corey et al. (2007[Corey, E. J., Czako, B. & Kurti, L. (2007). In Molecules and Medicine. Hoboken: Wiley.]); Padwa (1984[Padwa, A. (1984). In 1,3-Dipolar Cycloaddition Chemistry. New York: Wiley.]); Lee et al. (2001[Lee, H. K., Chun, J. S. & Pak, C. S. (2001). Tetrahedron Lett. 42, 3483-3486.]); Lalezari & Schwartz (1988[Lalezari, I. & Schwartz, E. L. J. (1988). Med. Chem. 31, 1427-1429.]); Aicher et al. (1998[Aicher, T. D., Balkan, B., Bell, P. A., Brand, L. J., Cheon, S. H., Deems, R. O., Fell, J. B., Fillers, W. S., Fraser, J. D., Gao, J. P., Knorr, D. C., Kahle, G. G., Leone, C. L., Nadelson, J., Simpson, R. & Smith, H. C. J. (1998). Med. Chem. 41, 4556-4566.]). For related structures, see: Kumar et al. (2010a[Kumar, R. S., Osman, H., Ali, M. A., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o1540-o1541.],b[Kumar, R. S., Osman, H., Ali, M. A., Rosli, M. M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2376-o2377.], 2011[Kumar, R. S., Osman, H., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o211-o212.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C34H28N2O2S

  • Mr = 528.64

  • Monoclinic, P 21 /c

  • a = 11.2911 (1) Å

  • b = 15.4317 (2) Å

  • c = 15.1920 (2) Å

  • β = 92.790 (1)°

  • V = 2643.93 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 100 K

  • 0.45 × 0.41 × 0.31 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 0.953

  • 37231 measured reflections

  • 9686 independent reflections

  • 8170 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.129

  • S = 1.04

  • 9686 reflections

  • 344 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.18 e Å−3

  • Δρmin = −1.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯N2 0.86 (2) 1.95 (2) 2.6277 (12) 134.4 (18)
C8—H8A⋯O1i 0.99 2.55 3.1981 (14) 123
C15—H15A⋯S1ii 0.95 2.72 3.4970 (13) 139
C18—H18A⋯O1iii 0.95 2.60 3.2550 (15) 127
C24—H24A⋯O2iv 0.95 2.59 3.4077 (18) 145
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+2; (iv) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The synthesis and chemistry of heterocyclic compounds has been an interesting field in view of their structural diversity and remarkable ability to serve as biomimetics and active pharmacophores. Many of the most famous natural alkaloids or unnatural drugs consist of at least one heterocyclic ring (Corey et al., 2007). 1,3-Dipolar cycloaddition of azomethine ylides to olefinic dipolarophiles affords five membered heterocyclic rings of biological importance (Padwa, 1984). Heterocycles with piperidine sub-structures are being used as synthons in the construction of alkaloid natural products (Lee et al., 2001). Pyrrolothiazole ring possesses antineoplastic (Lalezari & Schwartz, 1988) and hypoglycemic (Aicher et al., 1998) activity. The importance of aforesaid heterocycles, incited us to investigate the X-ray diffraction study of the title compound and report the results in this paper.

In the molecular structure (Fig. 1), the piperidine ring (N1/C1–C5) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975), Q= 0.6090 (10) Å, Θ= 37.98 (10)° and Φ= 303.45 (16)°.

For the two pyrrolidine rings, N1/C4/C5/C10/C11 is in envelope conformation with atom C5 deviating by 0.298 (1) Å from the mean plane through the remaining atoms [puckering parameters Q= 0.4579 (10) Å and φ=29.43 (13)°] whereas N2/C4/C6/C7/C10 is twisted about C6–C4 bond, [puckering parameters, Q= 0.3869 (10) Å and φ= 261.97 (15)°] adopting a half-chair conformation. The thiazolidine ring, S1/N2/C7–C9 is twisted about C8–S1 bond [puckering parameters, Q= 0.4519 (10) Å and φ= 333.87 (14)°] thereby, also adopting a half-chair conformations.

The mean plane of the dihydroacenaphthylene ring system [C10/C11/C25–C33, maximum deviation = 0.067 (1) Å at atom C10] makes dihedral angles of 28.31 (5) and 31.32 (6)°, respectively, with the two terminal benzene rings (C13–C18 & C19–C24).

An intramolecular O2—H1O2···N2 hydrogen bond (Table 1) forms an S(5) ring motif (Bernstein et al., 1995). The bond lengths and angles are within normal ranges and comparable to the related structure (Kumar et al., 2010a,b; Kumar et al., 2011).

The crystal packing is shown in Fig. 2. The intermolecular C8—H8A···O1, C15—H15A···S1, C18—H18A···O1 and C24—H24A···O2 (Table 1) hydrogen bonds link the molecules into two-dimensional network parallel to ac-plane.

Related literature top

For general background to heterocycles, see: Corey et al. (2007); Padwa (1984); Lee et al. (2001); Lalezari & Schwartz (1988); Aicher et al. (1998). For related structures, see: Kumar et al. (2010a,b, 2011). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 3,5-bis[(E)-phenylmethylidene] tetrahydro-4(1H)-pyridinone (1 mmol), acenaphthenequinone (1 mmol), and thiazolidine-2-carboxylic acid (1 mmol) were dissolved in methanol (5 ml) and refluxed for 1 h. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered and washed with water to obtain the product which was further purified by recrystallization from pet.ether-ethyl acetate mixture to obtain colourless blocks.

Refinement top

O-bound H atom was located from the difference map and refined freely, [O–H = 0.86 (2) Å]. The remaining H atoms were positioned geometrically [C–H = 0.95 and 1.00 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C). The same Uij parameter was used for atom pairs C23/C24 and C22/C21.

Structure description top

The synthesis and chemistry of heterocyclic compounds has been an interesting field in view of their structural diversity and remarkable ability to serve as biomimetics and active pharmacophores. Many of the most famous natural alkaloids or unnatural drugs consist of at least one heterocyclic ring (Corey et al., 2007). 1,3-Dipolar cycloaddition of azomethine ylides to olefinic dipolarophiles affords five membered heterocyclic rings of biological importance (Padwa, 1984). Heterocycles with piperidine sub-structures are being used as synthons in the construction of alkaloid natural products (Lee et al., 2001). Pyrrolothiazole ring possesses antineoplastic (Lalezari & Schwartz, 1988) and hypoglycemic (Aicher et al., 1998) activity. The importance of aforesaid heterocycles, incited us to investigate the X-ray diffraction study of the title compound and report the results in this paper.

In the molecular structure (Fig. 1), the piperidine ring (N1/C1–C5) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975), Q= 0.6090 (10) Å, Θ= 37.98 (10)° and Φ= 303.45 (16)°.

For the two pyrrolidine rings, N1/C4/C5/C10/C11 is in envelope conformation with atom C5 deviating by 0.298 (1) Å from the mean plane through the remaining atoms [puckering parameters Q= 0.4579 (10) Å and φ=29.43 (13)°] whereas N2/C4/C6/C7/C10 is twisted about C6–C4 bond, [puckering parameters, Q= 0.3869 (10) Å and φ= 261.97 (15)°] adopting a half-chair conformation. The thiazolidine ring, S1/N2/C7–C9 is twisted about C8–S1 bond [puckering parameters, Q= 0.4519 (10) Å and φ= 333.87 (14)°] thereby, also adopting a half-chair conformations.

The mean plane of the dihydroacenaphthylene ring system [C10/C11/C25–C33, maximum deviation = 0.067 (1) Å at atom C10] makes dihedral angles of 28.31 (5) and 31.32 (6)°, respectively, with the two terminal benzene rings (C13–C18 & C19–C24).

An intramolecular O2—H1O2···N2 hydrogen bond (Table 1) forms an S(5) ring motif (Bernstein et al., 1995). The bond lengths and angles are within normal ranges and comparable to the related structure (Kumar et al., 2010a,b; Kumar et al., 2011).

The crystal packing is shown in Fig. 2. The intermolecular C8—H8A···O1, C15—H15A···S1, C18—H18A···O1 and C24—H24A···O2 (Table 1) hydrogen bonds link the molecules into two-dimensional network parallel to ac-plane.

For general background to heterocycles, see: Corey et al. (2007); Padwa (1984); Lee et al. (2001); Lalezari & Schwartz (1988); Aicher et al. (1998). For related structures, see: Kumar et al. (2010a,b, 2011). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
11-[(E)-Benzylidene]-14-hydroxy-8-phenyl-6-thia-3,13- diazaheptacyclo[13.7.1.19,13.02,9.02,14.03,7.019,23]tetracosa- 1(22),15(23),16,18,20-pentaen-10-one top
Crystal data top
C34H28N2O2SF(000) = 1112
Mr = 528.64Dx = 1.328 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9915 reflections
a = 11.2911 (1) Åθ = 2.2–32.7°
b = 15.4317 (2) ŵ = 0.16 mm1
c = 15.1920 (2) ÅT = 100 K
β = 92.790 (1)°Block, colourless
V = 2643.93 (5) Å30.45 × 0.41 × 0.31 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
9686 independent reflections
Radiation source: fine-focus sealed tube8170 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 32.7°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.932, Tmax = 0.953k = 2315
37231 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0652P)2 + 1.2561P]
where P = (Fo2 + 2Fc2)/3
9686 reflections(Δ/σ)max = 0.001
344 parametersΔρmax = 1.18 e Å3
0 restraintsΔρmin = 1.12 e Å3
Crystal data top
C34H28N2O2SV = 2643.93 (5) Å3
Mr = 528.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2911 (1) ŵ = 0.16 mm1
b = 15.4317 (2) ÅT = 100 K
c = 15.1920 (2) Å0.45 × 0.41 × 0.31 mm
β = 92.790 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
9686 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
8170 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.953Rint = 0.025
37231 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.18 e Å3
9686 reflectionsΔρmin = 1.12 e Å3
344 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.64487 (2)0.10704 (2)0.791294 (19)0.02225 (7)
O10.82800 (7)0.32741 (5)1.03565 (5)0.01646 (15)
O21.08336 (7)0.06609 (5)0.87449 (5)0.01708 (15)
N11.07824 (8)0.13611 (6)1.01109 (6)0.01411 (15)
N20.87576 (8)0.13375 (6)0.82898 (5)0.01311 (15)
C11.11599 (9)0.21225 (7)1.06386 (7)0.01543 (18)
H1A1.19600.22971.04680.019*
H1B1.12240.19521.12670.019*
C21.03363 (9)0.29053 (7)1.05418 (6)0.01414 (17)
C30.90690 (9)0.27470 (7)1.02482 (6)0.01284 (16)
C40.88395 (8)0.18990 (6)0.97700 (6)0.01150 (16)
C50.95369 (9)0.11761 (7)1.02825 (6)0.01410 (17)
H5A0.94020.12071.09210.017*
H5B0.93010.05951.00600.017*
C60.75412 (8)0.17277 (7)0.94872 (6)0.01358 (17)
H6A0.72150.22750.92180.016*
C70.76710 (9)0.10734 (7)0.87353 (7)0.01441 (17)
H7A0.77810.04780.89860.017*
C80.71970 (10)0.18640 (9)0.72578 (7)0.0227 (2)
H8A0.69070.18390.66330.027*
H8B0.70800.24580.74850.027*
C90.84945 (10)0.15954 (7)0.73615 (7)0.01675 (18)
H9A0.86480.11040.69640.020*
H9B0.90100.20850.72040.020*
C100.94831 (8)0.19109 (6)0.88798 (6)0.01158 (16)
C111.07541 (8)0.14789 (7)0.91425 (6)0.01288 (16)
C121.06869 (9)0.37379 (7)1.06055 (7)0.01643 (18)
H12A1.00920.41651.04960.020*
C131.18915 (10)0.40547 (7)1.08261 (7)0.01790 (19)
C141.26365 (11)0.36572 (8)1.14689 (8)0.0229 (2)
H14A1.23630.31701.17820.027*
C151.37756 (12)0.39733 (10)1.16505 (9)0.0295 (3)
H15A1.42760.37011.20880.035*
C161.41856 (12)0.46848 (10)1.11962 (10)0.0319 (3)
H16A1.49710.48901.13140.038*
C171.34442 (12)0.50974 (9)1.05683 (10)0.0300 (3)
H17A1.37180.55901.02630.036*
C181.23007 (11)0.47867 (8)1.03889 (9)0.0236 (2)
H18A1.17930.50740.99660.028*
C190.67082 (9)0.14484 (8)1.01828 (7)0.01766 (19)
C200.57348 (10)0.19687 (9)1.03556 (9)0.0239 (2)
H20A0.56200.25001.00470.029*
C210.49293 (15)0.17194 (11)1.09739 (13)0.0437 (3)
H21A0.42690.20791.10840.052*
C220.50910 (15)0.09519 (11)1.14248 (13)0.0437 (3)
H22A0.45360.07781.18410.052*
C230.60654 (14)0.04303 (10)1.12728 (11)0.0371 (2)
H23A0.61860.00921.15960.045*
C240.68645 (15)0.06729 (10)1.06466 (11)0.0371 (2)
H24A0.75190.03091.05350.045*
C250.98054 (10)0.27898 (7)0.85111 (6)0.01490 (17)
C260.91211 (11)0.34901 (7)0.82466 (7)0.0203 (2)
H26A0.82850.34780.82920.024*
C270.96887 (15)0.42305 (8)0.79049 (8)0.0287 (3)
H27A0.92200.47140.77170.034*
C281.08990 (15)0.42668 (8)0.78384 (8)0.0307 (3)
H28A1.12470.47640.75880.037*
C291.16320 (12)0.35705 (8)0.81394 (8)0.0248 (2)
C301.28876 (13)0.35283 (10)0.81486 (9)0.0326 (3)
H30A1.33240.40020.79300.039*
C311.34778 (12)0.28063 (11)0.84717 (9)0.0328 (3)
H31A1.43180.27910.84630.039*
C321.28735 (10)0.20819 (9)0.88192 (8)0.0243 (2)
H32A1.33000.15940.90470.029*
C331.16550 (9)0.21092 (7)0.88160 (7)0.01648 (18)
C341.10499 (10)0.28405 (7)0.84706 (7)0.01705 (19)
H1O21.0163 (18)0.0606 (13)0.8458 (13)0.037 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01626 (12)0.03024 (16)0.01985 (13)0.00226 (10)0.00317 (9)0.00495 (11)
O10.0178 (3)0.0163 (3)0.0153 (3)0.0038 (3)0.0011 (3)0.0018 (3)
O20.0178 (3)0.0134 (3)0.0199 (3)0.0030 (3)0.0001 (3)0.0043 (3)
N10.0145 (3)0.0147 (4)0.0130 (3)0.0011 (3)0.0001 (3)0.0010 (3)
N20.0152 (3)0.0138 (4)0.0102 (3)0.0011 (3)0.0004 (3)0.0001 (3)
C10.0167 (4)0.0163 (4)0.0130 (4)0.0018 (3)0.0019 (3)0.0004 (3)
C20.0160 (4)0.0155 (4)0.0109 (4)0.0012 (3)0.0005 (3)0.0008 (3)
C30.0158 (4)0.0135 (4)0.0092 (3)0.0009 (3)0.0008 (3)0.0007 (3)
C40.0132 (4)0.0113 (4)0.0101 (3)0.0010 (3)0.0012 (3)0.0010 (3)
C50.0161 (4)0.0135 (4)0.0127 (4)0.0012 (3)0.0014 (3)0.0037 (3)
C60.0131 (4)0.0139 (4)0.0137 (4)0.0008 (3)0.0008 (3)0.0002 (3)
C70.0141 (4)0.0150 (4)0.0141 (4)0.0011 (3)0.0008 (3)0.0008 (3)
C80.0236 (5)0.0274 (6)0.0166 (4)0.0053 (4)0.0042 (4)0.0018 (4)
C90.0213 (4)0.0184 (5)0.0104 (4)0.0016 (4)0.0005 (3)0.0004 (3)
C100.0142 (4)0.0100 (4)0.0107 (4)0.0005 (3)0.0010 (3)0.0008 (3)
C110.0138 (4)0.0123 (4)0.0126 (4)0.0009 (3)0.0011 (3)0.0005 (3)
C120.0169 (4)0.0162 (4)0.0161 (4)0.0010 (4)0.0006 (3)0.0019 (4)
C130.0181 (4)0.0170 (5)0.0186 (4)0.0004 (4)0.0002 (3)0.0034 (4)
C140.0250 (5)0.0230 (5)0.0201 (5)0.0039 (4)0.0055 (4)0.0011 (4)
C150.0257 (6)0.0306 (7)0.0309 (6)0.0037 (5)0.0110 (5)0.0013 (5)
C160.0223 (5)0.0316 (7)0.0411 (7)0.0075 (5)0.0057 (5)0.0033 (6)
C170.0252 (6)0.0250 (6)0.0397 (7)0.0075 (5)0.0003 (5)0.0024 (5)
C180.0215 (5)0.0187 (5)0.0303 (6)0.0014 (4)0.0015 (4)0.0022 (4)
C190.0151 (4)0.0200 (5)0.0182 (4)0.0011 (4)0.0048 (3)0.0026 (4)
C200.0164 (4)0.0243 (5)0.0313 (6)0.0003 (4)0.0055 (4)0.0074 (5)
C210.0380 (5)0.0378 (6)0.0585 (7)0.0036 (5)0.0341 (5)0.0087 (5)
C220.0380 (5)0.0378 (6)0.0585 (7)0.0036 (5)0.0341 (5)0.0087 (5)
C230.0419 (6)0.0308 (5)0.0411 (5)0.0034 (4)0.0271 (5)0.0101 (4)
C240.0419 (6)0.0308 (5)0.0411 (5)0.0034 (4)0.0271 (5)0.0101 (4)
C250.0229 (4)0.0109 (4)0.0112 (4)0.0011 (3)0.0034 (3)0.0004 (3)
C260.0339 (6)0.0132 (4)0.0143 (4)0.0035 (4)0.0043 (4)0.0025 (4)
C270.0562 (8)0.0124 (5)0.0183 (5)0.0024 (5)0.0106 (5)0.0031 (4)
C280.0574 (9)0.0147 (5)0.0212 (5)0.0100 (5)0.0148 (5)0.0009 (4)
C290.0382 (6)0.0201 (5)0.0169 (5)0.0129 (5)0.0103 (4)0.0033 (4)
C300.0378 (7)0.0359 (7)0.0252 (6)0.0224 (6)0.0142 (5)0.0062 (5)
C310.0235 (5)0.0487 (9)0.0271 (6)0.0174 (6)0.0101 (5)0.0098 (6)
C320.0169 (4)0.0349 (7)0.0213 (5)0.0056 (4)0.0048 (4)0.0065 (5)
C330.0169 (4)0.0192 (5)0.0137 (4)0.0037 (4)0.0040 (3)0.0030 (3)
C340.0238 (5)0.0152 (4)0.0127 (4)0.0053 (4)0.0061 (3)0.0020 (3)
Geometric parameters (Å, º) top
S1—C81.8126 (13)C14—C151.3906 (17)
S1—C71.8159 (10)C14—H14A0.9500
O1—C31.2234 (12)C15—C161.388 (2)
O2—C111.4042 (12)C15—H15A0.9500
O2—H1O20.86 (2)C16—C171.392 (2)
N1—C51.4707 (13)C16—H16A0.9500
N1—C11.4735 (14)C17—C181.3917 (17)
N1—C111.4812 (13)C17—H17A0.9500
N2—C101.4784 (13)C18—H18A0.9500
N2—C91.4815 (13)C19—C241.3956 (19)
N2—C71.4867 (13)C19—C201.3962 (15)
C1—C21.5272 (15)C20—C211.3931 (18)
C1—H1A0.9900C20—H20A0.9500
C1—H1B0.9900C21—C221.376 (3)
C2—C121.3465 (15)C21—H21A0.9500
C2—C31.4980 (14)C22—C231.392 (2)
C3—C41.5130 (14)C22—H22A0.9500
C4—C61.5304 (14)C23—C241.3938 (18)
C4—C51.5527 (14)C23—H23A0.9500
C4—C101.5663 (13)C24—H24A0.9500
C5—H5A0.9900C25—C261.3770 (15)
C5—H5B0.9900C25—C341.4117 (15)
C6—C191.5114 (14)C26—C271.4206 (17)
C6—C71.5369 (14)C26—H26A0.9500
C6—H6A1.0000C27—C281.376 (2)
C7—H7A1.0000C27—H27A0.9500
C8—C91.5233 (16)C28—C291.418 (2)
C8—H8A0.9900C28—H28A0.9500
C8—H8B0.9900C29—C341.4093 (15)
C9—H9A0.9900C29—C301.419 (2)
C9—H9B0.9900C30—C311.376 (2)
C10—C251.5183 (14)C30—H30A0.9500
C10—C111.6147 (14)C31—C321.4244 (19)
C11—C331.5086 (14)C31—H31A0.9500
C12—C131.4686 (15)C32—C331.3763 (15)
C12—H12A0.9500C32—H32A0.9500
C13—C141.3992 (16)C33—C341.4074 (16)
C13—C181.4001 (17)
C8—S1—C790.98 (5)C2—C12—H12A116.6
C11—O2—H1O2103.5 (14)C13—C12—H12A116.6
C5—N1—C1108.19 (8)C14—C13—C18118.93 (11)
C5—N1—C11103.02 (8)C14—C13—C12122.13 (11)
C1—N1—C11115.73 (8)C18—C13—C12118.93 (10)
C10—N2—C9119.72 (8)C15—C14—C13120.23 (12)
C10—N2—C7109.47 (7)C15—C14—H14A119.9
C9—N2—C7112.04 (8)C13—C14—H14A119.9
N1—C1—C2114.81 (8)C16—C15—C14120.42 (12)
N1—C1—H1A108.6C16—C15—H15A119.8
C2—C1—H1A108.6C14—C15—H15A119.8
N1—C1—H1B108.6C15—C16—C17119.90 (12)
C2—C1—H1B108.6C15—C16—H16A120.1
H1A—C1—H1B107.5C17—C16—H16A120.1
C12—C2—C3116.76 (9)C18—C17—C16119.85 (13)
C12—C2—C1124.91 (9)C18—C17—H17A120.1
C3—C2—C1117.91 (9)C16—C17—H17A120.1
O1—C3—C2122.88 (9)C17—C18—C13120.63 (12)
O1—C3—C4122.07 (9)C17—C18—H18A119.7
C2—C3—C4115.01 (8)C13—C18—H18A119.7
C3—C4—C6115.06 (8)C24—C19—C20118.66 (11)
C3—C4—C5108.05 (8)C24—C19—C6121.99 (10)
C6—C4—C5118.17 (8)C20—C19—C6119.33 (11)
C3—C4—C10109.18 (8)C21—C20—C19120.91 (14)
C6—C4—C10103.77 (7)C21—C20—H20A119.5
C5—C4—C10101.31 (7)C19—C20—H20A119.5
N1—C5—C4103.75 (8)C22—C21—C20119.88 (14)
N1—C5—H5A111.0C22—C21—H21A120.1
C4—C5—H5A111.0C20—C21—H21A120.1
N1—C5—H5B111.0C21—C22—C23120.14 (13)
C4—C5—H5B111.0C21—C22—H22A119.9
H5A—C5—H5B109.0C23—C22—H22A119.9
C19—C6—C4118.24 (8)C22—C23—C24120.08 (15)
C19—C6—C7114.68 (9)C22—C23—H23A120.0
C4—C6—C7101.39 (8)C24—C23—H23A120.0
C19—C6—H6A107.3C23—C24—C19120.31 (13)
C4—C6—H6A107.3C23—C24—H24A119.8
C7—C6—H6A107.3C19—C24—H24A119.8
N2—C7—C6105.60 (8)C26—C25—C34119.30 (10)
N2—C7—S1107.70 (7)C26—C25—C10131.87 (10)
C6—C7—S1114.60 (7)C34—C25—C10108.82 (9)
N2—C7—H7A109.6C25—C26—C27118.75 (12)
C6—C7—H7A109.6C25—C26—H26A120.6
S1—C7—H7A109.6C27—C26—H26A120.6
C9—C8—S1103.36 (8)C28—C27—C26121.79 (12)
C9—C8—H8A111.1C28—C27—H27A119.1
S1—C8—H8A111.1C26—C27—H27A119.1
C9—C8—H8B111.1C27—C28—C29120.75 (11)
S1—C8—H8B111.1C27—C28—H28A119.6
H8A—C8—H8B109.1C29—C28—H28A119.6
N2—C9—C8108.59 (8)C34—C29—C28116.47 (12)
N2—C9—H9A110.0C34—C29—C30116.29 (13)
C8—C9—H9A110.0C28—C29—C30127.24 (12)
N2—C9—H9B110.0C31—C30—C29120.46 (12)
C8—C9—H9B110.0C31—C30—H30A119.8
H9A—C9—H9B108.4C29—C30—H30A119.8
N2—C10—C25116.53 (8)C30—C31—C32122.35 (12)
N2—C10—C4104.46 (7)C30—C31—H31A118.8
C25—C10—C4117.30 (8)C32—C31—H31A118.8
N2—C10—C11111.24 (8)C33—C32—C31118.13 (13)
C25—C10—C11103.53 (8)C33—C32—H32A120.9
C4—C10—C11103.05 (7)C31—C32—H32A120.9
O2—C11—N1108.55 (8)C32—C33—C34119.53 (11)
O2—C11—C33112.33 (8)C32—C33—C11131.99 (11)
N1—C11—C33115.05 (8)C34—C33—C11108.47 (9)
O2—C11—C10109.85 (8)C33—C34—C29123.21 (11)
N1—C11—C10105.79 (7)C33—C34—C25113.91 (9)
C33—C11—C10104.94 (8)C29—C34—C25122.84 (11)
C2—C12—C13126.86 (10)
C5—N1—C1—C250.94 (11)C4—C10—C11—N16.12 (10)
C11—N1—C1—C264.00 (11)N2—C10—C11—C33120.40 (8)
N1—C1—C2—C12148.69 (10)C25—C10—C11—C335.50 (9)
N1—C1—C2—C323.57 (13)C4—C10—C11—C33128.18 (8)
C12—C2—C3—O125.83 (14)C3—C2—C12—C13176.07 (10)
C1—C2—C3—O1161.28 (9)C1—C2—C12—C133.73 (17)
C12—C2—C3—C4151.68 (9)C2—C12—C13—C1439.53 (17)
C1—C2—C3—C421.21 (12)C2—C12—C13—C18141.52 (12)
O1—C3—C4—C63.72 (13)C18—C13—C14—C151.72 (18)
C2—C3—C4—C6178.74 (8)C12—C13—C14—C15179.33 (12)
O1—C3—C4—C5138.19 (9)C13—C14—C15—C160.1 (2)
C2—C3—C4—C544.28 (10)C14—C15—C16—C171.4 (2)
O1—C3—C4—C10112.43 (10)C15—C16—C17—C181.0 (2)
C2—C3—C4—C1065.10 (10)C16—C17—C18—C130.8 (2)
C1—N1—C5—C474.41 (9)C14—C13—C18—C172.17 (19)
C11—N1—C5—C448.61 (9)C12—C13—C18—C17178.84 (12)
C3—C4—C5—N171.09 (9)C4—C6—C19—C2462.92 (16)
C6—C4—C5—N1156.08 (8)C7—C6—C19—C2456.65 (15)
C10—C4—C5—N143.59 (9)C4—C6—C19—C20118.64 (11)
C3—C4—C6—C1976.10 (11)C7—C6—C19—C20121.79 (11)
C5—C4—C6—C1953.56 (12)C24—C19—C20—C210.4 (2)
C10—C4—C6—C19164.69 (9)C6—C19—C20—C21178.11 (13)
C3—C4—C6—C7157.62 (8)C19—C20—C21—C220.2 (3)
C5—C4—C6—C772.71 (10)C20—C21—C22—C230.8 (3)
C10—C4—C6—C738.41 (9)C21—C22—C23—C241.7 (3)
C10—N2—C7—C618.07 (10)C22—C23—C24—C191.4 (3)
C9—N2—C7—C6117.21 (9)C20—C19—C24—C230.4 (2)
C10—N2—C7—S1140.93 (7)C6—C19—C24—C23178.88 (14)
C9—N2—C7—S15.65 (10)N2—C10—C25—C2664.02 (14)
C19—C6—C7—N2163.63 (8)C4—C10—C25—C2660.86 (15)
C4—C6—C7—N235.04 (9)C11—C10—C25—C26173.53 (11)
C19—C6—C7—S178.03 (10)N2—C10—C25—C34117.11 (9)
C4—C6—C7—S1153.39 (7)C4—C10—C25—C34118.01 (9)
C8—S1—C7—N225.83 (8)C11—C10—C25—C345.34 (10)
C8—S1—C7—C691.32 (8)C34—C25—C26—C272.64 (16)
C7—S1—C8—C937.74 (8)C10—C25—C26—C27178.58 (10)
C10—N2—C9—C8107.21 (10)C25—C26—C27—C280.48 (18)
C7—N2—C9—C822.98 (12)C26—C27—C28—C292.16 (19)
S1—C8—C9—N240.56 (10)C27—C28—C29—C342.45 (18)
C9—N2—C10—C256.48 (13)C27—C28—C29—C30177.20 (12)
C7—N2—C10—C25124.83 (9)C34—C29—C30—C310.30 (18)
C9—N2—C10—C4137.64 (9)C28—C29—C30—C31179.35 (13)
C7—N2—C10—C46.32 (10)C29—C30—C31—C320.9 (2)
C9—N2—C10—C11111.85 (9)C30—C31—C32—C330.93 (19)
C7—N2—C10—C11116.84 (8)C31—C32—C33—C340.29 (16)
C3—C4—C10—N2151.48 (8)C31—C32—C33—C11178.52 (11)
C6—C4—C10—N228.32 (9)O2—C11—C33—C3257.92 (15)
C5—C4—C10—N294.68 (8)N1—C11—C33—C3266.94 (15)
C3—C4—C10—C2520.77 (11)C10—C11—C33—C32177.23 (11)
C6—C4—C10—C25102.38 (10)O2—C11—C33—C34123.18 (9)
C5—C4—C10—C25134.61 (9)N1—C11—C33—C34111.96 (10)
C3—C4—C10—C1192.17 (9)C10—C11—C33—C343.87 (10)
C6—C4—C10—C11144.67 (8)C32—C33—C34—C291.56 (16)
C5—C4—C10—C1121.66 (9)C11—C33—C34—C29177.50 (10)
C5—N1—C11—O284.52 (9)C32—C33—C34—C25179.63 (10)
C1—N1—C11—O2157.64 (8)C11—C33—C34—C250.57 (12)
C5—N1—C11—C33148.67 (9)C28—C29—C34—C33178.14 (10)
C1—N1—C11—C3330.82 (12)C30—C29—C34—C331.55 (16)
C5—N1—C11—C1033.32 (10)C28—C29—C34—C250.24 (16)
C1—N1—C11—C1084.52 (9)C30—C29—C34—C25179.45 (10)
N2—C10—C11—O20.56 (10)C26—C25—C34—C33175.75 (9)
C25—C10—C11—O2126.46 (8)C10—C25—C34—C333.29 (12)
C4—C10—C11—O2110.86 (8)C26—C25—C34—C292.33 (16)
N2—C10—C11—N1117.53 (8)C10—C25—C34—C29178.64 (9)
C25—C10—C11—N1116.56 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.86 (2)1.95 (2)2.6277 (12)134.4 (18)
C8—H8A···O1i0.992.553.1981 (14)123
C15—H15A···S1ii0.952.723.4970 (13)139
C18—H18A···O1iii0.952.603.2550 (15)127
C24—H24A···O2iv0.952.593.4077 (18)145
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+2, y+1, z+2; (iv) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC34H28N2O2S
Mr528.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.2911 (1), 15.4317 (2), 15.1920 (2)
β (°) 92.790 (1)
V3)2643.93 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.45 × 0.41 × 0.31
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.932, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
37231, 9686, 8170
Rint0.025
(sin θ/λ)max1)0.761
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.129, 1.04
No. of reflections9686
No. of parameters344
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.18, 1.12

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.86 (2)1.95 (2)2.6277 (12)134.4 (18)
C8—H8A···O1i0.992.553.1981 (14)123.2
C15—H15A···S1ii0.952.723.4970 (13)139.2
C18—H18A···O1iii0.952.603.2550 (15)127
C24—H24A···O2iv0.952.593.4077 (18)145
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+2, y+1, z+2; (iv) x+2, y, z+2.
 

Footnotes

Additional correspondence email: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University grants Nos. 203/PKIMIA/6711179 and 1001/PFIZIK/811151. RSK and AIM thank the Research Center, Deanship of Scientific Research, College of Science, King Saud University. SA thanks the Malaysian Government and USM for an Academic Staff Training Scheme (ASTS) Fellowship.

References

First citationAicher, T. D., Balkan, B., Bell, P. A., Brand, L. J., Cheon, S. H., Deems, R. O., Fell, J. B., Fillers, W. S., Fraser, J. D., Gao, J. P., Knorr, D. C., Kahle, G. G., Leone, C. L., Nadelson, J., Simpson, R. & Smith, H. C. J. (1998). Med. Chem. 41, 4556–4566.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorey, E. J., Czako, B. & Kurti, L. (2007). In Molecules and Medicine. Hoboken: Wiley.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKumar, R. S., Osman, H., Ali, M. A., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o1540–o1541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, R. S., Osman, H., Ali, M. A., Rosli, M. M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2376–o2377.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, R. S., Osman, H., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o211–o212.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLalezari, I. & Schwartz, E. L. J. (1988). Med. Chem. 31, 1427–1429.  CrossRef CAS Web of Science Google Scholar
First citationLee, H. K., Chun, J. S. & Pak, C. S. (2001). Tetrahedron Lett. 42, 3483–3486.  Web of Science CrossRef CAS Google Scholar
First citationPadwa, A. (1984). In 1,3-Dipolar Cycloaddition Chemistry. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds