metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­­(thio­urea-κS)cadmium(II) tri­aqua­tris­(thio­urea-κS)cadmium(II) di­sulfate

aDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: faridehj@ucalgary.ca

(Received 18 May 2012; accepted 12 June 2012; online 20 June 2012)

The title compound, [Cd(CH4N2S)2(H2O)4][Cd(CH4N2S)3(H2O)3](SO4)2, contains two mol­ecules of each of the Cd complexes and four sulfate ions in the asymmetric unit: all the Cd atoms exhibit distorted octa­hedral geometries. The Cd—S and Cd—O bond lengths around the Cd atoms in the bis­(thio­urea) cations are in the ranges 2.580 (4)–2.599 (4) and 2.323 (8)–2.421 (9) Å, respectively, and the S atoms are in a cis orientation. In the tris­(thio­urea) cations, the corresponding bond lengths around the Cd atoms are slightly longer and are in the ranges 2.559 (4)–2.706 (3) and 2.303 (7)–2.480 (10) Å, respectively, and the S atoms are in a fac disposition. The crystal structure features numerous N—H⋯O, N—H⋯N, O—H⋯O and O—H⋯N hydrogen bonds. Two O atoms of a sulfate anion were found to be disordered over two orientations in a 0.620 (9):0.380 (9) ratio. The crystal studied was a racemic twin with BASF = 0.17 (5)

Related literature

For the structures of other cadmium–sulfate–thio­urea compounds, see: Cavaica et al. (1970[Cavaica, L., Villa, A. C., Mangia, A. & Palmeiri, C. (1970). Inorg. Chim. Acta, 4, 463-470.]); Corao & Baggio (1969[Corao, E. & Baggio, S. (1969). Inorg. Chim. Acta, 3, 617-622.]); Oussaid et al. (2000[Oussaid, M., Becker, P. & Carabatos-Nédelec, C. (2000). J. Raman Spectrosc. 31, 529-533.]). For the NMR measurement, see: Jalilehvand et al. (2012[Jalilehvand, F., Amini, Z. & Parmar, K. (2012). Inorg. Chem. Submitted.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(CH4N2S)2(H2O)4][Cd(CH4N2S)3(H2O)3](SO4)2

  • Mr = 923.64

  • Monoclinic, P c

  • a = 10.9941 (3) Å

  • b = 11.7602 (3) Å

  • c = 24.0100 (5) Å

  • β = 98.9169 (12)°

  • V = 3066.80 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.94 mm−1

  • T = 173 K

  • 0.07 × 0.06 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.876, Tmax = 0.909

  • 16186 measured reflections

  • 9995 independent reflections

  • 8817 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.099

  • S = 1.08

  • 9995 reflections

  • 453 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O26i 0.88 2.14 2.958 (16) 154
N1—H1A⋯O26′i 0.88 2.24 3.11 (2) 168
N1—H1B⋯O17i 0.88 2.10 2.927 (15) 156
N1—H1B⋯O15i 0.88 2.55 3.111 (14) 122
N2—H2A⋯O24i 0.88 2.08 2.934 (15) 163
N2—H2B⋯O1 0.88 2.02 2.875 (14) 165
N3—H3A⋯O27 0.88 2.14 3.014 (14) 169
N4—H4A⋯O28 0.88 2.17 3.000 (13) 157
N4—H4B⋯O3 0.88 2.21 3.028 (12) 155
N4—H4B⋯O2 0.88 2.63 3.183 (12) 121
O1—H11⋯O29ii 0.82 1.96 2.743 (13) 160
O1—H12⋯O14 0.82 1.97 2.770 (12) 164
O2—H21⋯O26ii 0.82 2.05 2.636 (12) 128
O2—H21⋯O26′ii 0.82 2.12 2.856 (18) 150
O3—H32⋯O18ii 0.82 1.91 2.679 (10) 156
O4—H41⋯O15ii 0.82 1.88 2.691 (13) 172
O4—H42⋯O29ii 0.81 2.16 2.973 (12) 173
N5—H5A⋯O24i 0.88 2.13 3.000 (11) 171
N6—H6A⋯O23i 0.88 2.14 2.986 (11) 162
N6—H6B⋯O7 0.88 2.17 2.982 (12) 153
N6—H6B⋯O6 0.88 2.59 3.157 (12) 123
N7—H7A⋯O27 0.88 2.08 2.938 (17) 165
N7—H7B⋯O5 0.88 2.06 2.915 (14) 163
N8—H8A⋯O30 0.88 2.14 2.989 (15) 162
N8—H8B⋯O21iii 0.88 2.10 2.932 (15) 159
N8—H8B⋯O19iii 0.88 2.65 3.223 (14) 124
O5—H52⋯O11 0.82 2.09 2.887 (13) 164
O5—H51⋯N7 0.85 2.46 2.915 (14) 114
O6—H62⋯O30iv 0.83 1.84 2.641 (11) 162
O7—H72⋯O22v 0.82 1.95 2.718 (11) 155
O8—H81⋯O16iv 0.83 1.96 2.756 (12) 162
O8—H82⋯O10iii 0.81 2.18 2.922 (13) 152
N9—H9A⋯O21 0.88 2.40 3.150 (17) 143
N9—H9A⋯O20 0.88 2.50 3.320 (16) 156
N9—H9B⋯O27 0.88 1.98 2.834 (17) 164
N10—H10A⋯O21 0.88 2.26 3.040 (17) 148
N10—H10B⋯O10 0.88 2.10 2.954 (15) 163
N11—H11A⋯O18i 0.88 1.98 2.855 (12) 177
N11—H11B⋯O9 0.88 2.13 2.994 (12) 167
N12—H12A⋯O17i 0.88 1.93 2.797 (12) 169
N13—H13A⋯O2iv 0.88 2.36 3.193 (11) 158
N13—H13B⋯O28iv 0.88 1.98 2.848 (13) 168
N14—H14A⋯O26i 0.88 2.22 2.980 (13) 145
O9—H91⋯O28iv 0.82 2.03 2.810 (12) 159
O9—H92⋯O20iv 0.82 1.94 2.721 (11) 159
O9—H92⋯O22iv 0.82 2.54 3.189 (10) 137
O10—H101⋯O9 0.81 2.67 3.331 (11) 139
O10—H102⋯O25′iv 0.82 1.77 2.57 (2) 164
O10—H102⋯O25iv 0.82 1.99 2.761 (13) 156
O11—H111⋯O25iv 0.82 2.15 2.851 (14) 143
O11—H111⋯O26′iv 0.82 2.18 2.972 (18) 163
O11—H112⋯O29iv 0.82 1.96 2.718 (13) 153
N15—H15A⋯O30 0.88 2.44 3.222 (12) 148
N15—H15A⋯N8 0.88 2.69 3.331 (15) 131
N16—H16A⋯O6vi 0.88 2.34 3.184 (11) 161
N16—H16B⋯O23ii 0.88 1.99 2.866 (11) 172
N17—H17A⋯O21iii 0.88 1.99 2.864 (13) 176
N18—H18A⋯O22iii 0.88 1.98 2.846 (12) 169
N18—H18B⋯O12 0.88 2.15 2.998 (11) 163
N19—H19A⋯O17vii 0.88 2.42 3.174 (15) 145
N19—H19A⋯O16vii 0.88 2.43 3.258 (15) 156
N19—H19B⋯O24i 0.88 2.03 2.887 (15) 163
N19—H19B⋯O25′i 0.88 2.65 3.27 (2) 129
N20—H20A⋯O17vii 0.88 2.21 3.018 (16) 153
N20—H20B⋯O13 0.88 2.11 2.966 (15) 165
O12—H121⋯O23ii 0.82 2.04 2.846 (10) 167
O12—H122⋯O16viii 0.81 2.06 2.740 (9) 140
O13—H131⋯O19ii 0.82 1.88 2.694 (12) 171
O13—H132⋯O4iii 0.82 2.23 2.981 (12) 153
O14—H141⋯O20ii 0.82 1.90 2.714 (11) 173
O14—H142⋯O25ii 0.82 2.10 2.750 (14) 135
O14—H142⋯O25′ii 0.82 2.00 2.79 (2) 161
Symmetry codes: (i) [x+1, -y+1, z-{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x-1, y, z; (vii) [x+1, -y+2, z-{\script{1\over 2}}]; (viii) [x, -y+2, z-{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius B V, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

A survey in the crystal structure database shows that mixing cadmium sulfate (CdSO4) with thiourea (TU) in the mole ratio 1:3 results in either monomeric [Cd(TU)3(SO4)] (Oussaid et al., 2000; Cavaica et al., 1970), (or dimeric [Cd(µ-TU)(TU)2(SO4)]2 complexes (Corao & Baggio, 1969) with the cadmium ion coordinating four (CdS3O) or five (CdS4O) ligand atoms, respectively.

With intention to prepare the mononuclear [Cd(TU)3(SO4)] complex for a solid state 113Cd NMR measurement (Jalilehvand et al., 2012), a solution was prepared of a mixture of CdSO4.8/3H2O and thiourea in 1:3.8 mole ratio in hot water, and slowly evaporated resulting in colorless crystals. Elemental analysis of a ground sample (i) used for the solid state 113Cd NMR spectroscopy showed that the bulk of the crystalline solid mainly consisted of the [Cd(TU)3(SO4)] complex (see Special details section). However, elemental analyses of two random samples of the colorless crystals (ii and iii) showed that the sample was inhomogeneous. An X-ray crystallographic structure determination of the colorless crystal, revealed that cis-[Cd(TU)2(H2O)4]2+ and fac-[Cd(TU)3(H2O)3]2+ complexes had co-crystallized in the crystal. To our knowledge, this is the first report on the structure of hydrated Cd(II) thiourea complexes.

The asymmetric unit of the title co-crystal contains two cadmium(II) complexes of each type together with four sulfate ions (Fig. 1). All Cd atoms exhibit distorted octahedral geometry. The Cd–S and Cd–O distances around Cd1 and Cd2 atoms in the bis(thiourea) complex, cis-[Cd(TU)2(H2O)4]2+, lie in the ranges 2.580 (4) - 2.599 (4) Å and 2.323 (8) - 2.421 (9) Å, respectively. In the tris(thiourea) complex, fac-[Cd(TU)3(H2O)3]2+, the corresponding bond lengths around Cd3 and Cd4 atoms are slightly longer and lie in the ranges 2.559 (4) - 2.706 (3) Å and 2.303 (7) - 2.480 (10) Å, respectively. The crystal structure is stabilized by strong hydrogen bonds (Tab. 1).

Related literature top

For the structures of other cadmium–sulfate–thiourea compounds, see: Cavaica et al. (1970); Corao & Baggio (1969); Oussaid et al. (2000).c/fg3255/trash

Experimental top

A colorless solution containing a mixture of CdSO4.8/3(H2O) (1.505 g, 5.87 mmol) and thiourea (1.340 g, 22.33 mmol) in hot water (10 ml) was prepared. Slow evaporation of this solution resulted in an inhomogeneous mixture of colorless crystals, mainly consisting of [Cd(TU)3(SO4)] complex, as well as cis-[Cd(TU)2(H2O)4](SO4) and fac-[Cd(TU)3(H2O)3](SO4) complexes that were co-crystallized in the same unit cell.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, and the Uiso(H) were allowed at 1.2Ueq(parent atom). Water H-atoms were contrained at distances O—H = 0.82 Å and EADP commands were used to model the disorder. An absolute structure using Flack method was not determined as the crystals were composed of racemic twins with BASF = 0.17 (5); Fridel pairs were merged. Two oxygen atoms of a sulfate anion were disordered over two sites each in a ratio 0.620 (9):0.380 (9). A refinement of the structure with half the current length of the cell axis-b, allowing half of the contents of the unit cell, resulted in a grossly disordered model which was therefore ruled out as the unit cell. Therefore, the model was refined in the current supercell presented in this paper.

Structure description top

A survey in the crystal structure database shows that mixing cadmium sulfate (CdSO4) with thiourea (TU) in the mole ratio 1:3 results in either monomeric [Cd(TU)3(SO4)] (Oussaid et al., 2000; Cavaica et al., 1970), (or dimeric [Cd(µ-TU)(TU)2(SO4)]2 complexes (Corao & Baggio, 1969) with the cadmium ion coordinating four (CdS3O) or five (CdS4O) ligand atoms, respectively.

With intention to prepare the mononuclear [Cd(TU)3(SO4)] complex for a solid state 113Cd NMR measurement (Jalilehvand et al., 2012), a solution was prepared of a mixture of CdSO4.8/3H2O and thiourea in 1:3.8 mole ratio in hot water, and slowly evaporated resulting in colorless crystals. Elemental analysis of a ground sample (i) used for the solid state 113Cd NMR spectroscopy showed that the bulk of the crystalline solid mainly consisted of the [Cd(TU)3(SO4)] complex (see Special details section). However, elemental analyses of two random samples of the colorless crystals (ii and iii) showed that the sample was inhomogeneous. An X-ray crystallographic structure determination of the colorless crystal, revealed that cis-[Cd(TU)2(H2O)4]2+ and fac-[Cd(TU)3(H2O)3]2+ complexes had co-crystallized in the crystal. To our knowledge, this is the first report on the structure of hydrated Cd(II) thiourea complexes.

The asymmetric unit of the title co-crystal contains two cadmium(II) complexes of each type together with four sulfate ions (Fig. 1). All Cd atoms exhibit distorted octahedral geometry. The Cd–S and Cd–O distances around Cd1 and Cd2 atoms in the bis(thiourea) complex, cis-[Cd(TU)2(H2O)4]2+, lie in the ranges 2.580 (4) - 2.599 (4) Å and 2.323 (8) - 2.421 (9) Å, respectively. In the tris(thiourea) complex, fac-[Cd(TU)3(H2O)3]2+, the corresponding bond lengths around Cd3 and Cd4 atoms are slightly longer and lie in the ranges 2.559 (4) - 2.706 (3) Å and 2.303 (7) - 2.480 (10) Å, respectively. The crystal structure is stabilized by strong hydrogen bonds (Tab. 1).

For the structures of other cadmium–sulfate–thiourea compounds, see: Cavaica et al. (1970); Corao & Baggio (1969); Oussaid et al. (2000).c/fg3255/trash

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the contents of an asymmetric unit of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The content of a unit cell. For the cadmium complexes in the left part of the cell only the sulfur atoms are shown for clarity.
Tetraaquabis(thiourea-κS)cadmium(II) triaquatris(thiourea-κS)cadmium(II) disulfate top
Crystal data top
[Cd(CH4N2S)2(H2O)4][Cd(CH4N2S)3(H2O)3](SO4)2F(000) = 1848
Mr = 923.64Dx = 2.000 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 2175 reflections
a = 10.9941 (3) Åθ = 3.4–30.0°
b = 11.7602 (3) ŵ = 1.94 mm1
c = 24.0100 (5) ÅT = 173 K
β = 98.9169 (12)°Prism, colorless
V = 3066.80 (13) Å30.07 × 0.06 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
9995 independent reflections
Radiation source: fine-focus sealed tube8817 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and φ scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1213
Tmin = 0.876, Tmax = 0.909k = 1313
16186 measured reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0102P)2 + 30.5291P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.004
9995 reflectionsΔρmax = 0.78 e Å3
453 parametersΔρmin = 0.64 e Å3
2 restraintsAbsolute structure: Flack, H. D. (1983). Acta Cryst. A39, 876–881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.15 (5)
Crystal data top
[Cd(CH4N2S)2(H2O)4][Cd(CH4N2S)3(H2O)3](SO4)2V = 3066.80 (13) Å3
Mr = 923.64Z = 4
Monoclinic, PcMo Kα radiation
a = 10.9941 (3) ŵ = 1.94 mm1
b = 11.7602 (3) ÅT = 173 K
c = 24.0100 (5) Å0.07 × 0.06 × 0.05 mm
β = 98.9169 (12)°
Data collection top
Nonius KappaCCD
diffractometer
9995 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
8817 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.909Rint = 0.037
16186 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0102P)2 + 30.5291P]
where P = (Fo2 + 2Fc2)/3
S = 1.08Δρmax = 0.78 e Å3
9995 reflectionsΔρmin = 0.64 e Å3
453 parametersAbsolute structure: Flack, H. D. (1983). Acta Cryst. A39, 876–881
2 restraintsAbsolute structure parameter: 0.15 (5)
Special details top

Experimental. Elemental analysis of a ground sample (i) used for the solid state 113Cd NMR spectroscopy: C = 8.44%, H = 2.62%, N = 19.27% (calculated for [Cd(TU)3(SO4)]: CdC3H12N6O4S4 (M.W. = 436.7), C = 8.24%, H = 2.75%, N = 19.23%). Elemental analyses of two random samples of the colorless crystals: (ii) exp.: C = 8.23%, H = 2.68%, N = 19.08%, and (iii) exp.: C = 7.44%, H = 3.01%, N = 17.22% (calculated for [Cd(TU)3(H2O)3](SO4): CdC3H18N6O7S4 (M.W. = 490.7), C = 7.33%, H = 3.67%, N = 17.12%).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.43936 (7)0.41388 (8)0.00967 (3)0.0175 (3)
S10.6026 (4)0.3423 (3)0.04845 (17)0.0207 (9)
S20.6146 (3)0.4338 (3)0.09512 (14)0.0282 (6)
C10.7138 (13)0.4492 (12)0.0421 (5)0.0176 (17)
C20.5530 (9)0.4611 (8)0.1553 (4)0.0176 (17)
N10.8306 (12)0.4197 (10)0.0393 (5)0.0261 (12)
H1A0.88820.47240.03620.031*
H1B0.85090.34750.04050.031*
N20.6847 (11)0.5571 (11)0.0403 (5)0.0261 (12)
H2A0.74280.60930.03720.031*
H2B0.60710.57740.04210.031*
N30.6216 (8)0.5129 (8)0.1981 (4)0.0261 (12)
H3A0.59220.52470.22970.031*
H3B0.69650.53560.19500.031*
N40.4413 (8)0.4275 (8)0.1604 (4)0.0261 (12)
H4A0.41240.43950.19210.031*
H4B0.39530.39300.13210.031*
O10.4217 (8)0.5795 (8)0.0511 (4)0.0227 (9)
H110.40150.56340.08440.027*
H120.38940.64110.04600.027*
O20.2817 (7)0.5077 (6)0.0450 (3)0.0227 (9)
H210.23450.51800.01550.027*
H220.32340.56570.05110.027*
O30.3575 (7)0.2714 (6)0.0616 (3)0.0227 (9)
H310.41420.22550.06990.027*
H320.29320.23470.05910.027*
O40.3053 (9)0.3178 (7)0.0617 (4)0.0227 (9)
H410.23190.31440.05880.027*
H420.31230.36080.08750.027*
Cd20.94999 (7)0.83626 (9)0.28083 (3)0.0174 (3)
S30.7784 (3)0.8140 (3)0.19488 (14)0.0285 (6)
S40.7831 (4)0.9044 (3)0.33779 (17)0.0196 (9)
C30.8400 (10)0.7856 (9)0.1342 (4)0.024 (2)
C40.6721 (13)0.7993 (12)0.3289 (5)0.015 (2)
N50.7722 (8)0.7352 (7)0.0914 (4)0.0238 (11)
H5A0.80360.71980.06070.029*
H5B0.69540.71680.09350.029*
N60.9549 (8)0.8122 (7)0.1300 (4)0.0238 (11)
H6A0.98460.79610.09890.029*
H6B1.00170.84590.15820.029*
N70.7024 (10)0.6918 (11)0.3256 (5)0.0238 (11)
H7A0.64520.63890.32270.029*
H7B0.78000.67260.32630.029*
N80.5568 (12)0.8291 (10)0.3279 (5)0.0238 (11)
H8A0.49890.77680.32500.029*
H8B0.53730.90130.33010.029*
O50.9699 (8)0.6725 (8)0.3411 (4)0.0275 (10)
H510.92030.65710.36380.033*
H521.00870.61350.33860.033*
O61.1097 (7)0.7376 (7)0.2461 (3)0.0275 (10)
H611.08510.67140.24380.033*
H621.18310.73500.26010.033*
O71.0359 (7)0.9713 (6)0.2252 (3)0.0275 (10)
H711.00571.02220.24180.033*
H721.11090.97470.23440.033*
O81.0807 (10)0.9404 (8)0.3495 (4)0.0275 (10)
H811.09440.94060.38420.033*
H821.03770.99540.33980.033*
Cd30.95867 (7)0.33264 (8)0.27590 (3)0.0184 (3)
S50.7880 (4)0.4025 (3)0.32882 (17)0.0185 (8)
S60.8492 (3)0.1824 (3)0.20761 (14)0.0264 (6)
S70.9420 (3)0.5165 (2)0.20781 (14)0.0225 (6)
C50.6854 (14)0.2918 (12)0.3271 (6)0.0196 (14)
C60.9099 (10)0.1920 (9)0.1457 (4)0.0196 (14)
C70.9997 (10)0.4949 (9)0.1465 (4)0.0196 (14)
N90.5673 (12)0.3151 (12)0.3264 (5)0.0306 (10)
H9A0.51420.25950.32770.037*
H9B0.54190.38610.32470.037*
N100.7216 (11)0.1847 (12)0.3297 (5)0.0306 (10)
H10A0.66750.12990.33090.037*
H10B0.79970.16800.33020.037*
N111.0266 (9)0.2179 (8)0.1451 (4)0.0306 (10)
H11A1.05590.21820.11300.037*
H11B1.07500.23490.17670.037*
N120.8397 (9)0.1671 (9)0.0984 (4)0.0306 (10)
H12A0.87020.16770.06660.037*
H12B0.76180.14970.09830.037*
N131.1188 (9)0.5005 (8)0.1441 (4)0.0306 (10)
H13A1.14530.49260.11160.037*
H13B1.17160.51210.17510.037*
N140.9224 (9)0.4772 (9)0.0987 (4)0.0306 (10)
H14A0.95120.46950.06670.037*
H14B0.84270.47310.09920.037*
O91.1578 (7)0.3016 (6)0.2561 (3)0.0205 (10)
H911.19950.35940.26240.025*
H921.19700.24950.27320.025*
O100.9931 (7)0.1753 (7)0.3437 (4)0.0205 (10)
H1011.05830.18090.33190.025*
H1021.00390.19750.37650.025*
O111.0797 (9)0.4490 (8)0.3510 (4)0.0205 (10)
H1111.08760.43270.38470.025*
H1121.13920.48800.34670.025*
Cd40.42807 (7)0.91384 (8)0.01451 (3)0.0159 (3)
S80.4471 (3)0.7294 (2)0.08265 (13)0.0222 (6)
S90.5445 (3)1.0590 (2)0.08499 (14)0.0226 (6)
S100.6009 (4)0.8462 (3)0.03811 (18)0.0202 (9)
C80.3906 (10)0.7517 (8)0.1463 (4)0.0199 (14)
C90.4804 (10)1.0523 (8)0.1473 (4)0.0199 (14)
C100.7041 (15)0.9583 (12)0.0345 (6)0.0199 (14)
N150.4670 (9)0.7666 (8)0.1924 (4)0.0249 (9)
H15A0.43940.77240.22480.030*
H15B0.54650.77080.19140.030*
N160.2711 (9)0.7451 (7)0.1469 (4)0.0249 (9)
H16A0.24220.75090.17900.030*
H16B0.22020.73500.11520.030*
N170.5546 (9)1.0710 (8)0.1947 (4)0.0249 (9)
H17A0.52611.06870.22690.030*
H17B0.63291.08570.19420.030*
N180.3642 (8)1.0303 (7)0.1464 (4)0.0249 (9)
H18A0.33341.02750.17810.030*
H18B0.31621.01810.11400.030*
N190.8225 (12)0.9344 (10)0.0319 (5)0.0249 (9)
H19A0.87690.98980.02960.030*
H19B0.84680.86320.03240.030*
N200.6692 (11)1.0658 (10)0.0336 (5)0.0249 (9)
H20A0.72451.12040.03130.030*
H20B0.59081.08270.03520.030*
O120.2333 (7)0.9439 (6)0.0356 (3)0.0181 (10)
H1210.18770.89060.03990.022*
H1220.21030.97120.00460.022*
O130.3967 (7)1.0792 (7)0.0483 (3)0.0181 (10)
H1310.37971.06410.08190.022*
H1320.35941.13770.04280.022*
O140.3135 (9)0.7928 (7)0.0567 (4)0.0181 (10)
H1410.31860.80410.08980.022*
H1420.24190.80540.05260.022*
S110.0446 (4)0.8135 (3)0.48584 (15)0.0170 (8)
O150.0669 (7)0.7164 (6)0.4470 (3)0.0171 (9)
O160.0752 (6)0.9236 (6)0.4635 (3)0.0171 (9)
O170.0875 (8)0.8114 (7)0.4923 (3)0.0171 (9)
O180.1206 (7)0.7914 (6)0.5408 (3)0.0171 (9)
S120.3433 (4)0.0625 (3)0.30619 (15)0.0167 (8)
O190.3147 (8)0.0269 (7)0.3431 (4)0.0285 (11)
O200.3087 (8)0.1721 (7)0.3313 (3)0.0285 (11)
O210.4753 (9)0.0635 (8)0.3028 (4)0.0285 (11)
O220.2695 (8)0.0525 (7)0.2497 (4)0.0285 (11)
S130.0318 (3)0.3167 (3)0.49290 (15)0.0148 (8)
O230.1037 (7)0.2637 (6)0.5428 (3)0.0135 (9)
O240.0988 (8)0.2973 (7)0.4912 (3)0.0135 (9)
O250.0799 (9)0.2921 (9)0.4416 (4)0.0135 (9)0.620 (9)
O260.0505 (9)0.4439 (9)0.5051 (4)0.0135 (9)0.620 (9)
O25'0.0618 (16)0.2170 (16)0.4489 (7)0.0135 (9)0.380 (9)
O26'0.0622 (15)0.4256 (14)0.4727 (7)0.0135 (9)0.380 (9)
S140.3566 (4)0.5588 (3)0.29742 (17)0.0209 (8)
O270.4891 (10)0.5403 (9)0.2982 (5)0.0376 (11)
O280.2885 (8)0.5043 (7)0.2466 (4)0.0376 (11)
O290.3164 (8)0.5118 (7)0.3478 (4)0.0376 (11)
O300.3337 (8)0.6840 (7)0.2958 (4)0.0376 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0161 (6)0.0184 (5)0.0178 (5)0.0019 (4)0.0017 (5)0.0003 (4)
S10.0178 (19)0.0174 (16)0.027 (2)0.0038 (13)0.0040 (15)0.0045 (13)
S20.0147 (13)0.0521 (18)0.0180 (13)0.0012 (13)0.0031 (11)0.0086 (13)
C10.018 (4)0.024 (4)0.010 (3)0.004 (3)0.001 (3)0.006 (3)
C20.018 (4)0.024 (4)0.010 (3)0.004 (3)0.001 (3)0.006 (3)
N10.020 (3)0.035 (3)0.024 (3)0.005 (2)0.006 (2)0.004 (2)
N20.020 (3)0.035 (3)0.024 (3)0.005 (2)0.006 (2)0.004 (2)
N30.020 (3)0.035 (3)0.024 (3)0.005 (2)0.006 (2)0.004 (2)
N40.020 (3)0.035 (3)0.024 (3)0.005 (2)0.006 (2)0.004 (2)
O10.018 (2)0.024 (2)0.025 (2)0.0018 (17)0.0021 (17)0.0031 (17)
O20.018 (2)0.024 (2)0.025 (2)0.0018 (17)0.0021 (17)0.0031 (17)
O30.018 (2)0.024 (2)0.025 (2)0.0018 (17)0.0021 (17)0.0031 (17)
O40.018 (2)0.024 (2)0.025 (2)0.0018 (17)0.0021 (17)0.0031 (17)
Cd20.0125 (6)0.0234 (5)0.0170 (5)0.0011 (4)0.0046 (4)0.0009 (4)
S30.0166 (14)0.0519 (19)0.0171 (13)0.0006 (13)0.0028 (11)0.0040 (13)
S40.017 (2)0.0209 (16)0.0234 (18)0.0031 (14)0.0098 (15)0.0071 (13)
C30.023 (6)0.027 (6)0.018 (5)0.000 (5)0.004 (4)0.006 (4)
C40.014 (5)0.023 (5)0.007 (4)0.004 (4)0.002 (4)0.001 (4)
N50.014 (3)0.031 (3)0.028 (3)0.000 (2)0.008 (2)0.004 (2)
N60.014 (3)0.031 (3)0.028 (3)0.000 (2)0.008 (2)0.004 (2)
N70.014 (3)0.031 (3)0.028 (3)0.000 (2)0.008 (2)0.004 (2)
N80.014 (3)0.031 (3)0.028 (3)0.000 (2)0.008 (2)0.004 (2)
O50.024 (2)0.032 (2)0.026 (2)0.0030 (18)0.0040 (18)0.0001 (18)
O60.024 (2)0.032 (2)0.026 (2)0.0030 (18)0.0040 (18)0.0001 (18)
O70.024 (2)0.032 (2)0.026 (2)0.0030 (18)0.0040 (18)0.0001 (18)
O80.024 (2)0.032 (2)0.026 (2)0.0030 (18)0.0040 (18)0.0001 (18)
Cd30.0166 (6)0.0212 (5)0.0174 (6)0.0002 (4)0.0027 (4)0.0015 (4)
S50.0170 (19)0.0155 (15)0.0241 (18)0.0021 (13)0.0064 (14)0.0035 (12)
S60.0256 (15)0.0354 (16)0.0195 (13)0.0119 (12)0.0079 (11)0.0114 (11)
S70.0198 (14)0.0270 (14)0.0210 (13)0.0006 (11)0.0044 (11)0.0063 (11)
C50.017 (3)0.025 (3)0.017 (3)0.004 (3)0.002 (3)0.002 (3)
C60.017 (3)0.025 (3)0.017 (3)0.004 (3)0.002 (3)0.002 (3)
C70.017 (3)0.025 (3)0.017 (3)0.004 (3)0.002 (3)0.002 (3)
N90.023 (2)0.048 (3)0.022 (2)0.008 (2)0.0042 (17)0.0047 (18)
N100.023 (2)0.048 (3)0.022 (2)0.008 (2)0.0042 (17)0.0047 (18)
N110.023 (2)0.048 (3)0.022 (2)0.008 (2)0.0042 (17)0.0047 (18)
N120.023 (2)0.048 (3)0.022 (2)0.008 (2)0.0042 (17)0.0047 (18)
N130.023 (2)0.048 (3)0.022 (2)0.008 (2)0.0042 (17)0.0047 (18)
N140.023 (2)0.048 (3)0.022 (2)0.008 (2)0.0042 (17)0.0047 (18)
O90.015 (2)0.023 (2)0.021 (2)0.0054 (19)0.0016 (18)0.0028 (19)
O100.015 (2)0.023 (2)0.021 (2)0.0054 (19)0.0016 (18)0.0028 (19)
O110.015 (2)0.023 (2)0.021 (2)0.0054 (19)0.0016 (18)0.0028 (19)
Cd40.0141 (6)0.0188 (5)0.0154 (5)0.0011 (4)0.0039 (4)0.0014 (4)
S80.0228 (14)0.0256 (14)0.0175 (13)0.0002 (11)0.0012 (11)0.0043 (11)
S90.0198 (14)0.0319 (15)0.0175 (12)0.0061 (11)0.0070 (10)0.0024 (11)
S100.018 (2)0.0168 (16)0.0280 (19)0.0023 (13)0.0086 (15)0.0014 (13)
C80.027 (4)0.013 (3)0.022 (3)0.002 (3)0.011 (3)0.002 (3)
C90.027 (4)0.013 (3)0.022 (3)0.002 (3)0.011 (3)0.002 (3)
C100.027 (4)0.013 (3)0.022 (3)0.002 (3)0.011 (3)0.002 (3)
N150.024 (2)0.030 (2)0.022 (2)0.0051 (18)0.0038 (17)0.0013 (17)
N160.024 (2)0.030 (2)0.022 (2)0.0051 (18)0.0038 (17)0.0013 (17)
N170.024 (2)0.030 (2)0.022 (2)0.0051 (18)0.0038 (17)0.0013 (17)
N180.024 (2)0.030 (2)0.022 (2)0.0051 (18)0.0038 (17)0.0013 (17)
N190.024 (2)0.030 (2)0.022 (2)0.0051 (18)0.0038 (17)0.0013 (17)
N200.024 (2)0.030 (2)0.022 (2)0.0051 (18)0.0038 (17)0.0013 (17)
O120.019 (2)0.025 (2)0.011 (2)0.003 (2)0.0043 (18)0.0006 (18)
O130.019 (2)0.025 (2)0.011 (2)0.003 (2)0.0043 (18)0.0006 (18)
O140.019 (2)0.025 (2)0.011 (2)0.003 (2)0.0043 (18)0.0006 (18)
S110.0145 (18)0.0192 (15)0.0169 (16)0.0014 (13)0.0007 (13)0.0014 (12)
O150.016 (2)0.024 (2)0.0121 (17)0.0030 (16)0.0037 (15)0.0031 (15)
O160.016 (2)0.024 (2)0.0121 (17)0.0030 (16)0.0037 (15)0.0031 (15)
O170.016 (2)0.024 (2)0.0121 (17)0.0030 (16)0.0037 (15)0.0031 (15)
O180.016 (2)0.024 (2)0.0121 (17)0.0030 (16)0.0037 (15)0.0031 (15)
S120.0132 (17)0.0206 (15)0.0173 (17)0.0013 (13)0.0056 (13)0.0020 (13)
O190.023 (2)0.032 (2)0.030 (2)0.0016 (18)0.0043 (18)0.0011 (19)
O200.023 (2)0.032 (2)0.030 (2)0.0016 (18)0.0043 (18)0.0011 (19)
O210.023 (2)0.032 (2)0.030 (2)0.0016 (18)0.0043 (18)0.0011 (19)
O220.023 (2)0.032 (2)0.030 (2)0.0016 (18)0.0043 (18)0.0011 (19)
S130.0094 (17)0.0220 (16)0.0132 (15)0.0023 (12)0.0022 (12)0.0002 (12)
O230.011 (2)0.021 (2)0.0093 (19)0.0021 (17)0.0047 (16)0.0007 (16)
O240.011 (2)0.021 (2)0.0093 (19)0.0021 (17)0.0047 (16)0.0007 (16)
O250.011 (2)0.021 (2)0.0093 (19)0.0021 (17)0.0047 (16)0.0007 (16)
O260.011 (2)0.021 (2)0.0093 (19)0.0021 (17)0.0047 (16)0.0007 (16)
O25'0.011 (2)0.021 (2)0.0093 (19)0.0021 (17)0.0047 (16)0.0007 (16)
O26'0.011 (2)0.021 (2)0.0093 (19)0.0021 (17)0.0047 (16)0.0007 (16)
S140.0185 (19)0.0208 (16)0.0233 (18)0.0006 (14)0.0023 (14)0.0053 (13)
O270.026 (3)0.042 (3)0.044 (3)0.003 (2)0.003 (2)0.007 (2)
O280.026 (3)0.042 (3)0.044 (3)0.003 (2)0.003 (2)0.007 (2)
O290.026 (3)0.042 (3)0.044 (3)0.003 (2)0.003 (2)0.007 (2)
O300.026 (3)0.042 (3)0.044 (3)0.003 (2)0.003 (2)0.007 (2)
Geometric parameters (Å, º) top
Cd1—O22.323 (7)C7—N141.334 (13)
Cd1—O32.350 (7)N9—H9A0.8800
Cd1—O42.367 (10)N9—H9B0.8800
Cd1—O12.423 (9)N10—H10A0.8800
Cd1—S12.580 (4)N10—H10B0.8800
Cd1—S22.598 (4)N11—H11A0.8800
S1—C11.743 (16)N11—H11B0.8800
S2—C21.718 (9)N12—H12A0.8800
C1—N21.312 (18)N12—H12B0.8800
C1—N11.32 (2)N13—H13A0.8800
C2—N41.314 (13)N13—H13B0.8800
C2—N31.325 (12)N14—H14A0.8800
N1—H1A0.8800N14—H14B0.8800
N1—H1B0.8800O9—H910.8206
N2—H2A0.8800O9—H920.8215
N2—H2B0.8800O10—H1010.8138
N3—H3A0.8800O10—H1020.8211
N3—H3B0.8800O11—H1110.8227
N4—H4A0.8800O11—H1120.8191
N4—H4B0.8800Cd4—O122.303 (7)
O1—H110.8191Cd4—O142.422 (9)
O1—H120.8237Cd4—O132.452 (9)
O2—H210.8211Cd4—S102.566 (4)
O2—H220.8219Cd4—S92.597 (3)
O3—H310.8252Cd4—S82.705 (3)
O3—H320.8223S8—C81.757 (10)
O4—H410.8216S9—C91.752 (10)
O4—H420.8133S10—C101.733 (15)
Cd2—O82.355 (11)C8—N151.293 (14)
Cd2—O62.362 (8)C8—N161.319 (14)
Cd2—O72.364 (8)C9—N181.301 (13)
Cd2—O52.398 (10)C9—N171.311 (13)
Cd2—S42.580 (4)C10—N201.322 (18)
Cd2—S32.585 (4)C10—N191.32 (2)
S3—C31.731 (11)N15—H15A0.8800
S4—C41.726 (15)N15—H15B0.8800
C3—N51.314 (13)N16—H16A0.8800
C3—N61.320 (13)N16—H16B0.8800
C4—N81.312 (19)N17—H17A0.8800
C4—N71.313 (18)N17—H17B0.8800
N5—H5A0.8800N18—H18A0.8800
N5—H5B0.8800N18—H18B0.8800
N6—H6A0.8800N19—H19A0.8800
N6—H6B0.8800N19—H19B0.8800
N7—H7A0.8800N20—H20A0.8800
N7—H7B0.8800N20—H20B0.8800
N8—H8A0.8800O12—H1210.8195
N8—H8B0.8800O12—H1220.8146
O5—H510.8497O13—H1310.8174
O5—H520.8208O13—H1320.8223
O6—H610.8232O14—H1410.8179
O6—H620.8253O14—H1420.8213
O7—H710.8188S11—O161.461 (8)
O7—H720.8210S11—O181.472 (8)
O8—H810.8250S11—O171.484 (9)
O8—H820.8146S11—O151.519 (8)
Cd3—O92.340 (8)S12—O191.441 (10)
Cd3—O102.455 (9)S12—O211.466 (11)
Cd3—O112.480 (10)S12—O221.474 (9)
Cd3—S52.559 (4)S12—O201.497 (9)
Cd3—S62.579 (3)S13—O26'1.427 (17)
Cd3—S72.700 (3)S13—O251.444 (10)
S5—C51.719 (15)S13—O241.448 (9)
S6—C61.724 (10)S13—O231.468 (8)
S7—C71.709 (10)S13—O261.532 (11)
C5—N101.32 (2)S13—O25'1.645 (18)
C5—N91.32 (2)S14—O291.459 (10)
C6—N121.304 (13)S14—O271.470 (11)
C6—N111.321 (13)S14—O281.476 (10)
C7—N131.321 (14)S14—O301.494 (9)
O2—Cd1—O377.0 (3)N11—C6—S6122.1 (8)
O2—Cd1—O494.3 (3)N13—C7—N14118.3 (9)
O3—Cd1—O478.3 (3)N13—C7—S7122.2 (8)
O2—Cd1—O181.0 (3)N14—C7—S7119.5 (8)
O3—Cd1—O1153.0 (3)C5—N9—H9A120.0
O4—Cd1—O188.0 (3)C5—N9—H9B120.0
O2—Cd1—S1166.8 (2)H9A—N9—H9B120.0
O3—Cd1—S1114.2 (2)C5—N10—H10A120.0
O4—Cd1—S182.0 (3)C5—N10—H10B120.0
O1—Cd1—S186.2 (2)H10A—N10—H10B120.0
O2—Cd1—S299.9 (2)C6—N11—H11A120.0
O3—Cd1—S286.8 (2)C6—N11—H11B120.0
O4—Cd1—S2156.5 (2)H11A—N11—H11B120.0
O1—Cd1—S2112.5 (2)C6—N12—H12A120.0
S1—Cd1—S287.92 (13)C6—N12—H12B120.0
C1—S1—Cd1104.8 (4)H12A—N12—H12B120.0
C2—S2—Cd1109.9 (4)C7—N13—H13A120.0
N2—C1—N1119.5 (14)C7—N13—H13B120.0
N2—C1—S1122.0 (11)H13A—N13—H13B120.0
N1—C1—S1118.6 (11)C7—N14—H14A120.0
N4—C2—N3119.6 (9)C7—N14—H14B120.0
N4—C2—S2121.2 (8)H14A—N14—H14B120.0
N3—C2—S2119.2 (8)Cd3—O9—H91110.3
C1—N1—H1A120.0Cd3—O9—H92116.7
C1—N1—H1B120.0H91—O9—H92106.9
H1A—N1—H1B120.0Cd3—O10—H102112.4
C1—N2—H2A120.0H101—O10—H102107.7
C1—N2—H2B120.0Cd3—O11—H111123.3
H2A—N2—H2B120.0Cd3—O11—H112124.5
C2—N3—H3A120.0H111—O11—H112106.9
C2—N3—H3B120.0O12—Cd4—O1481.1 (3)
H3A—N3—H3B120.0O12—Cd4—O1388.1 (3)
C2—N4—H4A120.0O14—Cd4—O1391.4 (3)
C2—N4—H4B120.0O12—Cd4—S10160.2 (2)
H4A—N4—H4B120.0O14—Cd4—S1079.3 (2)
Cd1—O1—H11112.7O13—Cd4—S1089.3 (2)
Cd1—O1—H12127.8O12—Cd4—S997.88 (19)
H11—O1—H12106.9O14—Cd4—S9174.9 (2)
Cd1—O2—H2199.3O13—Cd4—S983.6 (2)
H21—O2—H22106.9S10—Cd4—S9101.34 (13)
Cd1—O3—H31104.9O12—Cd4—S888.72 (19)
Cd1—O3—H32137.0O14—Cd4—S886.5 (2)
H31—O3—H32106.4O13—Cd4—S8176.4 (2)
Cd1—O4—H41118.2S10—Cd4—S893.18 (12)
Cd1—O4—H4297.6S9—Cd4—S898.55 (11)
H41—O4—H42107.7C8—S8—Cd4113.7 (3)
O8—Cd2—O695.5 (3)C9—S9—Cd4107.7 (4)
O8—Cd2—O778.0 (3)C10—S10—Cd4105.5 (5)
O6—Cd2—O775.3 (3)N15—C8—N16121.0 (9)
O8—Cd2—O590.4 (3)N15—C8—S8119.7 (8)
O6—Cd2—O579.3 (3)N16—C8—S8119.1 (8)
O7—Cd2—O5150.8 (3)N18—C9—N17121.7 (9)
O8—Cd2—S482.8 (3)N18—C9—S9121.2 (8)
O6—Cd2—S4165.6 (2)N17—C9—S9117.1 (8)
O7—Cd2—S4118.0 (2)N20—C10—N19119.2 (14)
O5—Cd2—S486.3 (2)N20—C10—S10122.7 (12)
O8—Cd2—S3154.4 (2)N19—C10—S10118.2 (11)
O6—Cd2—S399.1 (2)C8—N15—H15A120.0
O7—Cd2—S385.6 (2)C8—N15—H15B120.0
O5—Cd2—S3112.8 (2)H15A—N15—H15B120.0
S4—Cd2—S387.91 (13)C8—N16—H16A120.0
C3—S3—Cd2111.0 (4)C8—N16—H16B120.0
C4—S4—Cd2105.0 (4)H16A—N16—H16B120.0
N5—C3—N6118.7 (10)C9—N17—H17A120.0
N5—C3—S3119.8 (8)C9—N17—H17B120.0
N6—C3—S3121.5 (8)H17A—N17—H17B120.0
N8—C4—N7120.6 (13)C9—N18—H18A120.0
N8—C4—S4118.3 (11)C9—N18—H18B120.0
N7—C4—S4121.1 (11)H18A—N18—H18B120.0
C3—N5—H5A120.0C10—N19—H19A120.0
C3—N5—H5B120.0C10—N19—H19B120.0
H5A—N5—H5B120.0H19A—N19—H19B120.0
C3—N6—H6A120.0C10—N20—H20A120.0
C3—N6—H6B120.0C10—N20—H20B120.0
H6A—N6—H6B120.0H20A—N20—H20B120.0
C4—N7—H7A120.0Cd4—O12—H121121.2
C4—N7—H7B120.0H121—O12—H122107.9
H7A—N7—H7B120.0Cd4—O13—H131115.0
C4—N8—H8A120.0Cd4—O13—H132126.2
C4—N8—H8B120.0H131—O13—H132107.3
H8A—N8—H8B120.0Cd4—O14—H141119.0
Cd2—O5—H51123.5Cd4—O14—H142102.3
Cd2—O5—H52129.5H141—O14—H142107.3
H51—O5—H52104.9O16—S11—O18110.8 (5)
Cd2—O6—H61103.5O16—S11—O17109.8 (5)
Cd2—O6—H62127.4O18—S11—O17109.4 (5)
H61—O6—H62106.4O16—S11—O15111.9 (4)
Cd2—O7—H72110.7O18—S11—O15107.1 (4)
H71—O7—H72107.5O17—S11—O15107.8 (5)
Cd2—O8—H81134.9O19—S12—O21110.6 (6)
H81—O8—H82107.1O19—S12—O22111.6 (5)
O9—Cd3—O1087.9 (3)O21—S12—O22110.9 (6)
O9—Cd3—O1179.7 (3)O19—S12—O20106.7 (5)
O10—Cd3—O1185.6 (3)O21—S12—O20109.3 (6)
O9—Cd3—S5158.8 (2)O22—S12—O20107.5 (5)
O10—Cd3—S587.8 (2)O26'—S13—O2575.7 (8)
O11—Cd3—S579.3 (3)O26'—S13—O24114.5 (8)
O9—Cd3—S697.1 (2)O25—S13—O24116.0 (6)
O10—Cd3—S685.1 (2)O26'—S13—O23122.2 (8)
O11—Cd3—S6170.2 (2)O25—S13—O23112.9 (5)
S5—Cd3—S6103.29 (13)O24—S13—O23111.3 (5)
O9—Cd3—S788.8 (2)O25—S13—O26107.6 (6)
O10—Cd3—S7173.9 (2)O24—S13—O26105.2 (5)
O11—Cd3—S788.7 (2)O23—S13—O26102.6 (5)
S5—Cd3—S793.29 (12)O26'—S13—O25'109.9 (9)
S6—Cd3—S7100.53 (12)O24—S13—O25'99.6 (7)
C5—S5—Cd3105.9 (5)O23—S13—O25'94.9 (7)
C6—S6—Cd3107.3 (4)O26—S13—O25'141.6 (8)
C7—S7—Cd3113.8 (4)O29—S14—O27111.1 (6)
N10—C5—N9119.0 (14)O29—S14—O28109.9 (6)
N10—C5—S5122.0 (11)O27—S14—O28108.7 (6)
N9—C5—S5118.8 (11)O29—S14—O30108.8 (5)
N12—C6—N11119.1 (10)O27—S14—O30108.0 (6)
N12—C6—S6118.7 (8)O28—S14—O30110.2 (6)
O2—Cd1—S1—C171.6 (11)O9—Cd3—S6—C642.3 (4)
O3—Cd1—S1—C1140.9 (5)O10—Cd3—S6—C6129.6 (4)
O4—Cd1—S1—C1145.8 (6)S5—Cd3—S6—C6143.8 (4)
O1—Cd1—S1—C157.3 (6)S7—Cd3—S6—C647.9 (4)
S2—Cd1—S1—C155.4 (5)O9—Cd3—S7—C742.6 (4)
O2—Cd1—S2—C220.4 (4)O11—Cd3—S7—C7122.3 (5)
O3—Cd1—S2—C255.8 (4)S5—Cd3—S7—C7158.6 (4)
O4—Cd1—S2—C2106.0 (8)S6—Cd3—S7—C754.4 (4)
O1—Cd1—S2—C2104.7 (5)Cd3—S5—C5—N1035.1 (12)
S1—Cd1—S2—C2170.2 (4)Cd3—S5—C5—N9148.8 (10)
Cd1—S1—C1—N236.1 (12)Cd3—S6—C6—N12149.3 (8)
Cd1—S1—C1—N1144.1 (10)Cd3—S6—C6—N1134.3 (10)
Cd1—S2—C2—N426.5 (10)Cd3—S7—C7—N1380.8 (9)
Cd1—S2—C2—N3156.1 (7)Cd3—S7—C7—N14102.4 (9)
O8—Cd2—S3—C3102.8 (8)O12—Cd4—S8—C842.8 (5)
O6—Cd2—S3—C321.4 (4)O14—Cd4—S8—C8124.0 (5)
O7—Cd2—S3—C353.0 (4)S10—Cd4—S8—C8156.9 (4)
O5—Cd2—S3—C3103.6 (5)S9—Cd4—S8—C855.0 (4)
S4—Cd2—S3—C3171.3 (4)O12—Cd4—S9—C939.0 (4)
O8—Cd2—S4—C4150.5 (6)O13—Cd4—S9—C9126.1 (4)
O6—Cd2—S4—C466.4 (11)S10—Cd4—S9—C9145.9 (4)
O7—Cd2—S4—C4137.2 (5)S8—Cd4—S9—C950.9 (4)
O5—Cd2—S4—C459.7 (5)O12—Cd4—S10—C10138.2 (8)
S3—Cd2—S4—C453.3 (5)O14—Cd4—S10—C10147.4 (6)
Cd2—S3—C3—N5157.4 (8)O13—Cd4—S10—C1055.9 (6)
Cd2—S3—C3—N621.8 (10)S9—Cd4—S10—C1027.4 (6)
Cd2—S4—C4—N8147.2 (10)S8—Cd4—S10—C10126.8 (6)
Cd2—S4—C4—N735.7 (11)Cd4—S8—C8—N15103.8 (8)
O9—Cd3—S5—C5136.5 (7)Cd4—S8—C8—N1680.9 (8)
O10—Cd3—S5—C557.8 (6)Cd4—S9—C9—N1832.9 (9)
O11—Cd3—S5—C5143.8 (6)Cd4—S9—C9—N17147.3 (7)
S6—Cd3—S5—C526.6 (5)Cd4—S10—C10—N2032.0 (13)
S7—Cd3—S5—C5128.2 (5)Cd4—S10—C10—N19147.2 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O26i0.882.142.958 (16)154
N1—H1A···O26i0.882.243.11 (2)168
N1—H1B···O17i0.882.102.927 (15)156
N1—H1B···O15i0.882.553.111 (14)122
N2—H2A···O24i0.882.082.934 (15)163
N2—H2B···O10.882.022.875 (14)165
N3—H3A···O270.882.143.014 (14)169
N4—H4A···O280.882.173.000 (13)157
N4—H4B···O30.882.213.028 (12)155
N4—H4B···O20.882.633.183 (12)121
O1—H11···O29ii0.821.962.743 (13)160
O1—H12···O140.821.972.770 (12)164
O2—H21···O26ii0.822.052.636 (12)128
O2—H21···O26ii0.822.122.856 (18)150
O3—H32···O18ii0.821.912.679 (10)156
O4—H41···O15ii0.821.882.691 (13)172
O4—H42···O29ii0.812.162.973 (12)173
N5—H5A···O24i0.882.133.000 (11)171
N6—H6A···O23i0.882.142.986 (11)162
N6—H6B···O70.882.172.982 (12)153
N6—H6B···O60.882.593.157 (12)123
N7—H7A···O270.882.082.938 (17)165
N7—H7B···O50.882.062.915 (14)163
N8—H8A···O300.882.142.989 (15)162
N8—H8B···O21iii0.882.102.932 (15)159
N8—H8B···O19iii0.882.653.223 (14)124
O5—H52···O110.822.092.887 (13)164
O5—H51···N70.852.462.915 (14)114
O6—H62···O30iv0.831.842.641 (11)162
O7—H72···O22v0.821.952.718 (11)155
O8—H81···O16iv0.831.962.756 (12)162
O8—H82···O10iii0.812.182.922 (13)152
N9—H9A···O210.882.403.150 (17)143
N9—H9A···O200.882.503.320 (16)156
N9—H9B···O270.881.982.834 (17)164
N10—H10A···O210.882.263.040 (17)148
N10—H10B···O100.882.102.954 (15)163
N11—H11A···O18i0.881.982.855 (12)177
N11—H11B···O90.882.132.994 (12)167
N12—H12A···O17i0.881.932.797 (12)169
N13—H13A···O2iv0.882.363.193 (11)158
N13—H13B···O28iv0.881.982.848 (13)168
N14—H14A···O26i0.882.222.980 (13)145
O9—H91···O28iv0.822.032.810 (12)159
O9—H92···O20iv0.821.942.721 (11)159
O9—H92···O22iv0.822.543.189 (10)137
O10—H101···O90.812.673.331 (11)139
O10—H102···O25iv0.821.772.57 (2)164
O10—H102···O25iv0.821.992.761 (13)156
O11—H111···O25iv0.822.152.851 (14)143
O11—H111···O26iv0.822.182.972 (18)163
O11—H112···O29iv0.821.962.718 (13)153
N15—H15A···O300.882.443.222 (12)148
N15—H15A···N80.882.693.331 (15)131
N16—H16A···O6vi0.882.343.184 (11)161
N16—H16B···O23ii0.881.992.866 (11)172
N17—H17A···O21iii0.881.992.864 (13)176
N18—H18A···O22iii0.881.982.846 (12)169
N18—H18B···O120.882.152.998 (11)163
N19—H19A···O17vii0.882.423.174 (15)145
N19—H19A···O16vii0.882.433.258 (15)156
N19—H19B···O24i0.882.032.887 (15)163
N19—H19B···O25i0.882.653.27 (2)129
N20—H20A···O17vii0.882.213.018 (16)153
N20—H20B···O130.882.112.966 (15)165
O12—H121···O23ii0.822.042.846 (10)167
O12—H122···O16viii0.812.062.740 (9)140
O13—H131···O19ii0.821.882.694 (12)171
O13—H132···O4iii0.822.232.981 (12)153
O14—H141···O20ii0.821.902.714 (11)173
O14—H142···O25ii0.822.102.750 (14)135
O14—H142···O25ii0.822.002.79 (2)161
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x, y+1, z1/2; (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x1, y, z; (vii) x+1, y+2, z1/2; (viii) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formula[Cd(CH4N2S)2(H2O)4][Cd(CH4N2S)3(H2O)3](SO4)2
Mr923.64
Crystal system, space groupMonoclinic, Pc
Temperature (K)173
a, b, c (Å)10.9941 (3), 11.7602 (3), 24.0100 (5)
β (°) 98.9169 (12)
V3)3066.80 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.94
Crystal size (mm)0.07 × 0.06 × 0.05
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.876, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
16186, 9995, 8817
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.099, 1.08
No. of reflections9995
No. of parameters453
No. of restraints2
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0102P)2 + 30.5291P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.78, 0.64
Absolute structureFlack, H. D. (1983). Acta Cryst. A39, 876–881
Absolute structure parameter0.15 (5)

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O26i0.882.142.958 (16)154
N1—H1A···O26'i0.882.243.11 (2)168
N1—H1B···O17i0.882.102.927 (15)156
N1—H1B···O15i0.882.553.111 (14)122
N2—H2A···O24i0.882.082.934 (15)163
N2—H2B···O10.882.022.875 (14)165
N3—H3A···O270.882.143.014 (14)169
N4—H4A···O280.882.173.000 (13)157
N4—H4B···O30.882.213.028 (12)155
N4—H4B···O20.882.633.183 (12)121
O1—H11···O29ii0.821.962.743 (13)160
O1—H12···O140.821.972.770 (12)164
O2—H21···O26ii0.822.052.636 (12)128
O2—H21···O26'ii0.822.122.856 (18)150
O3—H32···O18ii0.821.912.679 (10)156
O4—H41···O15ii0.821.882.691 (13)172
O4—H42···O29ii0.812.162.973 (12)173
N5—H5A···O24i0.882.133.000 (11)171
N6—H6A···O23i0.882.142.986 (11)162
N6—H6B···O70.882.172.982 (12)153
N6—H6B···O60.882.593.157 (12)123
N7—H7A···O270.882.082.938 (17)165
N7—H7B···O50.882.062.915 (14)163
N8—H8A···O300.882.142.989 (15)162
N8—H8B···O21iii0.882.102.932 (15)159
N8—H8B···O19iii0.882.653.223 (14)124
O5—H52···O110.822.092.887 (13)164
O5—H51···N70.852.462.915 (14)114
O6—H62···O30iv0.831.842.641 (11)162
O7—H72···O22v0.821.952.718 (11)155
O8—H81···O16iv0.831.962.756 (12)162
O8—H82···O10iii0.812.182.922 (13)152
N9—H9A···O210.882.403.150 (17)143
N9—H9A···O200.882.503.320 (16)156
N9—H9B···O270.881.982.834 (17)164
N10—H10A···O210.882.263.040 (17)148
N10—H10B···O100.882.102.954 (15)163
N11—H11A···O18i0.881.982.855 (12)177
N11—H11B···O90.882.132.994 (12)167
N12—H12A···O17i0.881.932.797 (12)169
N13—H13A···O2iv0.882.363.193 (11)158
N13—H13B···O28iv0.881.982.848 (13)168
N14—H14A···O26i0.882.222.980 (13)145
O9—H91···O28iv0.822.032.810 (12)159
O9—H92···O20iv0.821.942.721 (11)159
O9—H92···O22iv0.822.543.189 (10)137
O10—H101···O90.812.673.331 (11)139
O10—H102···O25'iv0.821.772.57 (2)164
O10—H102···O25iv0.821.992.761 (13)156
O11—H111···O25iv0.822.152.851 (14)143
O11—H111···O26'iv0.822.182.972 (18)163
O11—H112···O29iv0.821.962.718 (13)153
N15—H15A···O300.882.443.222 (12)148
N15—H15A···N80.882.693.331 (15)131
N16—H16A···O6vi0.882.343.184 (11)161
N16—H16B···O23ii0.881.992.866 (11)172
N17—H17A···O21iii0.881.992.864 (13)176
N18—H18A···O22iii0.881.982.846 (12)169
N18—H18B···O120.882.152.998 (11)163
N19—H19A···O17vii0.882.423.174 (15)145
N19—H19A···O16vii0.882.433.258 (15)156
N19—H19B···O24i0.882.032.887 (15)163
N19—H19B···O25'i0.882.653.27 (2)129
N20—H20A···O17vii0.882.213.018 (16)153
N20—H20B···O130.882.112.966 (15)165
O12—H121···O23ii0.822.042.846 (10)167
O12—H122···O16viii0.812.062.740 (9)140
O13—H131···O19ii0.821.882.694 (12)171
O13—H132···O4iii0.822.232.981 (12)153
O14—H141···O20ii0.821.902.714 (11)173
O14—H142···O25ii0.822.102.750 (14)135
O14—H142···O25'ii0.822.002.79 (2)161
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x, y+1, z1/2; (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x1, y, z; (vii) x+1, y+2, z1/2; (viii) x, y+2, z1/2.
 

Acknowledgements

This research was supported by the National Science and Engineering Research Council (NSERC) of Canada, the Canadian Foundation for Innovation (CFI) and the Province of Alberta (Department of Innovation and Science).

References

First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCavaica, L., Villa, A. C., Mangia, A. & Palmeiri, C. (1970). Inorg. Chim. Acta, 4, 463–470.  CSD CrossRef Google Scholar
First citationCorao, E. & Baggio, S. (1969). Inorg. Chim. Acta, 3, 617–622.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius B V, Delft, The Netherlands.  Google Scholar
First citationJalilehvand, F., Amini, Z. & Parmar, K. (2012). Inorg. Chem. Submitted.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationOussaid, M., Becker, P. & Carabatos-Nédelec, C. (2000). J. Raman Spectrosc. 31, 529–533.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds