organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-(4-Chloro­phen­yl)-2-(2-phenyl­cyclo­hex-2-en-1-yl­imino)­thia­zolidin-4-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
*Correspondence e-mail: hkfun@usm.my

(Received 22 May 2012; accepted 28 May 2012; online 2 June 2012)

The title compound, C21H19ClN2OS, exists in a cis conformation with respect to the N=C bond [1.2608 (13) Å]. The cyclo­hexene ring adopts a distorted half-chair conformation. The thia­zolidine ring is close to being planar (r.m.s. deviation = 0.057 Å) and makes dihedral angles of 62.92 (6) and 56.32 (6)°, respectively, with the benzene ring and the chloro-substituted benzene ring. The dihedral angle between the benzene ring and the chloro-substituted benzene ring is 72.91 (6)°. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯N hydrogen bonds into undulating sheets lying parallel to the bc plane. The crystal is further consolidated by C—H⋯π inter­actions.

Related literature

For details of thia­zolidin-4-one derivatives, see: Previtera et al. (1994)[Previtera, T., Vigorita, M. G., Bisila, M., Orsini, F., Benetolla, F. & Bombieri, G. (1994). Eur. J. Med. Chem. 29, 317-324.]; Sharma et al. (2000[Sharma, R. C. & Kumar, D. (2000). J. Indian Chem. Soc. 77, 492-493.]); Kato et al. (1999a[Kato, T., Ozaki, T. & Tamura, K. (1999a). J. Med. Chem. 42, 3134-3146.],b[Kato, T., Ozaki, T. & Ohi, N. (1999b). Tetrahedron Asymmetry, 10, 3963-3968.]); Tanabe et al. (1991[Tanabe, Y., Suzukamo, G., Komuro, Y., Imanishi, N., Morooka, S., Enomoto, M., Kojima, A., Sanemitsu, Y. & Mizutani, M. (1991). Tetrahedron Lett. 32, 379-382.]); Rawal et al. (2005[Rawal, R. K., Prabhakar, Y. S., Katti, S. B. & De Clercq, E. (2005). Bioorg. Med. Chem. 13, 6771-6776.]); Voss et al. (2003[Voss, M. E., Carter, P. H., Tebben, A. J., Scherle, P. A., Brown, G. D. & Thompson, L. A. (2003). Bioorg. Med. Chem. Lett. 13, 533-538.]). For related structures, see: Fun et al. (2011[Fun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, o2706.]); Ooi et al. (2012[Ooi, C. W., Fun, H.-K., Quah, C. K., Sathishkumar, M. & Ponnuswamy, A. (2012). Acta Cryst. E68, o1796-o1797.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19ClN2OS

  • Mr = 382.89

  • Monoclinic, P 21 /c

  • a = 9.1139 (3) Å

  • b = 17.4562 (6) Å

  • c = 12.9246 (4) Å

  • β = 118.640 (2)°

  • V = 1804.64 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 100 K

  • 0.37 × 0.25 × 0.18 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.886, Tmax = 0.942

  • 23788 measured reflections

  • 5231 independent reflections

  • 4605 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.083

  • S = 1.05

  • 5231 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O1i 0.99 2.53 3.4814 (17) 161
C11—H11B⋯O1ii 0.99 2.33 3.2411 (14) 152
C14—H14B⋯N1iii 0.99 2.62 3.4496 (14) 141
C17—H17ACg1iv 0.95 2.81 3.5913 (13) 140
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x-1, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiazolidin-4-one derivatives are known to exhibit diverse bioactivities such as anti-histaminic (Previtera et al., 1994), anti-microbial (Sharma et al., 2000), (Kato et al., 1999a), PAF antagonist (Tanabe et al., 1991), cardioprotective (Kato et al., 1999b), anti HIV (Rawal et al., 2005), and tumor necrosis factor-α antagonist activities (Voss et al., 2003).

The title compound (Fig. 1) exists in cis configuration with respect to the N1 C13 bond [N1 C13 = 1.2608 (13) Å]. The cyclohexene (C7–C12) ring adopts a distorted sofa conformation and the puckering parameters are Q = 0.5004 (13) Å, θ = 130.94 (15)° and φ = 34.4 (2)° (Cremer & Pople, 1975). The thiazolidine (S1/N2/C13–C15) ring is essentially planar with a maximum deviation of 0.054 (1) Å at atom N2 and makes dihedral angles of 62.92 (6) and 56.32 (6)° respectively with the benzene ring (C1–C6) and chloro-substituted benzene ring (C16–C21). The dihedral angle between the benzene ring and chloro-substituted benzene ring is 72.91 (6)°. The bond lengths and angles are comparable to the related structures (Fun et al., 2011 & Ooi et al., 2012).

In the crystal structure (Fig. 2), molecules are linked via C10—H10A···O1, C11—H11B···O1 and C14—H14B···N1 hydrogen bonds (Table 1) into undulating sheets lying parallel to the bc plane. The crystal is further consolidated by C17—H17A···Cg1 interactions (Table 1), involving the centroid of the benzene ring (C1–C6; Cg1).

Related literature top

For details of thiazolidin-4-one derivatives, see: Previtera et al. (1994); Sharma et al. (2000); Kato et al. (1999a,b); Tanabe et al. (1991); Rawal et al. (2005); Voss et al. (2003). For related structures, see: Fun et al. (2011); Ooi et al. (2012). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 1-(4-chlorophenyl)-3-(2-phenylcyclohex-2-enyl)thiourea (0.5 g, 2.3 mmol) and chloroacetyl chloride (0.33 g, 4.6 mmol) was heated to reflux in 1,4-dioxane (10 ml) at 100 °C for 5 h. The reaction mixture was washed with diluted sodium bicarbonate solution (25 ml) and dried over anhydrous sodium sulfate. The solvent was then evaporated under reduced pressure and the resulting residue was subjected to column chromatography using silica gel (60–120 mesh) as the stationary phase and petroleum ether-ethyl acetate (90:10) as the mobile phase to give the pure product. Yield: 0.71 g (80%); M.p.: 156–157 °C. Colourless blocks were obtained by recrystallization from dichloromethane solution.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 Ueq(C) (C—H = 0.95, 0.99 and 1.00 Å). In the final refinement, two outliers (1 1 7) and (-2 1 2) were omitted.

Structure description top

Thiazolidin-4-one derivatives are known to exhibit diverse bioactivities such as anti-histaminic (Previtera et al., 1994), anti-microbial (Sharma et al., 2000), (Kato et al., 1999a), PAF antagonist (Tanabe et al., 1991), cardioprotective (Kato et al., 1999b), anti HIV (Rawal et al., 2005), and tumor necrosis factor-α antagonist activities (Voss et al., 2003).

The title compound (Fig. 1) exists in cis configuration with respect to the N1 C13 bond [N1 C13 = 1.2608 (13) Å]. The cyclohexene (C7–C12) ring adopts a distorted sofa conformation and the puckering parameters are Q = 0.5004 (13) Å, θ = 130.94 (15)° and φ = 34.4 (2)° (Cremer & Pople, 1975). The thiazolidine (S1/N2/C13–C15) ring is essentially planar with a maximum deviation of 0.054 (1) Å at atom N2 and makes dihedral angles of 62.92 (6) and 56.32 (6)° respectively with the benzene ring (C1–C6) and chloro-substituted benzene ring (C16–C21). The dihedral angle between the benzene ring and chloro-substituted benzene ring is 72.91 (6)°. The bond lengths and angles are comparable to the related structures (Fun et al., 2011 & Ooi et al., 2012).

In the crystal structure (Fig. 2), molecules are linked via C10—H10A···O1, C11—H11B···O1 and C14—H14B···N1 hydrogen bonds (Table 1) into undulating sheets lying parallel to the bc plane. The crystal is further consolidated by C17—H17A···Cg1 interactions (Table 1), involving the centroid of the benzene ring (C1–C6; Cg1).

For details of thiazolidin-4-one derivatives, see: Previtera et al. (1994); Sharma et al. (2000); Kato et al. (1999a,b); Tanabe et al. (1991); Rawal et al. (2005); Voss et al. (2003). For related structures, see: Fun et al. (2011); Ooi et al. (2012). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
(Z)-3-(4-Chlorophenyl)-2-(2-phenylcyclohex-2-en-1- ylimino)thiazolidin-4-one top
Crystal data top
C21H19ClN2OSF(000) = 800
Mr = 382.89Dx = 1.409 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9952 reflections
a = 9.1139 (3) Åθ = 2.6–34.3°
b = 17.4562 (6) ŵ = 0.34 mm1
c = 12.9246 (4) ÅT = 100 K
β = 118.640 (2)°Block, colourless
V = 1804.64 (10) Å30.37 × 0.25 × 0.18 mm
Z = 4
Data collection top
Bruker APEX DUO CCD
diffractometer
5231 independent reflections
Radiation source: fine-focus sealed tube4605 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 30.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.886, Tmax = 0.942k = 2424
23788 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.767P]
where P = (Fo2 + 2Fc2)/3
5231 reflections(Δ/σ)max = 0.002
235 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C21H19ClN2OSV = 1804.64 (10) Å3
Mr = 382.89Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1139 (3) ŵ = 0.34 mm1
b = 17.4562 (6) ÅT = 100 K
c = 12.9246 (4) Å0.37 × 0.25 × 0.18 mm
β = 118.640 (2)°
Data collection top
Bruker APEX DUO CCD
diffractometer
5231 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4605 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.942Rint = 0.028
23788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.05Δρmax = 0.42 e Å3
5231 reflectionsΔρmin = 0.22 e Å3
235 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.21570 (4)0.051642 (15)1.02340 (2)0.02160 (7)
S10.24459 (4)0.363135 (15)0.69867 (2)0.01731 (7)
O10.04486 (10)0.16687 (5)0.56961 (7)0.01895 (16)
N10.27625 (11)0.31077 (5)0.90882 (7)0.01307 (16)
N20.18040 (11)0.22633 (5)0.74984 (7)0.01253 (16)
C10.63915 (13)0.29044 (6)1.06753 (10)0.0170 (2)
H1A0.61050.31300.99330.020*
C20.75211 (14)0.22981 (7)1.10844 (11)0.0220 (2)
H2A0.79900.21111.06170.026*
C30.79679 (15)0.19637 (7)1.21700 (12)0.0277 (3)
H3A0.87340.15481.24440.033*
C40.72833 (16)0.22428 (8)1.28510 (12)0.0282 (3)
H4A0.76000.20241.36020.034*
C50.61355 (15)0.28412 (7)1.24385 (10)0.0219 (2)
H5A0.56580.30191.29060.026*
C60.56708 (13)0.31871 (6)1.13445 (9)0.01562 (19)
C70.44377 (13)0.38247 (6)1.08949 (9)0.01487 (19)
C80.43293 (14)0.43351 (7)1.16306 (10)0.0214 (2)
H8A0.50730.42761.24500.026*
C90.31193 (16)0.49927 (7)1.12570 (11)0.0255 (2)
H9A0.37140.54601.16890.031*
H9B0.22330.48791.14700.031*
C100.23143 (15)0.51445 (6)0.99322 (11)0.0214 (2)
H10A0.13240.54780.96850.026*
H10B0.31200.54110.97480.026*
C110.17912 (13)0.43895 (6)0.92644 (9)0.01592 (19)
H11A0.11970.44920.84060.019*
H11B0.10130.41180.94700.019*
C120.33162 (13)0.38816 (6)0.95671 (9)0.01352 (18)
H12A0.39710.41070.92040.016*
C130.23863 (12)0.29844 (6)0.80285 (9)0.01265 (18)
C140.15339 (14)0.29402 (6)0.58042 (9)0.0176 (2)
H14A0.04860.31460.51510.021*
H14B0.23180.28280.54960.021*
C150.11748 (13)0.22186 (6)0.62889 (9)0.01409 (18)
C160.18581 (12)0.16066 (6)0.81802 (8)0.01233 (18)
C170.04100 (13)0.11881 (6)0.78834 (9)0.01434 (18)
H17A0.06320.13500.72540.017*
C180.05075 (14)0.05291 (6)0.85211 (9)0.01572 (19)
H18A0.04640.02320.83240.019*
C190.20399 (14)0.03118 (6)0.94472 (9)0.01523 (19)
C200.34831 (13)0.07366 (6)0.97650 (9)0.01584 (19)
H20A0.45160.05861.04150.019*
C210.33872 (13)0.13850 (6)0.91151 (9)0.01426 (18)
H21A0.43640.16780.93080.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02893 (14)0.01406 (12)0.02091 (13)0.00025 (10)0.01122 (11)0.00494 (9)
S10.02495 (14)0.01306 (12)0.01514 (12)0.00279 (9)0.01059 (10)0.00118 (9)
O10.0237 (4)0.0184 (4)0.0148 (3)0.0037 (3)0.0093 (3)0.0040 (3)
N10.0136 (4)0.0108 (4)0.0129 (4)0.0009 (3)0.0049 (3)0.0001 (3)
N20.0156 (4)0.0107 (4)0.0104 (4)0.0015 (3)0.0054 (3)0.0001 (3)
C10.0138 (4)0.0152 (5)0.0193 (5)0.0023 (4)0.0058 (4)0.0026 (4)
C20.0135 (5)0.0173 (5)0.0327 (6)0.0014 (4)0.0090 (4)0.0048 (4)
C30.0154 (5)0.0196 (6)0.0383 (7)0.0030 (4)0.0051 (5)0.0053 (5)
C40.0227 (6)0.0273 (6)0.0253 (6)0.0023 (5)0.0041 (5)0.0089 (5)
C50.0188 (5)0.0248 (6)0.0184 (5)0.0007 (4)0.0059 (4)0.0025 (4)
C60.0122 (4)0.0149 (5)0.0157 (4)0.0018 (4)0.0034 (4)0.0015 (4)
C70.0127 (4)0.0149 (5)0.0143 (4)0.0010 (4)0.0043 (4)0.0012 (4)
C80.0194 (5)0.0224 (5)0.0171 (5)0.0011 (4)0.0045 (4)0.0055 (4)
C90.0251 (6)0.0211 (6)0.0260 (6)0.0029 (5)0.0088 (5)0.0091 (4)
C100.0212 (5)0.0129 (5)0.0277 (6)0.0013 (4)0.0096 (4)0.0018 (4)
C110.0156 (4)0.0126 (4)0.0164 (4)0.0015 (4)0.0050 (4)0.0015 (4)
C120.0148 (4)0.0107 (4)0.0133 (4)0.0016 (3)0.0053 (4)0.0008 (3)
C130.0126 (4)0.0107 (4)0.0139 (4)0.0001 (3)0.0057 (3)0.0013 (3)
C140.0244 (5)0.0163 (5)0.0137 (4)0.0018 (4)0.0103 (4)0.0002 (4)
C150.0150 (4)0.0160 (5)0.0124 (4)0.0007 (4)0.0075 (4)0.0002 (3)
C160.0154 (4)0.0103 (4)0.0113 (4)0.0003 (3)0.0064 (3)0.0002 (3)
C170.0145 (4)0.0146 (4)0.0122 (4)0.0008 (4)0.0050 (3)0.0008 (3)
C180.0176 (5)0.0144 (5)0.0149 (4)0.0038 (4)0.0076 (4)0.0019 (4)
C190.0222 (5)0.0100 (4)0.0143 (4)0.0010 (4)0.0093 (4)0.0008 (3)
C200.0162 (4)0.0142 (5)0.0153 (4)0.0034 (4)0.0061 (4)0.0008 (4)
C210.0133 (4)0.0132 (4)0.0156 (4)0.0001 (3)0.0064 (4)0.0009 (3)
Geometric parameters (Å, º) top
Cl1—C191.7411 (11)C8—H8A0.9500
S1—C131.7780 (10)C9—C101.5284 (18)
S1—C141.8067 (11)C9—H9A0.9900
O1—C151.2084 (13)C9—H9B0.9900
N1—C131.2608 (13)C10—C111.5215 (15)
N1—C121.4707 (13)C10—H10A0.9900
N2—C151.3854 (12)C10—H10B0.9900
N2—C131.4096 (13)C11—C121.5329 (14)
N2—C161.4322 (13)C11—H11A0.9900
C1—C21.3921 (15)C11—H11B0.9900
C1—C61.4027 (15)C12—H12A1.0000
C1—H1A0.9500C14—C151.5110 (15)
C2—C31.3883 (19)C14—H14A0.9900
C2—H2A0.9500C14—H14B0.9900
C3—C41.388 (2)C16—C171.3920 (14)
C3—H3A0.9500C16—C211.3920 (14)
C4—C51.3911 (17)C17—C181.3929 (14)
C4—H4A0.9500C17—H17A0.9500
C5—C61.4032 (15)C18—C191.3873 (15)
C5—H5A0.9500C18—H18A0.9500
C6—C71.4878 (15)C19—C201.3895 (15)
C7—C81.3408 (15)C20—C211.3871 (14)
C7—C121.5226 (14)C20—H20A0.9500
C8—C91.5021 (17)C21—H21A0.9500
C13—S1—C1492.74 (5)C10—C11—H11A109.5
C13—N1—C12118.28 (9)C12—C11—H11A109.5
C15—N2—C13117.03 (8)C10—C11—H11B109.5
C15—N2—C16121.51 (8)C12—C11—H11B109.5
C13—N2—C16121.45 (8)H11A—C11—H11B108.0
C2—C1—C6120.85 (11)N1—C12—C7108.91 (8)
C2—C1—H1A119.6N1—C12—C11109.73 (8)
C6—C1—H1A119.6C7—C12—C11111.23 (8)
C3—C2—C1120.59 (11)N1—C12—H12A109.0
C3—C2—H2A119.7C7—C12—H12A109.0
C1—C2—H2A119.7C11—C12—H12A109.0
C2—C3—C4119.33 (11)N1—C13—N2121.56 (9)
C2—C3—H3A120.3N1—C13—S1128.54 (8)
C4—C3—H3A120.3N2—C13—S1109.89 (7)
C3—C4—C5120.29 (12)C15—C14—S1108.01 (7)
C3—C4—H4A119.9C15—C14—H14A110.1
C5—C4—H4A119.9S1—C14—H14A110.1
C4—C5—C6121.17 (12)C15—C14—H14B110.1
C4—C5—H5A119.4S1—C14—H14B110.1
C6—C5—H5A119.4H14A—C14—H14B108.4
C1—C6—C5117.75 (10)O1—C15—N2124.39 (10)
C1—C6—C7120.77 (10)O1—C15—C14124.13 (9)
C5—C6—C7121.48 (10)N2—C15—C14111.47 (9)
C8—C7—C6121.25 (10)C17—C16—C21121.06 (9)
C8—C7—C12121.21 (10)C17—C16—N2120.14 (9)
C6—C7—C12117.54 (9)C21—C16—N2118.78 (9)
C7—C8—C9124.89 (10)C16—C17—C18119.16 (9)
C7—C8—H8A117.6C16—C17—H17A120.4
C9—C8—H8A117.6C18—C17—H17A120.4
C8—C9—C10112.15 (10)C19—C18—C17119.25 (10)
C8—C9—H9A109.2C19—C18—H18A120.4
C10—C9—H9A109.2C17—C18—H18A120.4
C8—C9—H9B109.2C18—C19—C20121.87 (10)
C10—C9—H9B109.2C18—C19—Cl1119.04 (8)
H9A—C9—H9B107.9C20—C19—Cl1119.09 (8)
C11—C10—C9109.69 (10)C21—C20—C19118.72 (10)
C11—C10—H10A109.7C21—C20—H20A120.6
C9—C10—H10A109.7C19—C20—H20A120.6
C11—C10—H10B109.7C20—C21—C16119.91 (10)
C9—C10—H10B109.7C20—C21—H21A120.0
H10A—C10—H10B108.2C16—C21—H21A120.0
C10—C11—C12110.92 (9)
C6—C1—C2—C30.49 (17)C15—N2—C13—N1170.00 (9)
C1—C2—C3—C40.36 (18)C16—N2—C13—N19.89 (15)
C2—C3—C4—C51.30 (19)C15—N2—C13—S19.15 (11)
C3—C4—C5—C61.42 (19)C16—N2—C13—S1170.96 (7)
C2—C1—C6—C50.38 (16)C14—S1—C13—N1175.13 (10)
C2—C1—C6—C7178.76 (10)C14—S1—C13—N23.95 (8)
C4—C5—C6—C10.56 (17)C13—S1—C14—C151.41 (8)
C4—C5—C6—C7179.69 (11)C13—N2—C15—O1170.49 (10)
C1—C6—C7—C8147.73 (11)C16—N2—C15—O19.40 (16)
C5—C6—C7—C833.17 (16)C13—N2—C15—C1410.39 (13)
C1—C6—C7—C1231.62 (14)C16—N2—C15—C14169.72 (9)
C5—C6—C7—C12147.49 (10)S1—C14—C15—O1174.28 (9)
C6—C7—C8—C9179.63 (11)S1—C14—C15—N26.60 (11)
C12—C7—C8—C91.05 (18)C15—N2—C16—C1754.52 (13)
C7—C8—C9—C1014.39 (18)C13—N2—C16—C17125.37 (10)
C8—C9—C10—C1144.28 (14)C15—N2—C16—C21123.55 (10)
C9—C10—C11—C1263.22 (12)C13—N2—C16—C2156.56 (13)
C13—N1—C12—C7153.55 (9)C21—C16—C17—C181.28 (15)
C13—N1—C12—C1184.48 (11)N2—C16—C17—C18176.74 (9)
C8—C7—C12—N1139.34 (11)C16—C17—C18—C190.93 (15)
C6—C7—C12—N141.32 (12)C17—C18—C19—C200.53 (16)
C8—C7—C12—C1118.28 (14)C17—C18—C19—Cl1179.52 (8)
C6—C7—C12—C11162.38 (9)C18—C19—C20—C211.63 (16)
C10—C11—C12—N1169.61 (9)Cl1—C19—C20—C21178.41 (8)
C10—C11—C12—C749.04 (12)C19—C20—C21—C161.27 (15)
C12—N1—C13—N2178.32 (9)C17—C16—C21—C200.16 (15)
C12—N1—C13—S10.66 (14)N2—C16—C21—C20177.89 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.992.533.4814 (17)161
C11—H11B···O1ii0.992.333.2411 (14)152
C14—H14B···N1iii0.992.623.4496 (14)141
C17—H17A···Cg1iv0.952.813.5913 (13)140
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x1, y1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC21H19ClN2OS
Mr382.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.1139 (3), 17.4562 (6), 12.9246 (4)
β (°) 118.640 (2)
V3)1804.64 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.37 × 0.25 × 0.18
Data collection
DiffractometerBruker APEX DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.886, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
23788, 5231, 4605
Rint0.028
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.05
No. of reflections5231
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.992.533.4814 (17)161
C11—H11B···O1ii0.992.333.2411 (14)152
C14—H14B···N1iii0.992.623.4496 (14)141
C17—H17A···Cg1iv0.952.813.5913 (13)140
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x1, y1/2, z3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

CWO, HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). CWO also thanks the Malaysian Goverment and USM for the award of the post of Research Officer under Research University Grant No. 1001/PFIZIK/811160.

References

First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, o2706.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKato, T., Ozaki, T. & Ohi, N. (1999b). Tetrahedron Asymmetry, 10, 3963–3968.  Web of Science CrossRef CAS Google Scholar
First citationKato, T., Ozaki, T. & Tamura, K. (1999a). J. Med. Chem. 42, 3134–3146.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOoi, C. W., Fun, H.-K., Quah, C. K., Sathishkumar, M. & Ponnuswamy, A. (2012). Acta Cryst. E68, o1796–o1797.  CSD CrossRef IUCr Journals Google Scholar
First citationPrevitera, T., Vigorita, M. G., Bisila, M., Orsini, F., Benetolla, F. & Bombieri, G. (1994). Eur. J. Med. Chem. 29, 317–324.  CrossRef CAS Web of Science Google Scholar
First citationRawal, R. K., Prabhakar, Y. S., Katti, S. B. & De Clercq, E. (2005). Bioorg. Med. Chem. 13, 6771–6776.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSharma, R. C. & Kumar, D. (2000). J. Indian Chem. Soc. 77, 492–493.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanabe, Y., Suzukamo, G., Komuro, Y., Imanishi, N., Morooka, S., Enomoto, M., Kojima, A., Sanemitsu, Y. & Mizutani, M. (1991). Tetrahedron Lett. 32, 379–382.  CrossRef CAS Web of Science Google Scholar
First citationVoss, M. E., Carter, P. H., Tebben, A. J., Scherle, P. A., Brown, G. D. & Thompson, L. A. (2003). Bioorg. Med. Chem. Lett. 13, 533–538.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds