metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­[N-(pyridin-4-yl)isonicotin­amide-κN]bis­­(thio­cyanato-κN)cobalt(II)

aLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

(Received 23 May 2012; accepted 26 May 2012; online 2 June 2012)

In the title compound, [Co(NCS)2(C11H9N3O)2(H2O)2], the octa­hedrally coordinated CoII ion lies on a crystallographic inversion center and is bound by two isothio­cyanate ligands, two aqua ligands and two N-(pyridin-4-yl)isonicotinamide (4-pina) ligands. The dihedral angle between the aromatic rings in the 4-pina ligand is 8.98 (11)°. In the crystal, the individual mol­ecular units are aggregated in three dimensions by O—H⋯N, O—H⋯S and N—H⋯S hydrogen-bonding pathways.

Related literature

For other cobalt isothio­cyanate coordination polymers containing dipyridyl ligands, see: Johnston et al. (2007[Johnston, L. L., Ursini, A. J., Oien, N. P., Supkowski, R. M. & LaDuca, R. L. (2007). Inorg. Chim. Acta, 360, 3619-3625.]); Martin et al. (2009[Martin, D. P., Knapp, W. R., Supkowski, R. M. & LaDuca, R. L. (2009). Inorg. Chim. Acta, 362, 1559-1564.]). For other coordination polymers containing the 4-pina ligand, see: Uemura et al. (2008[Uemura, K., Kumamoto, Y. & Kitagawa, S. (2008). Chem. Eur. J. 14, 9565-9576.]). For the synthesis of the 4-pina ligand, see: Gardner et al. (1954)[Gardner, T. S., Wenis, E. & Lee, J. (1954). J. Org. Chem., 19, 753-757.].

[Scheme 1]

Experimental

Crystal data
  • [Co(NCS)2(C11H9N3O)2(H2O)2]

  • Mr = 609.55

  • Triclinic, [P \overline 1]

  • a = 7.0651 (4) Å

  • b = 9.3943 (5) Å

  • c = 10.5943 (6) Å

  • α = 81.433 (1)°

  • β = 76.343 (1)°

  • γ = 71.697 (1)°

  • V = 646.58 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 173 K

  • 0.30 × 0.19 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.778, Tmax = 0.873

  • 10537 measured reflections

  • 2348 independent reflections

  • 2224 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.079

  • S = 1.06

  • 2348 reflections

  • 187 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.07 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.0964 (15)
Co1—N4 2.0994 (18)
Co1—N1 2.1410 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯S1i 0.83 (2) 2.52 (2) 3.3129 (16) 162 (2)
O1—H1B⋯N3ii 0.84 (2) 1.95 (2) 2.755 (2) 162 (2)
N2—H2N⋯S1iii 0.93 (2) 2.68 (2) 3.540 (2) 155 (2)
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In an attempt to prepare cobalt isothiocyanato coordination polymers containing 4-pyridylisonicotinamide (4-pina), the title compound, [Co(H2O)2(NCS)2(C11H9N3O)2], was isolated.

The asymmetric unit of the title compound contains a CoII ion on a crystallographic inversion center, one aqua ligand, one N-bound isothiocyanato ligand, and one 4-pina ligand bound via the pyridyl ring closest to the amide N atom. Operation of the inversion center produces a complete [Co(H2O)2(NCS)2(4-pina)2] molecular complex (Fig. 1). The CoII ion is octahedrally coordinated with trans aqua ligands, trans isothiocyanato ligands and trans 4-pina ligands. One of the pyridyl termini of the 4-pina ligand remains unligated and unprotonated.

Individual [Co(H2O)2(NCS)2(4-pina)2] complexes are connected into supramolecular chain motifs oriented along the [1 1 0] crystal direction (Fig. 2) via O—H···N hydrogen bonding between aqua ligands and unligated pyridyl N atoms. In turn these supramolecular chains aggregate into layer motifs (Fig. 3) by means of O—H···S hydrogen bonding between aqua ligands and terminal S atoms of the isothiocyanato ligands. These layers are coincident with the crystallographic (0 1 1) planes. These planes further aggregate into the three-dimensional crystal structure of the title compound (Fig. 4) through N—H···S hydrogen bonding between amide N—H groups of the 4-pina ligands and terminal S atoms of the isothiocyanato ligands.

Related literature top

For other cobalt isothiocyanate coordination polymers containing dipyridyl ligands, see: Johnston, et al. (2007); Martin, et al. (2009). For other coordination polymers containing the 4-pina ligand, see: Uemura, et al. (2008). For the synthesis of the 4-pina ligand, see: Gardner et al. (1954).

Experimental top

Cobalt(II) thiocyanate was obtained commercially. 4-Pyridylisonicotinamide was prepared by a published procedure (Gardner et al., 1954). Cobalt(II) thiocyanate (23 mg, 0.13 mmol) was dissolved in 3 ml water in a 15 ml glass vial. Onto this solution was layered 2 ml of a 1:1 water:ethanol solution, followed by a solution of 4-pina (19 mg, 0.10 mmol) dissolved in 3 ml 95% ethanol. Pink blocks of the title compound (16 mg, 0.026 mmol, 55% yield based on 4-pina) were obtained after 14 d at 298 K, and were isolated after washing with distilled water and acetone, and drying in air.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å, and refined in riding mode with Uiso = 1.2Ueq(C). The H atoms bound to the aqua ligand O atom were found in a difference Fourier map, restrained with with O—H = 0.85 Å and refined with Uiso = 1.2Ueq(O). The H atom bound to the 4-pina ligand N atom was found in a difference Fourier map, restrained with with N—H = 0.90 Å and refined with Uiso = 1.2Ueq(N).

Structure description top

In an attempt to prepare cobalt isothiocyanato coordination polymers containing 4-pyridylisonicotinamide (4-pina), the title compound, [Co(H2O)2(NCS)2(C11H9N3O)2], was isolated.

The asymmetric unit of the title compound contains a CoII ion on a crystallographic inversion center, one aqua ligand, one N-bound isothiocyanato ligand, and one 4-pina ligand bound via the pyridyl ring closest to the amide N atom. Operation of the inversion center produces a complete [Co(H2O)2(NCS)2(4-pina)2] molecular complex (Fig. 1). The CoII ion is octahedrally coordinated with trans aqua ligands, trans isothiocyanato ligands and trans 4-pina ligands. One of the pyridyl termini of the 4-pina ligand remains unligated and unprotonated.

Individual [Co(H2O)2(NCS)2(4-pina)2] complexes are connected into supramolecular chain motifs oriented along the [1 1 0] crystal direction (Fig. 2) via O—H···N hydrogen bonding between aqua ligands and unligated pyridyl N atoms. In turn these supramolecular chains aggregate into layer motifs (Fig. 3) by means of O—H···S hydrogen bonding between aqua ligands and terminal S atoms of the isothiocyanato ligands. These layers are coincident with the crystallographic (0 1 1) planes. These planes further aggregate into the three-dimensional crystal structure of the title compound (Fig. 4) through N—H···S hydrogen bonding between amide N—H groups of the 4-pina ligands and terminal S atoms of the isothiocyanato ligands.

For other cobalt isothiocyanate coordination polymers containing dipyridyl ligands, see: Johnston, et al. (2007); Martin, et al. (2009). For other coordination polymers containing the 4-pina ligand, see: Uemura, et al. (2008). For the synthesis of the 4-pina ligand, see: Gardner et al. (1954).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of the title compound, showing 50% probability ellipsoids and partial atom numbering scheme. Unlabelled atoms are generated by (1–x, –y, 1–z). Hydrogen atom positions are shown as grey sticks. Color codes: dark blue Co, red O, black C, light blue N, yellow S.
[Figure 2] Fig. 2. A supramolecular chain of [Co(H2O)2(NCS)2(4-pina)2] molecules formed by O—H···N hydrogen bonding, which is indicated as dashed lines.
[Figure 3] Fig. 3. A supramolecular layer of chains of [Co(H2O)2(NCS)2(4-pina)2] molecules formed by O—H···S hydrogen bonding, which is indicated as dashed lines.
[Figure 4] Fig. 4. Stacking diagram of the title compound. Supramolecular layers are aggregated by by N—H···S hydrogen bonding, which is indicated as dashed lines.
Diaquabis[N-(pyridin-4-yl)isonicotinamide- κN]bis(thiocyanato-κN)cobalt(II) top
Crystal data top
[Co(NCS)2(C11H9N3O)2(H2O)2]Z = 1
Mr = 609.55F(000) = 313
Triclinic, P1Dx = 1.565 Mg m3
a = 7.0651 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3943 (5) ÅCell parameters from 7965 reflections
c = 10.5943 (6) Åθ = 2.3–25.3°
α = 81.433 (1)°µ = 0.87 mm1
β = 76.343 (1)°T = 173 K
γ = 71.697 (1)°Prism, pink
V = 646.58 (6) Å30.30 × 0.19 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
2348 independent reflections
Radiation source: fine-focus sealed tube2224 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 25.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.778, Tmax = 0.873k = 1111
10537 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.6702P]
where P = (Fo2 + 2Fc2)/3
2348 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 1.07 e Å3
4 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Co(NCS)2(C11H9N3O)2(H2O)2]γ = 71.697 (1)°
Mr = 609.55V = 646.58 (6) Å3
Triclinic, P1Z = 1
a = 7.0651 (4) ÅMo Kα radiation
b = 9.3943 (5) ŵ = 0.87 mm1
c = 10.5943 (6) ÅT = 173 K
α = 81.433 (1)°0.30 × 0.19 × 0.16 mm
β = 76.343 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2348 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2224 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 0.873Rint = 0.021
10537 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0314 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.07 e Å3
2348 reflectionsΔρmin = 0.33 e Å3
187 parameters
Special details top

Experimental. REM Highest difference peak 1.065, 1.00 Å from N2

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50001.00000.50000.01560 (12)
S10.01686 (8)0.77868 (6)0.79444 (5)0.02645 (15)
O10.7779 (2)0.86741 (18)0.54694 (15)0.0256 (3)
H1A0.815 (4)0.861 (3)0.6164 (18)0.031*
H1B0.879 (3)0.847 (3)0.4857 (19)0.031*
O20.5678 (2)0.71752 (16)0.10588 (14)0.0266 (3)
N10.5585 (3)0.86061 (19)0.34441 (16)0.0198 (4)
N20.7178 (3)0.5618 (2)0.05144 (18)0.0283 (4)
H2N0.790 (4)0.462 (2)0.066 (2)0.034*
N30.9194 (3)0.2524 (2)0.34165 (17)0.0246 (4)
N40.3440 (3)0.8620 (2)0.62833 (17)0.0247 (4)
C10.5605 (3)0.9145 (2)0.2200 (2)0.0246 (5)
H10.52811.02030.20020.030*
C20.6077 (4)0.8233 (3)0.1186 (2)0.0301 (5)
H20.60580.86630.03170.036*
C30.6578 (3)0.6679 (3)0.1461 (2)0.0263 (5)
C40.6567 (3)0.6116 (3)0.2740 (2)0.0280 (5)
H40.69070.50620.29650.034*
C50.6054 (3)0.7106 (2)0.3685 (2)0.0248 (5)
H50.60310.67020.45640.030*
C60.8466 (3)0.3991 (3)0.3756 (2)0.0273 (5)
H60.85100.42970.46560.033*
C70.7661 (3)0.5084 (3)0.2891 (2)0.0273 (5)
H70.71440.61100.31870.033*
C80.7621 (3)0.4658 (2)0.1579 (2)0.0243 (5)
C90.8341 (3)0.3146 (3)0.1199 (2)0.0270 (5)
H90.83170.28130.03050.032*
C100.9102 (3)0.2119 (2)0.2148 (2)0.0261 (5)
H100.95780.10810.18790.031*
C110.6720 (3)0.5941 (3)0.0696 (2)0.0274 (5)
C120.2111 (3)0.8259 (2)0.69719 (19)0.0200 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0173 (2)0.0152 (2)0.0135 (2)0.00330 (15)0.00210 (14)0.00348 (14)
S10.0252 (3)0.0293 (3)0.0243 (3)0.0109 (2)0.0049 (2)0.0058 (2)
O10.0213 (8)0.0345 (9)0.0165 (7)0.0012 (7)0.0044 (6)0.0072 (6)
O20.0319 (8)0.0210 (8)0.0237 (8)0.0009 (6)0.0110 (6)0.0021 (6)
N10.0195 (8)0.0203 (8)0.0191 (8)0.0032 (7)0.0039 (7)0.0055 (7)
N20.0317 (10)0.0254 (10)0.0266 (10)0.0055 (8)0.0058 (8)0.0045 (8)
N30.0220 (9)0.0267 (9)0.0241 (9)0.0042 (7)0.0014 (7)0.0105 (7)
N40.0288 (10)0.0241 (9)0.0212 (9)0.0094 (8)0.0028 (8)0.0019 (7)
C10.0270 (11)0.0245 (11)0.0223 (11)0.0054 (9)0.0064 (9)0.0043 (8)
C20.0321 (12)0.0437 (14)0.0167 (10)0.0123 (10)0.0050 (9)0.0057 (9)
C30.0195 (10)0.0301 (12)0.0317 (12)0.0087 (9)0.0005 (9)0.0160 (9)
C40.0282 (11)0.0225 (11)0.0324 (12)0.0051 (9)0.0029 (9)0.0097 (9)
C50.0271 (11)0.0224 (11)0.0245 (11)0.0051 (9)0.0053 (9)0.0057 (9)
C60.0287 (12)0.0295 (12)0.0220 (11)0.0059 (9)0.0032 (9)0.0058 (9)
C70.0270 (11)0.0232 (11)0.0308 (12)0.0064 (9)0.0030 (9)0.0058 (9)
C80.0173 (10)0.0274 (11)0.0306 (11)0.0098 (9)0.0010 (8)0.0122 (9)
C90.0264 (11)0.0387 (13)0.0179 (10)0.0121 (10)0.0025 (8)0.0059 (9)
C100.0261 (11)0.0228 (11)0.0279 (11)0.0039 (9)0.0051 (9)0.0048 (9)
C110.0247 (11)0.0328 (13)0.0265 (11)0.0130 (10)0.0024 (9)0.0027 (9)
C120.0246 (11)0.0158 (9)0.0195 (10)0.0030 (8)0.0081 (9)0.0016 (8)
Geometric parameters (Å, º) top
Co1—O12.0964 (15)C1—C21.388 (3)
Co1—O1i2.0964 (15)C1—H10.9500
Co1—N4i2.0994 (18)C2—C31.392 (3)
Co1—N42.0994 (18)C2—H20.9500
Co1—N1i2.1410 (16)C3—C41.379 (3)
Co1—N12.1410 (16)C4—C51.376 (3)
S1—C121.649 (2)C4—H40.9500
O1—H1A0.825 (16)C5—H50.9500
O1—H1B0.836 (16)C6—C71.373 (3)
O2—C111.225 (3)C6—H60.9500
N1—C11.338 (3)C7—C81.384 (3)
N1—C51.342 (3)C7—H70.9500
N2—C111.364 (3)C8—C91.383 (3)
N2—C31.418 (3)C8—C111.518 (3)
N2—H2N0.927 (17)C9—C101.392 (3)
N3—C101.332 (3)C9—H90.9500
N3—C61.337 (3)C10—H100.9500
N4—C121.154 (3)
O1—Co1—O1i180.0C1—C2—H2120.5
O1—Co1—N4i88.84 (7)C3—C2—H2120.5
O1i—Co1—N4i91.16 (7)C4—C3—C2118.11 (19)
O1—Co1—N491.16 (7)C4—C3—N2117.0 (2)
O1i—Co1—N488.84 (7)C2—C3—N2124.9 (2)
N4i—Co1—N4180.0C5—C4—C3118.9 (2)
O1—Co1—N1i91.88 (6)C5—C4—H4120.6
O1i—Co1—N1i88.12 (6)C3—C4—H4120.6
N4i—Co1—N1i91.27 (7)N1—C5—C4124.2 (2)
N4—Co1—N1i88.73 (7)N1—C5—H5117.9
O1—Co1—N188.12 (6)C4—C5—H5117.9
O1i—Co1—N191.88 (6)N3—C6—C7124.4 (2)
N4i—Co1—N188.73 (7)N3—C6—H6117.8
N4—Co1—N191.27 (7)C7—C6—H6117.8
N1i—Co1—N1180.0C6—C7—C8118.5 (2)
Co1—O1—H1A127.1 (18)C6—C7—H7120.8
Co1—O1—H1B117.5 (17)C8—C7—H7120.8
H1A—O1—H1B110 (2)C9—C8—C7118.34 (19)
C1—N1—C5116.63 (18)C9—C8—C11126.7 (2)
C1—N1—Co1123.33 (14)C7—C8—C11114.90 (19)
C5—N1—Co1119.97 (14)C8—C9—C10118.9 (2)
C11—N2—C3124.0 (2)C8—C9—H9120.6
C11—N2—H2N112.7 (16)C10—C9—H9120.6
C3—N2—H2N123.3 (16)N3—C10—C9123.2 (2)
C10—N3—C6116.73 (18)N3—C10—H10118.4
C12—N4—Co1159.23 (17)C9—C10—H10118.4
N1—C1—C2123.2 (2)O2—C11—N2123.0 (2)
N1—C1—H1118.4O2—C11—C8121.9 (2)
C2—C1—H1118.4N2—C11—C8115.1 (2)
C1—C2—C3119.0 (2)N4—C12—S1178.42 (19)
O1—Co1—N1—C1124.58 (17)C11—N2—C3—C222.5 (3)
O1i—Co1—N1—C155.42 (17)C2—C3—C4—C50.3 (3)
N4i—Co1—N1—C135.70 (17)N2—C3—C4—C5178.0 (2)
N4—Co1—N1—C1144.30 (17)C1—N1—C5—C40.8 (3)
N1i—Co1—N1—C127 (35)Co1—N1—C5—C4176.15 (17)
O1—Co1—N1—C552.17 (16)C3—C4—C5—N11.0 (3)
O1i—Co1—N1—C5127.83 (16)C10—N3—C6—C70.5 (3)
N4i—Co1—N1—C5141.05 (16)N3—C6—C7—C81.1 (3)
N4—Co1—N1—C538.95 (16)C6—C7—C8—C91.8 (3)
N1i—Co1—N1—C5156 (35)C6—C7—C8—C11179.56 (19)
O1—Co1—N4—C12156.5 (5)C7—C8—C9—C100.9 (3)
O1i—Co1—N4—C1223.5 (5)C11—C8—C9—C10179.4 (2)
N4i—Co1—N4—C12129 (100)C6—N3—C10—C91.5 (3)
N1i—Co1—N4—C1264.7 (5)C8—C9—C10—N30.8 (3)
N1—Co1—N4—C12115.3 (5)C3—N2—C11—O22.7 (3)
C5—N1—C1—C20.1 (3)C3—N2—C11—C8176.58 (19)
Co1—N1—C1—C2176.94 (16)C9—C8—C11—O2161.6 (2)
N1—C1—C2—C30.7 (3)C7—C8—C11—O216.8 (3)
C1—C2—C3—C40.5 (3)C9—C8—C11—N219.1 (3)
C1—C2—C3—N2177.0 (2)C7—C8—C11—N2162.41 (19)
C11—N2—C3—C4159.9 (2)Co1—N4—C12—S17 (8)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···S1ii0.83 (2)2.52 (2)3.3129 (16)162 (2)
O1—H1B···N3iii0.84 (2)1.95 (2)2.755 (2)162 (2)
N2—H2N···S1iv0.93 (2)2.68 (2)3.540 (2)155 (2)
Symmetry codes: (ii) x+1, y, z; (iii) x+2, y+1, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co(NCS)2(C11H9N3O)2(H2O)2]
Mr609.55
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.0651 (4), 9.3943 (5), 10.5943 (6)
α, β, γ (°)81.433 (1), 76.343 (1), 71.697 (1)
V3)646.58 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.30 × 0.19 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.778, 0.873
No. of measured, independent and
observed [I > 2σ(I)] reflections
10537, 2348, 2224
Rint0.021
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 1.06
No. of reflections2348
No. of parameters187
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.07, 0.33

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O12.0964 (15)Co1—N12.1410 (16)
Co1—N42.0994 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···S1i0.825 (16)2.517 (18)3.3129 (16)162 (2)
O1—H1B···N3ii0.836 (16)1.947 (18)2.755 (2)162 (2)
N2—H2N···S1iii0.927 (17)2.677 (19)3.540 (2)155 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGardner, T. S., Wenis, E. & Lee, J. (1954). J. Org. Chem., 19, 753–757.  CrossRef CAS Google Scholar
First citationJohnston, L. L., Ursini, A. J., Oien, N. P., Supkowski, R. M. & LaDuca, R. L. (2007). Inorg. Chim. Acta, 360, 3619–3625.  Web of Science CrossRef CAS Google Scholar
First citationMartin, D. P., Knapp, W. R., Supkowski, R. M. & LaDuca, R. L. (2009). Inorg. Chim. Acta, 362, 1559–1564.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUemura, K., Kumamoto, Y. & Kitagawa, S. (2008). Chem. Eur. J. 14, 9565–9576.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds