organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(2-Bromo­benzyl­­idene)amino]-3-(pyridin-4-yl)-1H-1,2,4-triazole-5(4H)-thione

aSchool of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China
*Correspondence e-mail: xiaojun801115@163.com

(Received 25 May 2012; accepted 29 May 2012; online 2 June 2012)

In the title compound, C14H10BrN5S, the dihedral angle between the triazole ring and the pyridine and bromo­benzene rings are 26.42 (13) and 6.28 (13)°, respectively. The molecule exists as a thione in the solid state. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds, generating [010] C(8) chains.

Related literature

For related structures, see: Zou et al. (2008[Zou, F., Xuan, W.-M., Fang, X.-M. & Zhang, H. (2008). Acta Cryst. E64, o213.]); Kashaev et al. (2010[Kashaev, A. G., Zimichev, A. V., Rybakov, V. B., Klimochkin, Y. N. & Zemtsova, M. N. (2010). Acta Cryst. E66, o3090.]); Liu & Liu (2011[Liu, X.-F. & Liu, X.-H. (2011). Acta Cryst. E67, o202.]); Liu, Pan, Weng, Tan et al. (2012[Liu, X. H., Pan, L., Weng, J. Q., Tan, C. X., Li, Y. H., Wang, B. L. & Li, Z. M. (2012). Mol. Divers. doi:10.1007/s11030-011-9352-z.]); Liu, Tan, Weng & Liu (2012[Liu, X.-H., Tan, C.-X., Weng, J.-Q. & Liu, H.-J. (2012). Acta Cryst. E68, o493.]); Tan et al. (2012[Tan, C. X., Shi, Y. X., Weng, J. Q., Liu, X. H., Li, B. J. & Zhao, W. G. (2012). Lett. Drug. Des. Discov. 9, 431-435.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10BrN5S

  • Mr = 360.24

  • Monoclinic, C 2/c

  • a = 10.406 (3) Å

  • b = 17.299 (5) Å

  • c = 15.858 (4) Å

  • β = 103.719 (5)°

  • V = 2773.3 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.12 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.]) Tmin = 0.575, Tmax = 0.706

  • 14119 measured reflections

  • 3293 independent reflections

  • 2565 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.087

  • S = 1.08

  • 3293 reflections

  • 194 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N1i 0.90 (1) 1.95 (1) 2.821 (3) 163 (3)
Symmetry code: (i) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Single-crystal X-ray diffraction analysis reveals that the title compound crystallizes in the monoclinic space group C2/c. As shown in Fig. 1, the dihedral angle between the pyridyl and triazole rings is 153.6 °. As shown in Fig. 2, the crystal structure is stabilized by intermolecular hydrogen bonds N—H···N.

Related literature top

For related structures, see: Zou et al. (2008); Kashaev et al. (2010); Liu & Liu (2011); Liu, Pan, Weng, Tan et al. (2012); Liu, Tan, Weng & Liu (2012); Tan et al. (2012).

Experimental top

In round bottom flask, 4-pyridine carboxylic acid (0.01 mol) and hydrazine hydrate 99% (0.01 mol) were taken along with alcohol and the mixture was refluxed for 4 h. Then from the reaction mixture alcohol was removed under reduced pressure. Solid residue was obtained, recrystallized from ethanol. In a 250 ml round bottom flask, 4-pyridine hydrazide (0.075 mol) was taken. To this a solution of potassium hydroxide (0.075 mol) in 100 ml of absolute alcohol and carbon disulfide were added agitated for overnight. The reaction mixture was diluted with 200 ml of dry ether. The solid obtained was 15.05 g (80%). It was filtered and washed with dry ether. A mixture of potassium-pyridine-dithiocarbazate (0.1 mol) and hydrazine hydrate 5 ml (0.1 mol) was refluxed for 2 h with occasional shaking and the solution was poured into the cold water. The mixture was acidified with hydrochloric acid. The precipitate obtained was filtered, dried and recrystallized by using alcohol. A mixture of 5-pyridine-4-amino-3-mercapto-4(H)-1,2,4-triazole (0.01 mol) taken with 2-bromobenzaldehyde (0.01 mol) and concentrated sulfuric acid (0.5 ml) in ethanol 100 ml. The mixture was refluxed on water bath for several hours with TLC monitoring. The solid was obtained on cooling the mixture and poured in cold water was afforded the the title compound. Colourless prisms were grown from ethanol solution.

Refinement top

All the H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Single-crystal X-ray diffraction analysis reveals that the title compound crystallizes in the monoclinic space group C2/c. As shown in Fig. 1, the dihedral angle between the pyridyl and triazole rings is 153.6 °. As shown in Fig. 2, the crystal structure is stabilized by intermolecular hydrogen bonds N—H···N.

For related structures, see: Zou et al. (2008); Kashaev et al. (2010); Liu & Liu (2011); Liu, Pan, Weng, Tan et al. (2012); Liu, Tan, Weng & Liu (2012); Tan et al. (2012).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing for (I).
4-[(2-Bromobenzylidene)amino]-3-(pyridin-4-yl)-1H-1,2,4-triazole- 5(4H)-thione top
Crystal data top
C14H10BrN5SF(000) = 1440
Mr = 360.24Dx = 1.726 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 10.406 (3) ÅCell parameters from 5149 reflections
b = 17.299 (5) Åθ = 2.3–27.9°
c = 15.858 (4) ŵ = 3.12 mm1
β = 103.719 (5)°T = 113 K
V = 2773.3 (13) Å3Prism, colorless
Z = 80.20 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn CCD
diffractometer
3293 independent reflections
Radiation source: rotating anode2565 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.036
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 2.3°
ω and φ scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 2222
Tmin = 0.575, Tmax = 0.706l = 2020
14119 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.9724P]
where P = (Fo2 + 2Fc2)/3
3293 reflections(Δ/σ)max = 0.003
194 parametersΔρmax = 0.54 e Å3
1 restraintΔρmin = 0.42 e Å3
Crystal data top
C14H10BrN5SV = 2773.3 (13) Å3
Mr = 360.24Z = 8
Monoclinic, C2/cMo Kα radiation
a = 10.406 (3) ŵ = 3.12 mm1
b = 17.299 (5) ÅT = 113 K
c = 15.858 (4) Å0.20 × 0.18 × 0.12 mm
β = 103.719 (5)°
Data collection top
Rigaku Saturn CCD
diffractometer
3293 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2565 reflections with I > 2σ(I)
Tmin = 0.575, Tmax = 0.706Rint = 0.036
14119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.54 e Å3
3293 reflectionsΔρmin = 0.42 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.42237 (3)1.115195 (15)1.078191 (18)0.02495 (10)
S10.04950 (6)1.18904 (3)0.90838 (4)0.01831 (15)
N10.2275 (2)0.76260 (12)0.76957 (13)0.0170 (4)
N20.1987 (2)1.05219 (11)0.75708 (13)0.0135 (4)
N30.1441 (2)1.12183 (11)0.78721 (13)0.0135 (4)
N40.02113 (18)1.03665 (11)0.86394 (12)0.0110 (4)
N50.0722 (2)0.99264 (12)0.92068 (13)0.0165 (4)
C10.1154 (3)0.86370 (13)0.86163 (16)0.0157 (5)
H10.06380.87870.91700.019*
C20.1571 (3)0.78812 (14)0.84586 (17)0.0185 (5)
H20.13410.75210.89230.022*
C30.2600 (2)0.81462 (13)0.70517 (17)0.0178 (5)
H3A0.30980.79750.65020.021*
C40.2249 (2)0.89158 (13)0.71470 (16)0.0149 (5)
H40.25110.92630.66730.018*
C50.1507 (2)0.91779 (13)0.79426 (16)0.0123 (5)
C60.1234 (2)1.00094 (13)0.80478 (15)0.0111 (4)
C70.0371 (2)1.11627 (13)0.85297 (15)0.0125 (5)
C80.1806 (2)1.02341 (14)0.96104 (16)0.0177 (5)
H80.19781.07650.95330.021*
C90.2775 (2)0.97532 (14)1.01938 (15)0.0158 (5)
C100.2607 (3)0.89478 (14)1.02189 (18)0.0203 (5)
H100.18570.87140.98460.024*
C110.3519 (3)0.84900 (15)1.07796 (18)0.0234 (6)
H110.33960.79461.07860.028*
C120.4613 (3)0.88260 (16)1.13319 (19)0.0257 (6)
H120.52300.85111.17210.031*
C130.4808 (3)0.96139 (16)1.13185 (17)0.0234 (6)
H130.55590.98431.16940.028*
C140.3892 (2)1.00692 (14)1.07490 (16)0.0175 (5)
H30.175 (3)1.1661 (12)0.761 (2)0.049 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01786 (15)0.02020 (14)0.03306 (18)0.00296 (10)0.00141 (11)0.00368 (11)
S10.0216 (3)0.0097 (3)0.0195 (3)0.0023 (2)0.0033 (3)0.0012 (2)
N10.0181 (11)0.0111 (9)0.0198 (12)0.0002 (8)0.0006 (9)0.0007 (8)
N20.0148 (10)0.0094 (9)0.0149 (10)0.0007 (7)0.0005 (8)0.0008 (8)
N30.0163 (10)0.0082 (9)0.0140 (11)0.0002 (8)0.0005 (9)0.0015 (8)
N40.0113 (9)0.0078 (9)0.0124 (10)0.0010 (7)0.0001 (8)0.0001 (8)
N50.0159 (10)0.0134 (10)0.0185 (11)0.0026 (8)0.0007 (9)0.0012 (8)
C10.0190 (12)0.0125 (10)0.0135 (12)0.0014 (9)0.0003 (10)0.0000 (9)
C20.0223 (13)0.0137 (11)0.0173 (13)0.0006 (10)0.0001 (11)0.0031 (10)
C30.0193 (12)0.0131 (11)0.0187 (13)0.0028 (9)0.0001 (10)0.0030 (10)
C40.0161 (12)0.0144 (11)0.0129 (12)0.0004 (9)0.0007 (10)0.0025 (9)
C50.0095 (11)0.0098 (10)0.0168 (13)0.0002 (8)0.0017 (10)0.0006 (9)
C60.0108 (11)0.0115 (10)0.0106 (11)0.0002 (8)0.0016 (9)0.0008 (9)
C70.0140 (11)0.0098 (10)0.0139 (12)0.0003 (9)0.0038 (10)0.0015 (9)
C80.0162 (12)0.0149 (11)0.0206 (13)0.0005 (9)0.0017 (11)0.0011 (10)
C90.0143 (11)0.0170 (11)0.0159 (13)0.0004 (9)0.0032 (10)0.0005 (10)
C100.0167 (12)0.0197 (13)0.0237 (15)0.0002 (10)0.0032 (11)0.0007 (10)
C110.0266 (14)0.0180 (13)0.0257 (15)0.0048 (11)0.0064 (12)0.0062 (11)
C120.0244 (14)0.0285 (14)0.0222 (15)0.0100 (12)0.0013 (12)0.0065 (12)
C130.0157 (13)0.0313 (15)0.0207 (14)0.0040 (11)0.0005 (11)0.0001 (12)
C140.0169 (12)0.0175 (12)0.0183 (13)0.0019 (10)0.0043 (11)0.0003 (10)
Geometric parameters (Å, º) top
Br1—C141.903 (3)C3—H3A0.9500
S1—C71.671 (2)C4—C51.390 (3)
N1—C21.332 (3)C4—H40.9500
N1—C31.343 (3)C5—C61.468 (3)
N2—C61.300 (3)C8—C91.457 (3)
N2—N31.369 (3)C8—H80.9500
N3—C71.336 (3)C9—C141.393 (3)
N3—H30.896 (10)C9—C101.406 (3)
N4—N51.385 (3)C10—C111.385 (4)
N4—C61.386 (3)C10—H100.9500
N4—C71.393 (3)C11—C121.389 (4)
N5—C81.274 (3)C11—H110.9500
C1—C21.382 (3)C12—C131.379 (4)
C1—C51.402 (3)C12—H120.9500
C1—H10.9500C13—C141.391 (3)
C2—H20.9500C13—H130.9500
C3—C41.380 (3)
C2—N1—C3117.0 (2)N4—C6—C5127.6 (2)
C6—N2—N3104.72 (19)N3—C7—N4102.8 (2)
C7—N3—N2114.15 (19)N3—C7—S1127.00 (17)
C7—N3—H3125 (2)N4—C7—S1130.19 (19)
N2—N3—H3121 (2)N5—C8—C9118.5 (2)
N5—N4—C6120.17 (18)N5—C8—H8120.7
N5—N4—C7132.0 (2)C9—C8—H8120.7
C6—N4—C7107.83 (19)C14—C9—C10117.5 (2)
C8—N5—N4119.8 (2)C14—C9—C8121.7 (2)
C2—C1—C5118.6 (2)C10—C9—C8120.8 (2)
C2—C1—H1120.7C11—C10—C9120.9 (3)
C5—C1—H1120.7C11—C10—H10119.5
N1—C2—C1124.0 (2)C9—C10—H10119.5
N1—C2—H2118.0C10—C11—C12120.0 (3)
C1—C2—H2118.0C10—C11—H11120.0
N1—C3—C4123.4 (2)C12—C11—H11120.0
N1—C3—H3A118.3C13—C12—C11120.4 (3)
C4—C3—H3A118.3C13—C12—H12119.8
C3—C4—C5119.4 (2)C11—C12—H12119.8
C3—C4—H4120.3C12—C13—C14119.3 (3)
C5—C4—H4120.3C12—C13—H13120.4
C4—C5—C1117.6 (2)C14—C13—H13120.4
C4—C5—C6118.3 (2)C13—C14—C9121.9 (2)
C1—C5—C6124.0 (2)C13—C14—Br1116.6 (2)
N2—C6—N4110.48 (19)C9—C14—Br1121.48 (19)
N2—C6—C5121.9 (2)
C6—N2—N3—C70.5 (3)N2—N3—C7—N41.4 (3)
C6—N4—N5—C8164.5 (2)N2—N3—C7—S1176.78 (17)
C7—N4—N5—C816.5 (3)N5—N4—C7—N3179.1 (2)
C3—N1—C2—C10.7 (4)C6—N4—C7—N31.7 (2)
C5—C1—C2—N11.2 (4)N5—N4—C7—S12.8 (4)
C2—N1—C3—C40.3 (4)C6—N4—C7—S1176.36 (18)
N1—C3—C4—C50.7 (4)N4—N5—C8—C9179.17 (19)
C3—C4—C5—C10.1 (3)N5—C8—C9—C14170.6 (2)
C3—C4—C5—C6175.3 (2)N5—C8—C9—C109.0 (4)
C2—C1—C5—C40.8 (3)C14—C9—C10—C110.3 (4)
C2—C1—C5—C6174.1 (2)C8—C9—C10—C11179.3 (2)
N3—N2—C6—N40.7 (2)C9—C10—C11—C120.5 (4)
N3—N2—C6—C5178.5 (2)C10—C11—C12—C130.8 (4)
N5—N4—C6—N2179.16 (18)C11—C12—C13—C140.4 (4)
C7—N4—C6—N21.6 (3)C12—C13—C14—C90.4 (4)
N5—N4—C6—C51.7 (3)C12—C13—C14—Br1179.2 (2)
C7—N4—C6—C5177.5 (2)C10—C9—C14—C130.8 (4)
C4—C5—C6—N223.8 (3)C8—C9—C14—C13178.8 (2)
C1—C5—C6—N2151.0 (2)C10—C9—C14—Br1179.52 (18)
C4—C5—C6—N4157.1 (2)C8—C9—C14—Br10.1 (3)
C1—C5—C6—N428.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N1i0.90 (1)1.95 (1)2.821 (3)163 (3)
Symmetry code: (i) x1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H10BrN5S
Mr360.24
Crystal system, space groupMonoclinic, C2/c
Temperature (K)113
a, b, c (Å)10.406 (3), 17.299 (5), 15.858 (4)
β (°) 103.719 (5)
V3)2773.3 (13)
Z8
Radiation typeMo Kα
µ (mm1)3.12
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.575, 0.706
No. of measured, independent and
observed [I > 2σ(I)] reflections
14119, 3293, 2565
Rint0.036
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.087, 1.08
No. of reflections3293
No. of parameters194
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.42

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N1i0.896 (10)1.953 (14)2.821 (3)163 (3)
Symmetry code: (i) x1/2, y+1/2, z+3/2.
 

Acknowledgements

We gratefully acknowledge financial support by the Doctoral Research Fund of Henan University of Traditional Chinese Medicine.

References

First citationKashaev, A. G., Zimichev, A. V., Rybakov, V. B., Klimochkin, Y. N. & Zemtsova, M. N. (2010). Acta Cryst. E66, o3090.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, X.-F. & Liu, X.-H. (2011). Acta Cryst. E67, o202.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiu, X. H., Pan, L., Weng, J. Q., Tan, C. X., Li, Y. H., Wang, B. L. & Li, Z. M. (2012). Mol. Divers. doi:10.1007/s11030-011-9352-z.  Google Scholar
First citationLiu, X.-H., Tan, C.-X., Weng, J.-Q. & Liu, H.-J. (2012). Acta Cryst. E68, o493.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, C. X., Shi, Y. X., Weng, J. Q., Liu, X. H., Li, B. J. & Zhao, W. G. (2012). Lett. Drug. Des. Discov. 9, 431–435.  CrossRef CAS Google Scholar
First citationZou, F., Xuan, W.-M., Fang, X.-M. & Zhang, H. (2008). Acta Cryst. E64, o213.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds