organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(4-Methyl­phen­yl)sulfon­yl]acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, St Joseph Engineering College, Vamanjoor, Mangalore 575 028, Karnataka, India
*Correspondence e-mail: hkfun@usm.my

(Received 27 May 2012; accepted 30 May 2012; online 13 June 2012)

In the title compound, C9H11NO3S, the dihedral angle between the benzene ring and the amide group is 76.7 (3)°. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds into inversion dimers with R22(8) ring motifs. The dimers are further connected by N—H⋯O and C—H⋯O hydrogen bonds into an infinite tape running parallel to the b-axis direction.

Related literature

For details of the biological activity of sulfonamides, see: Kamoshita et al. (1987[Kamoshita, K., Matsumoto, H. & Nagano, E. (1987). US Patent No. 4 670 046.]); Heidler & Link (2005[Heidler, P. & Link, A. (2005). Bioorg. Med. Chem. 13, 585-599.]); Ashton et al. (1994[Ashton, W. T., Chang, L. L., Flanagan, K. L., Hutchins, S. M., Naylor, E. M., Chakravarty, P. K., Patchett, A. A., Greenlee, W. J., Chen, T. B., Faust, K. A., Chang, R. S. L., Lotti, V. J., Zingaro, G. J., Schorn, T. W., Siegl, P. K. S. & Kivlighn, S. D. (1994). J. Med. Chem. 37, 2808-2824.]). For related structures, see: Henschel et al. (1996[Henschel, D., Hiemisch, O., Blaschette, A. & Jones, P. G. (1996). Z. Naturforsch. Teil B, 51, 1313-1315.]); Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.], 2010[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o1284.]); Shakuntala et al. (2011a[Shakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o1097.],b[Shakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1187.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11NO3S

  • Mr = 213.25

  • Monoclinic, P 21 /c

  • a = 9.2514 (6) Å

  • b = 5.1900 (3) Å

  • c = 20.5873 (13) Å

  • β = 95.070 (2)°

  • V = 984.63 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 100 K

  • 0.27 × 0.19 × 0.08 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.922, Tmax = 0.976

  • 15682 measured reflections

  • 3114 independent reflections

  • 2577 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.086

  • S = 1.07

  • 3114 reflections

  • 133 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.85 (2) 2.14 (2) 2.9586 (14) 161.2 (17)
C9—H9A⋯O3ii 0.98 2.49 3.4623 (15) 175
C9—H9C⋯O3i 0.98 2.32 3.2760 (14) 165
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Many of the compounds containing sulfonamide groups possess a broad spectrum of biological activities (Ashton et al., 1994; Heidler & Link, 2005) and can be used as herbicides (Kamoshita et al., 1987). In addition, the nature and position of substituents play a significant role on the crystal structures of N-(aryl)-amides and N-(aryl)-sulfonamides (Gowda et al., 2007, 2010; Shakuntala et al., 2011a,b; Henschel et al., 1996). In view of the importance of the biological activities of sulfonamide containing compounds, we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The CO and N—H bonds in the amide group [C8/O3/N1/H1N1; maximum deviation = 0.0439 (57) Å at atom N1] are trans to each other, similar to that observed in related structures (Gowda et al., 2010; Shakuntala et al., 2011a,b). The mean plane of the benzene ring (C2–C7) forms a dihedral angle of 76.7 (3)° with the mean plane of amide group.

In the crystal (Fig.2), molecules are linked by a pair of C9—H9A···O3 hydrogen bonds (Table 1) into inversion dimers with an R22(8) ring motif. The dimers are further connected by N1—H1N1···O1 and C9—H9C···O3 hydrogen bonds (Table 1) into an infinite tape along b axis.

Related literature top

For details of the biological activity of sulfonamides, see: Kamoshita et al. (1987); Heidler & Link (2005); Ashton et al. (1994). For related structures, see: Henschel et al. (1996); Gowda et al. (2007, 2010); Shakuntala et al. (2011a,b). For stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Experimental top

To a vigorously stirred mixture of 4-methylbenzenesulphonamide and silica sulfuric acid, acid chloride or acid anhydride was added at RT. The progress of the reaction was monitored by TLC. After completion of the reaction, ethyl acetate was added and the solid catalyst was removed by filtration. The filtrate was washed with water, dried and evaporated. The crude product was purified by recrystallization from ethanolic solution to yield colourless plates of the title compound.

Refinement top

The atom H1N1 was located in a difference fourier map and refined freely [N1—H1N1 = 0.851 (19) Å]. The remaining H atoms were positioned geometrically [C—H = 0.95 and 0.98 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group.

Structure description top

Many of the compounds containing sulfonamide groups possess a broad spectrum of biological activities (Ashton et al., 1994; Heidler & Link, 2005) and can be used as herbicides (Kamoshita et al., 1987). In addition, the nature and position of substituents play a significant role on the crystal structures of N-(aryl)-amides and N-(aryl)-sulfonamides (Gowda et al., 2007, 2010; Shakuntala et al., 2011a,b; Henschel et al., 1996). In view of the importance of the biological activities of sulfonamide containing compounds, we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The CO and N—H bonds in the amide group [C8/O3/N1/H1N1; maximum deviation = 0.0439 (57) Å at atom N1] are trans to each other, similar to that observed in related structures (Gowda et al., 2010; Shakuntala et al., 2011a,b). The mean plane of the benzene ring (C2–C7) forms a dihedral angle of 76.7 (3)° with the mean plane of amide group.

In the crystal (Fig.2), molecules are linked by a pair of C9—H9A···O3 hydrogen bonds (Table 1) into inversion dimers with an R22(8) ring motif. The dimers are further connected by N1—H1N1···O1 and C9—H9C···O3 hydrogen bonds (Table 1) into an infinite tape along b axis.

For details of the biological activity of sulfonamides, see: Kamoshita et al. (1987); Heidler & Link (2005); Ashton et al. (1994). For related structures, see: Henschel et al. (1996); Gowda et al. (2007, 2010); Shakuntala et al. (2011a,b). For stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.
N-[(4-Methylphenyl)sulfonyl]acetamide top
Crystal data top
C9H11NO3SF(000) = 448
Mr = 213.25Dx = 1.439 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5205 reflections
a = 9.2514 (6) Åθ = 2.8–30.9°
b = 5.1900 (3) ŵ = 0.31 mm1
c = 20.5873 (13) ÅT = 100 K
β = 95.070 (2)°Plate, colourless
V = 984.63 (11) Å30.27 × 0.19 × 0.08 mm
Z = 4
Data collection top
Bruker APEX DUO CCD
diffractometer
3114 independent reflections
Radiation source: fine-focus sealed tube2577 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 31.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1213
Tmin = 0.922, Tmax = 0.976k = 77
15682 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.3454P]
where P = (Fo2 + 2Fc2)/3
3114 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C9H11NO3SV = 984.63 (11) Å3
Mr = 213.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2514 (6) ŵ = 0.31 mm1
b = 5.1900 (3) ÅT = 100 K
c = 20.5873 (13) Å0.27 × 0.19 × 0.08 mm
β = 95.070 (2)°
Data collection top
Bruker APEX DUO CCD
diffractometer
3114 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2577 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.976Rint = 0.038
15682 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.43 e Å3
3114 reflectionsΔρmin = 0.36 e Å3
133 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.45077 (3)0.60012 (5)0.397692 (13)0.01332 (8)
O10.45409 (9)0.84344 (17)0.43094 (4)0.01789 (18)
O20.58468 (9)0.47512 (18)0.38706 (4)0.01848 (18)
O30.16276 (10)0.63022 (17)0.44799 (5)0.02044 (19)
N10.36478 (11)0.3887 (2)0.44001 (5)0.01466 (19)
C10.09268 (15)0.7079 (3)0.13904 (6)0.0264 (3)
H1A0.01990.84360.14210.040*
H1B0.04390.54430.12770.040*
H1C0.15660.75320.10530.040*
C20.18124 (13)0.6809 (3)0.20370 (6)0.0186 (2)
C30.16453 (13)0.8551 (2)0.25401 (6)0.0191 (2)
H3A0.09620.99120.24740.023*
C40.24621 (13)0.8331 (2)0.31380 (6)0.0180 (2)
H4A0.23410.95250.34790.022*
C50.34592 (12)0.6332 (2)0.32277 (5)0.0143 (2)
C60.36550 (13)0.4571 (2)0.27322 (6)0.0179 (2)
H6A0.43460.32210.27980.022*
C70.28242 (14)0.4823 (3)0.21408 (6)0.0202 (2)
H7A0.29460.36250.18010.024*
C80.22879 (12)0.4332 (2)0.46235 (5)0.0153 (2)
C90.17645 (13)0.2221 (2)0.50349 (6)0.0196 (2)
H9A0.07780.26100.51430.029*
H9B0.24090.20740.54370.029*
H9C0.17630.05910.47950.029*
H1N10.4057 (19)0.242 (4)0.4444 (8)0.029 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01197 (13)0.01170 (13)0.01619 (13)0.00063 (9)0.00059 (9)0.00001 (10)
O10.0193 (4)0.0129 (4)0.0210 (4)0.0007 (3)0.0014 (3)0.0024 (3)
O20.0130 (4)0.0194 (4)0.0232 (4)0.0032 (3)0.0022 (3)0.0007 (3)
O30.0175 (4)0.0155 (4)0.0287 (5)0.0033 (3)0.0042 (3)0.0004 (3)
N10.0147 (4)0.0111 (4)0.0185 (4)0.0021 (4)0.0029 (3)0.0017 (4)
C10.0237 (6)0.0355 (8)0.0192 (6)0.0010 (6)0.0032 (5)0.0023 (5)
C20.0167 (5)0.0220 (6)0.0170 (5)0.0033 (5)0.0009 (4)0.0018 (4)
C30.0177 (5)0.0182 (6)0.0210 (5)0.0029 (4)0.0010 (4)0.0019 (4)
C40.0190 (5)0.0153 (5)0.0196 (5)0.0031 (4)0.0008 (4)0.0010 (4)
C50.0139 (5)0.0138 (5)0.0154 (5)0.0007 (4)0.0018 (4)0.0007 (4)
C60.0194 (5)0.0156 (5)0.0191 (5)0.0025 (4)0.0033 (4)0.0012 (4)
C70.0227 (6)0.0210 (6)0.0172 (5)0.0006 (5)0.0026 (4)0.0029 (4)
C80.0134 (5)0.0159 (5)0.0163 (5)0.0014 (4)0.0004 (4)0.0035 (4)
C90.0180 (5)0.0186 (6)0.0222 (5)0.0032 (5)0.0028 (4)0.0005 (5)
Geometric parameters (Å, º) top
S1—O21.4323 (9)C3—C41.3910 (16)
S1—O11.4354 (9)C3—H3A0.9500
S1—N11.6486 (10)C4—C51.3899 (16)
S1—C51.7563 (12)C4—H4A0.9500
O3—C81.2141 (14)C5—C61.3934 (16)
N1—C81.3964 (14)C6—C71.3874 (17)
N1—H1N10.851 (19)C6—H6A0.9500
C1—C21.5066 (17)C7—H7A0.9500
C1—H1A0.9800C8—C91.4917 (17)
C1—H1B0.9800C9—H9A0.9800
C1—H1C0.9800C9—H9B0.9800
C2—C31.3936 (17)C9—H9C0.9800
C2—C71.3962 (18)
O2—S1—O1119.27 (5)C5—C4—C3118.76 (11)
O2—S1—N1104.10 (5)C5—C4—H4A120.6
O1—S1—N1108.93 (5)C3—C4—H4A120.6
O2—S1—C5109.15 (5)C4—C5—C6121.33 (11)
O1—S1—C5108.64 (5)C4—C5—S1119.88 (9)
N1—S1—C5105.92 (5)C6—C5—S1118.78 (9)
C8—N1—S1123.71 (9)C7—C6—C5118.88 (11)
C8—N1—H1N1121.2 (12)C7—C6—H6A120.6
S1—N1—H1N1114.9 (12)C5—C6—H6A120.6
C2—C1—H1A109.5C6—C7—C2121.05 (11)
C2—C1—H1B109.5C6—C7—H7A119.5
H1A—C1—H1B109.5C2—C7—H7A119.5
C2—C1—H1C109.5O3—C8—N1120.50 (11)
H1A—C1—H1C109.5O3—C8—C9125.13 (11)
H1B—C1—H1C109.5N1—C8—C9114.37 (10)
C3—C2—C7118.82 (11)C8—C9—H9A109.5
C3—C2—C1120.60 (12)C8—C9—H9B109.5
C7—C2—C1120.57 (12)H9A—C9—H9B109.5
C4—C3—C2121.15 (11)C8—C9—H9C109.5
C4—C3—H3A119.4H9A—C9—H9C109.5
C2—C3—H3A119.4H9B—C9—H9C109.5
O2—S1—N1—C8178.75 (9)O2—S1—C5—C627.10 (11)
O1—S1—N1—C850.50 (11)O1—S1—C5—C6158.66 (9)
C5—S1—N1—C866.20 (10)N1—S1—C5—C684.45 (10)
C7—C2—C3—C40.19 (19)C4—C5—C6—C70.52 (18)
C1—C2—C3—C4179.65 (12)S1—C5—C6—C7179.77 (9)
C2—C3—C4—C50.09 (19)C5—C6—C7—C20.41 (19)
C3—C4—C5—C60.27 (18)C3—C2—C7—C60.06 (19)
C3—C4—C5—S1179.99 (9)C1—C2—C7—C6179.40 (12)
O2—S1—C5—C4152.62 (10)S1—N1—C8—O34.19 (16)
O1—S1—C5—C421.06 (11)S1—N1—C8—C9175.99 (8)
N1—S1—C5—C495.83 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.85 (2)2.14 (2)2.9586 (14)161.2 (17)
C9—H9A···O3ii0.982.493.4623 (15)175
C9—H9C···O3i0.982.323.2760 (14)165
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H11NO3S
Mr213.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.2514 (6), 5.1900 (3), 20.5873 (13)
β (°) 95.070 (2)
V3)984.63 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.27 × 0.19 × 0.08
Data collection
DiffractometerBruker APEX DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.922, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
15682, 3114, 2577
Rint0.038
(sin θ/λ)max1)0.724
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.07
No. of reflections3114
No. of parameters133
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.36

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.85 (2)2.14 (2)2.9586 (14)161.2 (17)
C9—H9A···O3ii0.982.493.4623 (15)175
C9—H9C···O3i0.982.323.2760 (14)165
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship. The authors are grateful to the Visweswaraya Technological University Jnana Sangama, Belgaum, for financial support through research project grant No. VTU/Aca./2010-11/A-9/11330 Dtd. 07-12-2010.

References

First citationAshton, W. T., Chang, L. L., Flanagan, K. L., Hutchins, S. M., Naylor, E. M., Chakravarty, P. K., Patchett, A. A., Greenlee, W. J., Chen, T. B., Faust, K. A., Chang, R. S. L., Lotti, V. J., Zingaro, G. J., Schorn, T. W., Siegl, P. K. S. & Kivlighn, S. D. (1994). J. Med. Chem. 37, 2808–2824.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o1284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHeidler, P. & Link, A. (2005). Bioorg. Med. Chem. 13, 585–599.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHenschel, D., Hiemisch, O., Blaschette, A. & Jones, P. G. (1996). Z. Naturforsch. Teil B, 51, 1313–1315.  CAS Google Scholar
First citationKamoshita, K., Matsumoto, H. & Nagano, E. (1987). US Patent No. 4 670 046.  Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o1097.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1187.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds