organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Eth­­oxy-6-{(E)-[(4-methyl­phen­yl)imino]­meth­yl}phenol

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 27 May 2012; accepted 30 May 2012; online 13 June 2012)

The asymmetric unit of the title compound, C16H17NO2, contains two mol­ecules in which the dihedral angles between the 3-eth­oxy-2-hy­droxy­benzaldehyde and toluidine moieties are 16.87 (8) and 19.93 (6)°. S(6) rings are present in both mol­ecules due to intra­molecular O—H⋯N hydrogen bonds. In the crystal, one of the mol­ecules is dimerized with an inversion-generated partner, due to two C—H⋯O inter­actions. This generates an R22(8) loop.

Related literature

For related crystal structures, see: Albayrak et al. (2010[Albayrak, Ç., Koşar, B., Demir, S., Odabaşoĝlu, M. & Büyükgüngör, O. (2010). J. Mol. Struct. 963, 211-218.]); Özek et al. (2010[Özek, A., Koşar, B., Albayrak, Ç. & Büyükgüngör, O. (2010). Acta Cryst. E66, o684.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17NO2

  • Mr = 255.31

  • Monoclinic, C 2/c

  • a = 29.5126 (11) Å

  • b = 6.8703 (3) Å

  • c = 28.2167 (13) Å

  • β = 102.986 (3)°

  • V = 5574.9 (4) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.985

  • 20559 measured reflections

  • 5040 independent reflections

  • 2075 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.181

  • S = 0.98

  • 5040 reflections

  • 346 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.86 2.584 (4) 147
O3—H3⋯N2 0.82 1.86 2.585 (3) 147
C24—H24A⋯O4i 0.96 2.59 3.470 (4) 153
Symmetry code: (i) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I), (Fig. 1) has been synthesized as a derivative for the complexation and other studies.

The crystal structures of 2-ethoxy-6-((phenylimino)methyl)phenol (Albayrak et al., 2010) and (E)-2-ethoxy-6-[(4-ethoxyphenyl)iminomethyl]phenol (Özek et al., 2010) have been published which are related to the title compound (I).

In (I), two molecules in the asymmetric unit are present, which differ slightly from each other geometrically. In one molecule, the group A (C1—C9/O1/O2) of 3-ethoxy-2-hydroxybenzaldehyde and group B (N1/C10—C16) of toluidine moieties are planar with r. m. s. deviation of 0.0270 Å and 0.0105 Å, respectively. The dihedral angle between A/B is 19.93 (6)°. In second molecule, the similar groups C (C18—C25/O3/O4) and D (N2/C26—C32) are also planar with r. m. s. deviation of 0.0184 Å and 0.0193 Å, respectively and the dihedral angle between C/D is 16.87 (8)°. In both molecules S(6) ring motif is present due to classical H–bonding of O—H···N type (Table 1, Fig. 2). The second molecule which is more planar is dimerized with itself from ethoxy groups with R22(8) ring motif due to C—H···O type of H–bonding (Table 1, Fig. 2).

Related literature top

For related crystal structures, see: Albayrak et al. (2010); Özek et al. (2010).

Experimental top

Equal molar ratio of 4-toluidine and 3-ethoxy-2-hydroxybenzaldehyde was refluxed in methanol for 2 h and orange prisms of (I) were obtained after 72 h by the slow evaporation at room temperature.

Refinement top

The H-atoms were positioned geometrically at C—H = 0.93—0.97 and O—H = 0.82 Å, respectively and included in the refinement as riding with U iso(H) = xUeq(C, O), where x = 1.5 for metyl H-atoms and x = 1.2 for all other H-atoms.

Structure description top

The title compound (I), (Fig. 1) has been synthesized as a derivative for the complexation and other studies.

The crystal structures of 2-ethoxy-6-((phenylimino)methyl)phenol (Albayrak et al., 2010) and (E)-2-ethoxy-6-[(4-ethoxyphenyl)iminomethyl]phenol (Özek et al., 2010) have been published which are related to the title compound (I).

In (I), two molecules in the asymmetric unit are present, which differ slightly from each other geometrically. In one molecule, the group A (C1—C9/O1/O2) of 3-ethoxy-2-hydroxybenzaldehyde and group B (N1/C10—C16) of toluidine moieties are planar with r. m. s. deviation of 0.0270 Å and 0.0105 Å, respectively. The dihedral angle between A/B is 19.93 (6)°. In second molecule, the similar groups C (C18—C25/O3/O4) and D (N2/C26—C32) are also planar with r. m. s. deviation of 0.0184 Å and 0.0193 Å, respectively and the dihedral angle between C/D is 16.87 (8)°. In both molecules S(6) ring motif is present due to classical H–bonding of O—H···N type (Table 1, Fig. 2). The second molecule which is more planar is dimerized with itself from ethoxy groups with R22(8) ring motif due to C—H···O type of H–bonding (Table 1, Fig. 2).

For related crystal structures, see: Albayrak et al. (2010); Özek et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing, which shows that molecules form S(6) ring motif and one molecule is also dimerized with itself.
2-Ethoxy-6-{(E)-[(4-methylphenyl)imino]methyl}phenol top
Crystal data top
C16H17NO2F(000) = 2176
Mr = 255.31Dx = 1.217 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2075 reflections
a = 29.5126 (11) Åθ = 1.8–25.3°
b = 6.8703 (3) ŵ = 0.08 mm1
c = 28.2167 (13) ÅT = 296 K
β = 102.986 (3)°Prism, orange
V = 5574.9 (4) Å30.30 × 0.25 × 0.22 mm
Z = 16
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5040 independent reflections
Radiation source: fine-focus sealed tube2075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 1.8°
ω scansh = 3535
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 88
Tmin = 0.975, Tmax = 0.985l = 3333
20559 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.181 w = 1/[σ2(Fo2) + (0.071P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
5040 reflectionsΔρmax = 0.25 e Å3
346 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (8)
Crystal data top
C16H17NO2V = 5574.9 (4) Å3
Mr = 255.31Z = 16
Monoclinic, C2/cMo Kα radiation
a = 29.5126 (11) ŵ = 0.08 mm1
b = 6.8703 (3) ÅT = 296 K
c = 28.2167 (13) Å0.30 × 0.25 × 0.22 mm
β = 102.986 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5040 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2075 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.985Rint = 0.083
20559 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 0.98Δρmax = 0.25 e Å3
5040 reflectionsΔρmin = 0.18 e Å3
346 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.10580 (7)0.6814 (3)0.19524 (10)0.0684 (10)
O20.01761 (7)0.6161 (3)0.18973 (9)0.0585 (10)
N10.18746 (9)0.5514 (5)0.19299 (10)0.0550 (11)
C10.12297 (10)0.3411 (5)0.19135 (12)0.0461 (12)
C20.09199 (11)0.4939 (5)0.19246 (12)0.0473 (14)
C30.04488 (11)0.4545 (5)0.18944 (12)0.0468 (12)
C40.02948 (11)0.2647 (5)0.18598 (12)0.0574 (16)
C50.06006 (12)0.1118 (5)0.18585 (13)0.0629 (17)
C60.10630 (11)0.1513 (5)0.18828 (12)0.0580 (16)
C70.03139 (10)0.5835 (6)0.18454 (13)0.0620 (16)
C80.05326 (11)0.7791 (6)0.18882 (13)0.0721 (16)
C90.17137 (11)0.3781 (5)0.19224 (12)0.0527 (16)
C100.23446 (11)0.5901 (6)0.19178 (12)0.0533 (14)
C110.27089 (11)0.4584 (6)0.20317 (13)0.0670 (16)
C120.31500 (12)0.5126 (7)0.19954 (15)0.0753 (18)
C130.32467 (12)0.6948 (7)0.18545 (13)0.0665 (19)
C140.28869 (14)0.8279 (7)0.17494 (14)0.0794 (17)
C150.24410 (12)0.7749 (6)0.17846 (14)0.0710 (16)
C160.37347 (8)0.7535 (4)0.18219 (13)0.097 (2)
O30.39693 (6)0.0489 (3)0.05775 (9)0.0672 (10)
O40.48472 (7)0.1144 (3)0.06181 (8)0.0594 (10)
N20.31507 (8)0.1776 (4)0.05970 (10)0.0540 (11)
C170.37945 (10)0.3890 (5)0.06123 (12)0.0470 (12)
C180.41055 (10)0.2363 (5)0.05998 (12)0.0479 (12)
C190.45777 (11)0.2768 (5)0.06204 (12)0.0493 (14)
C200.47255 (11)0.4658 (6)0.06428 (13)0.0578 (16)
C210.44186 (12)0.6194 (5)0.06494 (13)0.0636 (17)
C220.39611 (11)0.5794 (5)0.06345 (12)0.0598 (16)
C230.53338 (10)0.1477 (6)0.06427 (14)0.0652 (16)
C240.55535 (11)0.0499 (6)0.06255 (14)0.0765 (16)
C250.33127 (10)0.3496 (5)0.06107 (12)0.0519 (16)
C260.26797 (10)0.1379 (6)0.06073 (12)0.0520 (16)
C270.23819 (12)0.2710 (6)0.07524 (13)0.0686 (16)
C280.19325 (13)0.2127 (7)0.07633 (14)0.0766 (19)
C290.17740 (12)0.0278 (7)0.06428 (14)0.0694 (18)
C300.20727 (12)0.1006 (6)0.05007 (14)0.0743 (17)
C310.25229 (11)0.0466 (6)0.04814 (14)0.0666 (16)
C320.12886 (12)0.0360 (7)0.06682 (16)0.101 (2)
H10.133710.686760.196050.1027*
H40.001870.238790.183690.0689*
H50.049490.016110.184140.0755*
H60.126780.048780.187860.0694*
H7A0.036750.496500.209790.0740*
H7B0.044660.525500.153150.0740*
H8A0.041010.831890.220620.1082*
H8B0.086340.764270.183870.1082*
H8C0.046370.865790.164690.1082*
H90.191330.273370.192260.0633*
H110.265590.333280.213280.0803*
H120.338920.421830.206950.0901*
H140.294340.953550.165460.0954*
H150.220340.866590.171660.0848*
H16A0.393530.751710.214090.1453*
H16B0.372830.882270.168840.1453*
H16C0.384900.663670.161570.1453*
H30.369400.042940.058710.1006*
H200.503660.492380.065380.0696*
H210.452320.747470.066370.0763*
H220.375620.681830.063940.0715*
H23A0.547590.214510.094210.0781*
H23B0.537380.226830.037030.0781*
H24A0.541920.111860.032130.1145*
H24B0.549860.128610.088820.1145*
H24C0.588220.034960.065600.1145*
H250.311390.453840.062000.0619*
H270.248160.397010.084070.0823*
H280.173280.302430.085580.0922*
H300.197250.226780.041510.0891*
H310.271840.136520.038240.0798*
H32A0.114080.065680.081170.1515*
H32B0.130710.151570.086300.1515*
H32C0.111020.062600.034610.1515*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0416 (14)0.0433 (17)0.122 (2)0.0037 (11)0.0222 (14)0.0038 (15)
O20.0341 (14)0.0511 (17)0.0919 (19)0.0002 (11)0.0178 (11)0.0033 (14)
N10.0366 (17)0.054 (2)0.075 (2)0.0002 (15)0.0137 (13)0.0008 (18)
C10.040 (2)0.040 (2)0.059 (2)0.0006 (17)0.0126 (15)0.0014 (18)
C20.041 (2)0.038 (2)0.063 (3)0.0057 (16)0.0121 (15)0.0018 (18)
C30.043 (2)0.038 (2)0.060 (2)0.0002 (18)0.0128 (15)0.0001 (19)
C40.044 (2)0.052 (3)0.077 (3)0.0044 (19)0.0155 (17)0.004 (2)
C50.057 (3)0.042 (3)0.090 (3)0.0063 (19)0.017 (2)0.001 (2)
C60.052 (2)0.047 (3)0.076 (3)0.0087 (18)0.0163 (17)0.001 (2)
C70.035 (2)0.076 (3)0.077 (3)0.0011 (18)0.0166 (17)0.006 (2)
C80.045 (2)0.085 (3)0.088 (3)0.016 (2)0.0186 (18)0.003 (2)
C90.043 (2)0.050 (3)0.065 (3)0.0067 (18)0.0122 (16)0.004 (2)
C100.041 (2)0.061 (3)0.059 (2)0.0005 (19)0.0138 (16)0.001 (2)
C110.046 (2)0.066 (3)0.090 (3)0.000 (2)0.0172 (19)0.007 (2)
C120.042 (2)0.088 (4)0.097 (3)0.003 (2)0.018 (2)0.007 (3)
C130.049 (3)0.093 (4)0.060 (3)0.010 (2)0.0175 (19)0.008 (3)
C140.063 (3)0.087 (3)0.089 (3)0.017 (3)0.019 (2)0.019 (3)
C150.051 (2)0.070 (3)0.092 (3)0.001 (2)0.0161 (19)0.014 (3)
C160.052 (2)0.150 (5)0.095 (3)0.025 (3)0.031 (2)0.005 (3)
O30.0427 (14)0.0433 (17)0.119 (2)0.0046 (12)0.0256 (12)0.0009 (15)
O40.0348 (14)0.0553 (18)0.0910 (19)0.0002 (11)0.0202 (12)0.0012 (14)
N20.0412 (18)0.048 (2)0.073 (2)0.0004 (14)0.0135 (13)0.0014 (17)
C170.038 (2)0.039 (2)0.064 (2)0.0015 (16)0.0112 (15)0.0012 (19)
C180.042 (2)0.042 (2)0.061 (2)0.0069 (17)0.0141 (16)0.0009 (19)
C190.040 (2)0.044 (3)0.065 (2)0.0029 (18)0.0142 (16)0.003 (2)
C200.045 (2)0.051 (3)0.077 (3)0.0080 (19)0.0131 (17)0.000 (2)
C210.060 (3)0.044 (3)0.087 (3)0.008 (2)0.017 (2)0.000 (2)
C220.053 (2)0.047 (3)0.079 (3)0.0012 (19)0.0142 (18)0.003 (2)
C230.035 (2)0.083 (3)0.080 (3)0.0020 (19)0.0182 (17)0.007 (2)
C240.046 (2)0.095 (3)0.090 (3)0.015 (2)0.0184 (19)0.005 (3)
C250.041 (2)0.047 (3)0.067 (3)0.0054 (17)0.0106 (16)0.001 (2)
C260.034 (2)0.059 (3)0.063 (3)0.0003 (18)0.0109 (16)0.004 (2)
C270.053 (2)0.075 (3)0.083 (3)0.002 (2)0.0261 (19)0.011 (2)
C280.048 (3)0.101 (4)0.087 (3)0.006 (2)0.028 (2)0.014 (3)
C290.043 (2)0.103 (4)0.065 (3)0.007 (2)0.0181 (18)0.000 (3)
C300.051 (3)0.086 (3)0.088 (3)0.017 (2)0.020 (2)0.009 (3)
C310.049 (2)0.067 (3)0.088 (3)0.003 (2)0.0244 (19)0.005 (2)
C320.052 (3)0.158 (5)0.101 (4)0.023 (3)0.035 (2)0.003 (3)
Geometric parameters (Å, º) top
O1—C21.348 (4)C12—H120.9300
O2—C31.372 (4)C14—H140.9300
O2—C71.438 (4)C15—H150.9300
O1—H10.8200C16—H16C0.9600
O3—C181.346 (4)C16—H16A0.9600
O4—C191.371 (4)C16—H16B0.9600
O4—C231.440 (4)C17—C221.394 (5)
O3—H30.8200C17—C251.447 (4)
N1—C91.280 (5)C17—C181.400 (5)
N1—C101.420 (4)C18—C191.409 (5)
N2—C251.272 (4)C19—C201.367 (5)
N2—C261.423 (4)C20—C211.394 (5)
C1—C61.390 (5)C21—C221.369 (5)
C1—C21.397 (5)C23—C241.510 (6)
C1—C91.446 (5)C26—C311.369 (6)
C2—C31.400 (5)C26—C271.392 (5)
C3—C41.377 (5)C27—C281.392 (5)
C4—C51.386 (5)C28—C291.370 (7)
C5—C61.378 (5)C29—C321.515 (5)
C7—C81.507 (6)C29—C301.369 (6)
C10—C151.372 (6)C30—C311.392 (5)
C10—C111.387 (5)C20—H200.9300
C11—C121.380 (5)C21—H210.9300
C12—C131.363 (7)C22—H220.9300
C13—C141.382 (6)C23—H23A0.9700
C13—C161.518 (5)C23—H23B0.9700
C14—C151.390 (6)C24—H24A0.9600
C4—H40.9300C24—H24B0.9600
C5—H50.9300C24—H24C0.9600
C6—H60.9300C25—H250.9300
C7—H7A0.9700C27—H270.9300
C7—H7B0.9700C28—H280.9300
C8—H8C0.9600C30—H300.9300
C8—H8A0.9600C31—H310.9300
C8—H8B0.9600C32—H32A0.9600
C9—H90.9300C32—H32B0.9600
C11—H110.9300C32—H32C0.9600
C3—O2—C7116.8 (3)H16A—C16—H16B109.00
C2—O1—H1109.00C13—C16—H16A109.00
C19—O4—C23116.3 (3)C13—C16—H16B109.00
C18—O3—H3110.00C18—C17—C22118.6 (3)
C9—N1—C10122.3 (3)C18—C17—C25120.6 (3)
C25—N2—C26122.7 (3)C22—C17—C25120.8 (3)
C2—C1—C6118.8 (3)O3—C18—C19118.2 (3)
C2—C1—C9121.1 (3)C17—C18—C19119.9 (3)
C6—C1—C9120.1 (3)O3—C18—C17121.8 (3)
O1—C2—C3118.1 (3)O4—C19—C20126.4 (3)
O1—C2—C1121.9 (3)C18—C19—C20119.5 (3)
C1—C2—C3120.0 (3)O4—C19—C18114.1 (3)
C2—C3—C4119.7 (3)C19—C20—C21121.2 (3)
O2—C3—C4125.6 (3)C20—C21—C22119.1 (3)
O2—C3—C2114.8 (3)C17—C22—C21121.7 (3)
C3—C4—C5120.9 (3)O4—C23—C24106.6 (3)
C4—C5—C6119.3 (3)N2—C25—C17122.4 (3)
C1—C6—C5121.4 (3)N2—C26—C31116.6 (3)
O2—C7—C8107.0 (3)C27—C26—C31119.1 (3)
N1—C9—C1121.7 (3)N2—C26—C27124.3 (3)
C11—C10—C15118.0 (3)C26—C27—C28119.0 (4)
N1—C10—C15116.3 (3)C27—C28—C29122.4 (4)
N1—C10—C11125.7 (4)C28—C29—C30117.6 (4)
C10—C11—C12120.1 (4)C28—C29—C32122.0 (4)
C11—C12—C13122.2 (4)C30—C29—C32120.4 (4)
C12—C13—C14118.0 (4)C29—C30—C31121.5 (4)
C14—C13—C16120.3 (4)C26—C31—C30120.4 (3)
C12—C13—C16121.7 (3)C19—C20—H20119.00
C13—C14—C15120.4 (4)C21—C20—H20119.00
C10—C15—C14121.3 (4)C20—C21—H21120.00
C5—C4—H4120.00C22—C21—H21120.00
C3—C4—H4120.00C17—C22—H22119.00
C6—C5—H5120.00C21—C22—H22119.00
C4—C5—H5120.00O4—C23—H23A110.00
C5—C6—H6119.00O4—C23—H23B110.00
C1—C6—H6119.00C24—C23—H23A110.00
O2—C7—H7B110.00C24—C23—H23B110.00
H7A—C7—H7B109.00H23A—C23—H23B109.00
C8—C7—H7A110.00C23—C24—H24A109.00
C8—C7—H7B110.00C23—C24—H24B109.00
O2—C7—H7A110.00C23—C24—H24C109.00
H8A—C8—H8B109.00H24A—C24—H24B109.00
H8A—C8—H8C109.00H24A—C24—H24C109.00
H8B—C8—H8C109.00H24B—C24—H24C109.00
C7—C8—H8A109.00N2—C25—H25119.00
C7—C8—H8B109.00C17—C25—H25119.00
C7—C8—H8C109.00C26—C27—H27120.00
N1—C9—H9119.00C28—C27—H27120.00
C1—C9—H9119.00C27—C28—H28119.00
C12—C11—H11120.00C29—C28—H28119.00
C10—C11—H11120.00C29—C30—H30119.00
C13—C12—H12119.00C31—C30—H30119.00
C11—C12—H12119.00C26—C31—H31120.00
C13—C14—H14120.00C30—C31—H31120.00
C15—C14—H14120.00C29—C32—H32A109.00
C10—C15—H15119.00C29—C32—H32B109.00
C14—C15—H15119.00C29—C32—H32C109.00
C13—C16—H16C109.00H32A—C32—H32B109.00
H16A—C16—H16C109.00H32A—C32—H32C109.00
H16B—C16—H16C109.00H32B—C32—H32C109.00
C7—O2—C3—C2177.4 (3)C10—C11—C12—C130.8 (6)
C7—O2—C3—C41.9 (5)C11—C12—C13—C140.5 (6)
C3—O2—C7—C8176.8 (3)C11—C12—C13—C16179.2 (4)
C19—O4—C23—C24179.0 (3)C16—C13—C14—C15179.3 (3)
C23—O4—C19—C200.1 (5)C12—C13—C14—C150.5 (6)
C23—O4—C19—C18179.5 (3)C13—C14—C15—C100.8 (6)
C9—N1—C10—C15161.4 (3)C22—C17—C18—O3179.9 (3)
C10—N1—C9—C1177.3 (3)C22—C17—C18—C191.4 (5)
C9—N1—C10—C1119.1 (5)C25—C17—C18—O31.2 (5)
C25—N2—C26—C31165.7 (3)C25—C17—C18—C19177.6 (3)
C25—N2—C26—C2716.7 (5)C18—C17—C22—C210.7 (5)
C26—N2—C25—C17178.4 (3)C25—C17—C22—C21178.2 (3)
C9—C1—C2—O11.2 (5)C18—C17—C25—N20.2 (5)
C9—C1—C2—C3177.2 (3)C22—C17—C25—N2179.1 (3)
C6—C1—C2—C31.4 (5)O3—C18—C19—O40.4 (4)
C6—C1—C2—O1179.8 (3)O3—C18—C19—C20179.9 (3)
C2—C1—C9—N11.6 (5)C17—C18—C19—O4178.4 (3)
C2—C1—C6—C50.7 (5)C17—C18—C19—C201.3 (5)
C9—C1—C6—C5178.0 (3)O4—C19—C20—C21179.1 (3)
C6—C1—C9—N1177.0 (3)C18—C19—C20—C210.5 (5)
C1—C2—C3—O2178.5 (3)C19—C20—C21—C220.2 (5)
O1—C2—C3—O20.1 (4)C20—C21—C22—C170.1 (5)
O1—C2—C3—C4179.3 (3)N2—C26—C27—C28177.7 (3)
C1—C2—C3—C40.8 (5)C31—C26—C27—C280.3 (5)
O2—C3—C4—C5179.8 (3)N2—C26—C31—C30177.3 (3)
C2—C3—C4—C50.5 (5)C27—C26—C31—C300.3 (6)
C3—C4—C5—C61.3 (5)C26—C27—C28—C291.0 (6)
C4—C5—C6—C10.7 (5)C27—C28—C29—C301.0 (6)
N1—C10—C15—C14178.5 (3)C27—C28—C29—C32178.4 (4)
C15—C10—C11—C122.0 (5)C28—C29—C30—C310.4 (6)
N1—C10—C11—C12178.6 (3)C32—C29—C30—C31179.0 (4)
C11—C10—C15—C142.0 (6)C29—C30—C31—C260.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.584 (4)147
O3—H3···N20.821.862.585 (3)147
C24—H24A···O4i0.962.593.470 (4)153
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H17NO2
Mr255.31
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)29.5126 (11), 6.8703 (3), 28.2167 (13)
β (°) 102.986 (3)
V3)5574.9 (4)
Z16
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.975, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
20559, 5040, 2075
Rint0.083
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.181, 0.98
No. of reflections5040
No. of parameters346
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.584 (4)147
O3—H3···N20.821.862.585 (3)147
C24—H24A···O4i0.962.593.470 (4)153
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan.

References

First citationAlbayrak, Ç., Koşar, B., Demir, S., Odabaşoĝlu, M. & Büyükgüngör, O. (2010). J. Mol. Struct. 963, 211–218.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationÖzek, A., Koşar, B., Albayrak, Ç. & Büyükgüngör, O. (2010). Acta Cryst. E66, o684.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds