organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-(4-Bromo­phen­yl)-2-[(2-phenyl­cyclo­hex-2-en-1-yl)imino]-1,3-thia­zol­idin-4-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
*Correspondence e-mail: hkfun@usm.my

(Received 28 May 2012; accepted 30 May 2012; online 2 June 2012)

The title compound, C21H19BrN2OS, exists in a cis conformation with respect to the N=C bond [1.2602 (14) Å]. The cyclo­hexene ring adopts a distorted half-chair conformation and the C—N bond lies in an equatorial orientation. The thia­zolidine ring forms dihedral angles of 53.76 (7) and 57.22 (7)° with the benzene and bromo-substituted benzene rings, respectively. The dihedral angle between the benzene and bromo-substituted benzene rings is 76.06 (7)°. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(14) loops. The crystal is further consolidated by weak C—H⋯π inter­actions.

Related literature

For related structures and background to thia­zolidin-4-one derivatives, see: Fun et al. (2011[Fun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, o2706.]); Ooi et al. (2012a[Ooi, C. W., Fun, H.-K., Quah, C. K., Sathishkumar, M. & Ponnuswamy, A. (2012a). Acta Cryst. E68, o1796-o1797.],b[Ooi, C. W., Fun, H.-K., Quah, C. K., Sathishkumar, M. & Ponnuswamy, A. (2012b). Acta Cryst. E68, o1999-o2000.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19BrN2OS

  • Mr = 427.35

  • Monoclinic, P 21 /c

  • a = 9.4573 (1) Å

  • b = 16.6662 (3) Å

  • c = 13.8812 (2) Å

  • β = 122.665 (1)°

  • V = 1841.88 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.36 mm−1

  • T = 100 K

  • 0.45 × 0.29 × 0.25 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.418, Tmax = 0.587

  • 24632 measured reflections

  • 6727 independent reflections

  • 5751 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.069

  • S = 1.04

  • 6727 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯O1i 0.93 2.33 3.2333 (15) 164
C17—H17ACg1ii 0.93 2.88 3.5802 (15) 133
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [x+1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of thiazolidin-4-one derivatives (Fun et al., 2011; Ooi et al., 2012a,b), we now describe the structure of the title compound.

The title compound (Fig. 1) exists in cis configuration with respect to the N1 C13 bond [N1 C13 = 1.2602 (14) Å]. The cyclohexene (C7–C12) ring adopts a distorted sofa conformation and the puckering parameters are Q = 0.4857 (14) Å, θ = 131.97 (17)° and φ = 42.1 (2)° (Cremer & Pople, 1975). The thiazolidine (S1/N2/C13–C15) ring is essentially planar with a maximum deviation of 0.019 (2) Å at atom C15 and forms dihedral angles of 53.76 (7) and 57.22 (7)° respectively with the benzene ring (C1–C6) and bromo-substituted benzene ring (C16–C21). The dihedral angle between the benzene ring and bromo-substituted benzene ring is 76.06 (7)°. The bond lengths and angles are comparable to related structures (Fun et al., 2011; Ooi et al., 2012a&b).

In the crystal (Fig. 2), pairs of C18—H18A···O1 hydrogen bonds (Table 1) link the neighbouring molecules to form dimers, generating R22 (14) ring motifs (Bernstein et al., 1995). The crystal is further consolidated by C17—H17A···Cg1 interactions (Table 1), involving the centroid of the benzene ring (C1–C6; Cg1).

Related literature top

For related structures and background to thiazolidin-4-one derivatives, see: Fun et al. (2011); Ooi et al. (2012a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 1-(4-bromophenyl)-3-(2-phenylcyclohex-2-enyl)thiourea (0.5 g, 2.3 mmol) and chloroacetyl chloride (0.29 g, 4.6 mmol) was heated to reflux in 1,4-dioxane (10 ml) at 100°C for 5 h. The reaction mixture was washed with diluted sodium bicarbonate solution (25 ml) and dried over anhydrous sodium sulfate. The solvent was then evaporated under reduced pressure and the resulting residue was subjected to column chromatography using silica gel (60–120 mesh) as the stationary phase and petroleum ether-ethyl acetate (90:10) as the mobile phase to give the pure product. Yield: 0.74 g (75%); M.p.: 172–173°C. Yellow blocks were obtained by recrystallization from dichloromethane solution.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 Ueq(C) (C—H = 0.93, 0.97 and 0.98 Å).

Structure description top

As part of our ongoing studies of thiazolidin-4-one derivatives (Fun et al., 2011; Ooi et al., 2012a,b), we now describe the structure of the title compound.

The title compound (Fig. 1) exists in cis configuration with respect to the N1 C13 bond [N1 C13 = 1.2602 (14) Å]. The cyclohexene (C7–C12) ring adopts a distorted sofa conformation and the puckering parameters are Q = 0.4857 (14) Å, θ = 131.97 (17)° and φ = 42.1 (2)° (Cremer & Pople, 1975). The thiazolidine (S1/N2/C13–C15) ring is essentially planar with a maximum deviation of 0.019 (2) Å at atom C15 and forms dihedral angles of 53.76 (7) and 57.22 (7)° respectively with the benzene ring (C1–C6) and bromo-substituted benzene ring (C16–C21). The dihedral angle between the benzene ring and bromo-substituted benzene ring is 76.06 (7)°. The bond lengths and angles are comparable to related structures (Fun et al., 2011; Ooi et al., 2012a&b).

In the crystal (Fig. 2), pairs of C18—H18A···O1 hydrogen bonds (Table 1) link the neighbouring molecules to form dimers, generating R22 (14) ring motifs (Bernstein et al., 1995). The crystal is further consolidated by C17—H17A···Cg1 interactions (Table 1), involving the centroid of the benzene ring (C1–C6; Cg1).

For related structures and background to thiazolidin-4-one derivatives, see: Fun et al. (2011); Ooi et al. (2012a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
(Z)-3-(4-Bromophenyl)-2-[(2-phenylcyclohex-2-en-1-yl)imino]-1,3- thiazolidin-4-one top
Crystal data top
C21H19BrN2OSF(000) = 872
Mr = 427.35Dx = 1.541 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9954 reflections
a = 9.4573 (1) Åθ = 2.8–32.6°
b = 16.6662 (3) ŵ = 2.36 mm1
c = 13.8812 (2) ÅT = 100 K
β = 122.665 (1)°Block, yellow
V = 1841.88 (5) Å30.45 × 0.29 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
6727 independent reflections
Radiation source: fine-focus sealed tube5751 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 32.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1412
Tmin = 0.418, Tmax = 0.587k = 2525
24632 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.4872P]
where P = (Fo2 + 2Fc2)/3
6727 reflections(Δ/σ)max = 0.002
235 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C21H19BrN2OSV = 1841.88 (5) Å3
Mr = 427.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4573 (1) ŵ = 2.36 mm1
b = 16.6662 (3) ÅT = 100 K
c = 13.8812 (2) Å0.45 × 0.29 × 0.25 mm
β = 122.665 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6727 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5751 reflections with I > 2σ(I)
Tmin = 0.418, Tmax = 0.587Rint = 0.021
24632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.04Δρmax = 0.55 e Å3
6727 reflectionsΔρmin = 0.27 e Å3
235 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.262828 (17)0.045374 (7)0.626813 (11)0.02221 (4)
S10.23445 (4)0.328421 (18)1.04486 (3)0.02081 (7)
O10.31396 (12)0.10045 (6)1.08962 (8)0.02302 (18)
N10.19965 (12)0.30829 (6)0.83807 (8)0.01380 (17)
N20.26458 (12)0.19597 (6)0.95606 (8)0.01426 (17)
C10.18227 (16)0.31078 (8)0.68851 (12)0.0211 (2)
H1A0.15350.32820.76050.025*
C20.30028 (16)0.25012 (8)0.63418 (13)0.0260 (3)
H2A0.35070.22760.66970.031*
C30.34355 (17)0.22278 (8)0.52691 (13)0.0305 (3)
H3A0.42190.18180.49100.037*
C40.26912 (18)0.25702 (9)0.47385 (12)0.0295 (3)
H4A0.29790.23920.40200.035*
C50.15163 (16)0.31794 (8)0.52797 (10)0.0217 (2)
H5A0.10240.34050.49170.026*
C60.10613 (14)0.34592 (7)0.63606 (10)0.0164 (2)
C70.02578 (14)0.40843 (7)0.69463 (9)0.01424 (19)
C80.02723 (15)0.47371 (7)0.63914 (10)0.0167 (2)
H8A0.06130.48050.56360.020*
C90.16181 (16)0.53696 (7)0.69010 (10)0.0173 (2)
H9A0.10920.58950.67210.021*
H9B0.22700.53320.65520.021*
C100.27966 (16)0.52939 (7)0.81938 (10)0.0180 (2)
H10A0.22740.55310.85650.022*
H10B0.38280.55840.84430.022*
C110.32010 (15)0.44150 (7)0.85432 (10)0.0173 (2)
H11A0.39810.43800.93650.021*
H11B0.37360.41800.81790.021*
C120.16053 (14)0.39451 (7)0.81969 (9)0.01417 (19)
H12A0.11830.41190.86710.017*
C130.23002 (14)0.27822 (7)0.93069 (9)0.01370 (19)
C140.28566 (16)0.23800 (8)1.12881 (10)0.0194 (2)
H14A0.39380.24371.20000.023*
H14B0.20140.22761.14680.023*
C150.29094 (15)0.16970 (7)1.05911 (10)0.0163 (2)
C160.26532 (14)0.14088 (7)0.87679 (9)0.01387 (19)
C170.40768 (15)0.09488 (7)0.91258 (10)0.0172 (2)
H17A0.50260.10160.98570.021*
C180.40766 (16)0.03854 (7)0.83822 (11)0.0182 (2)
H18A0.50180.00700.86100.022*
C190.26453 (15)0.03056 (7)0.72975 (10)0.0161 (2)
C200.12226 (15)0.07709 (7)0.69269 (10)0.0165 (2)
H20A0.02790.07080.61920.020*
C210.12320 (14)0.13315 (7)0.76719 (10)0.0154 (2)
H21A0.02960.16520.74390.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02917 (7)0.01757 (6)0.02310 (7)0.00051 (4)0.01621 (6)0.00474 (4)
S10.03491 (17)0.01512 (13)0.01733 (13)0.00423 (11)0.01734 (13)0.00082 (10)
O10.0320 (5)0.0179 (4)0.0258 (4)0.0073 (4)0.0200 (4)0.0086 (3)
N10.0161 (4)0.0116 (4)0.0139 (4)0.0011 (3)0.0082 (3)0.0007 (3)
N20.0187 (4)0.0120 (4)0.0137 (4)0.0016 (3)0.0098 (4)0.0018 (3)
C10.0189 (5)0.0175 (5)0.0273 (6)0.0013 (4)0.0127 (5)0.0019 (4)
C20.0164 (5)0.0196 (6)0.0399 (8)0.0008 (4)0.0139 (5)0.0046 (5)
C30.0171 (6)0.0174 (6)0.0401 (8)0.0024 (5)0.0042 (6)0.0016 (5)
C40.0245 (6)0.0219 (6)0.0236 (6)0.0002 (5)0.0007 (5)0.0047 (5)
C50.0227 (6)0.0183 (5)0.0179 (5)0.0001 (4)0.0068 (5)0.0002 (4)
C60.0141 (5)0.0129 (5)0.0183 (5)0.0021 (4)0.0062 (4)0.0015 (4)
C70.0148 (5)0.0133 (5)0.0146 (5)0.0008 (4)0.0079 (4)0.0002 (4)
C80.0182 (5)0.0156 (5)0.0141 (5)0.0011 (4)0.0074 (4)0.0013 (4)
C90.0217 (5)0.0131 (5)0.0181 (5)0.0002 (4)0.0113 (4)0.0018 (4)
C100.0205 (5)0.0127 (5)0.0180 (5)0.0023 (4)0.0086 (4)0.0012 (4)
C110.0170 (5)0.0137 (5)0.0168 (5)0.0002 (4)0.0062 (4)0.0003 (4)
C120.0173 (5)0.0112 (5)0.0138 (4)0.0011 (4)0.0083 (4)0.0009 (3)
C130.0150 (5)0.0118 (5)0.0143 (4)0.0005 (4)0.0079 (4)0.0005 (3)
C140.0268 (6)0.0180 (5)0.0164 (5)0.0025 (4)0.0137 (5)0.0021 (4)
C150.0172 (5)0.0183 (5)0.0157 (5)0.0028 (4)0.0104 (4)0.0034 (4)
C160.0172 (5)0.0113 (5)0.0149 (5)0.0003 (4)0.0099 (4)0.0004 (3)
C170.0176 (5)0.0153 (5)0.0171 (5)0.0022 (4)0.0082 (4)0.0014 (4)
C180.0201 (5)0.0154 (5)0.0204 (5)0.0041 (4)0.0118 (5)0.0017 (4)
C190.0217 (5)0.0115 (5)0.0189 (5)0.0010 (4)0.0134 (5)0.0014 (4)
C200.0183 (5)0.0152 (5)0.0167 (5)0.0013 (4)0.0099 (4)0.0004 (4)
C210.0158 (5)0.0144 (5)0.0166 (5)0.0006 (4)0.0092 (4)0.0007 (4)
Geometric parameters (Å, º) top
Br1—C191.9023 (11)C8—H8A0.9300
S1—C131.7725 (11)C9—C101.5230 (17)
S1—C141.8039 (12)C9—H9A0.9700
O1—C151.2080 (14)C9—H9B0.9700
N1—C131.2602 (14)C10—C111.5254 (16)
N1—C121.4714 (14)C10—H10A0.9700
N2—C151.3839 (14)C10—H10B0.9700
N2—C131.4090 (14)C11—C121.5293 (16)
N2—C161.4360 (14)C11—H11A0.9700
C1—C21.3884 (18)C11—H11B0.9700
C1—C61.3992 (17)C12—H12A0.9800
C1—H1A0.9300C14—C151.5122 (17)
C2—C31.391 (2)C14—H14A0.9700
C2—H2A0.9300C14—H14B0.9700
C3—C41.387 (2)C16—C171.3875 (16)
C3—H3A0.9300C16—C211.3894 (15)
C4—C51.3887 (19)C17—C181.3953 (16)
C4—H4A0.9300C17—H17A0.9300
C5—C61.3990 (17)C18—C191.3846 (17)
C5—H5A0.9300C18—H18A0.9300
C6—C71.4858 (16)C19—C201.3889 (17)
C7—C81.3374 (16)C20—C211.3902 (16)
C7—C121.5177 (15)C20—H20A0.9300
C8—C91.5032 (17)C21—H21A0.9300
C13—S1—C1492.97 (5)C10—C11—H11A109.5
C13—N1—C12117.57 (9)C12—C11—H11A109.5
C15—N2—C13117.01 (9)C10—C11—H11B109.5
C15—N2—C16121.13 (9)C12—C11—H11B109.5
C13—N2—C16121.80 (9)H11A—C11—H11B108.1
C2—C1—C6120.71 (13)N1—C12—C7108.97 (9)
C2—C1—H1A119.6N1—C12—C11109.42 (9)
C6—C1—H1A119.6C7—C12—C11110.99 (9)
C1—C2—C3120.39 (13)N1—C12—H12A109.1
C1—C2—H2A119.8C7—C12—H12A109.1
C3—C2—H2A119.8C11—C12—H12A109.1
C4—C3—C2119.56 (12)N1—C13—N2122.43 (10)
C4—C3—H3A120.2N1—C13—S1127.37 (9)
C2—C3—H3A120.2N2—C13—S1110.21 (8)
C3—C4—C5120.05 (13)C15—C14—S1107.80 (8)
C3—C4—H4A120.0C15—C14—H14A110.1
C5—C4—H4A120.0S1—C14—H14A110.1
C4—C5—C6121.14 (13)C15—C14—H14B110.1
C4—C5—H5A119.4S1—C14—H14B110.1
C6—C5—H5A119.4H14A—C14—H14B108.5
C5—C6—C1118.15 (11)O1—C15—N2124.24 (11)
C5—C6—C7120.14 (11)O1—C15—C14123.83 (10)
C1—C6—C7121.65 (11)N2—C15—C14111.93 (10)
C8—C7—C6121.45 (10)C17—C16—C21121.27 (10)
C8—C7—C12121.33 (10)C17—C16—N2118.95 (10)
C6—C7—C12117.22 (9)C21—C16—N2119.76 (10)
C7—C8—C9124.66 (10)C16—C17—C18119.62 (11)
C7—C8—H8A117.7C16—C17—H17A120.2
C9—C8—H8A117.7C18—C17—H17A120.2
C8—C9—C10113.05 (9)C19—C18—C17118.61 (11)
C8—C9—H9A109.0C19—C18—H18A120.7
C10—C9—H9A109.0C17—C18—H18A120.7
C8—C9—H9B109.0C18—C19—C20122.15 (11)
C10—C9—H9B109.0C18—C19—Br1119.19 (9)
H9A—C9—H9B107.8C20—C19—Br1118.65 (9)
C9—C10—C11110.65 (9)C19—C20—C21118.93 (11)
C9—C10—H10A109.5C19—C20—H20A120.5
C11—C10—H10A109.5C21—C20—H20A120.5
C9—C10—H10B109.5C16—C21—C20119.40 (11)
C11—C10—H10B109.5C16—C21—H21A120.3
H10A—C10—H10B108.1C20—C21—H21A120.3
C10—C11—C12110.87 (10)
C6—C1—C2—C30.61 (19)C15—N2—C13—N1178.09 (11)
C1—C2—C3—C40.6 (2)C16—N2—C13—N10.77 (17)
C2—C3—C4—C50.3 (2)C15—N2—C13—S11.31 (12)
C3—C4—C5—C60.0 (2)C16—N2—C13—S1178.64 (8)
C4—C5—C6—C10.04 (18)C14—S1—C13—N1179.95 (11)
C4—C5—C6—C7177.08 (12)C14—S1—C13—N20.58 (9)
C2—C1—C6—C50.33 (18)C13—S1—C14—C152.07 (9)
C2—C1—C6—C7177.32 (11)C13—N2—C15—O1176.41 (11)
C5—C6—C7—C845.66 (16)C16—N2—C15—O10.94 (18)
C1—C6—C7—C8137.41 (12)C13—N2—C15—C142.97 (14)
C5—C6—C7—C12133.41 (11)C16—N2—C15—C14179.69 (10)
C1—C6—C7—C1243.52 (15)S1—C14—C15—O1176.23 (10)
C6—C7—C8—C9176.02 (11)S1—C14—C15—N23.15 (12)
C12—C7—C8—C93.01 (18)C15—N2—C16—C1758.28 (15)
C7—C8—C9—C1011.99 (17)C13—N2—C16—C17124.50 (12)
C8—C9—C10—C1140.11 (14)C15—N2—C16—C21120.22 (12)
C9—C10—C11—C1260.99 (13)C13—N2—C16—C2157.00 (15)
C13—N1—C12—C7142.56 (10)C21—C16—C17—C181.30 (17)
C13—N1—C12—C1195.92 (12)N2—C16—C17—C18177.17 (10)
C8—C7—C12—N1143.05 (11)C16—C17—C18—C190.38 (17)
C6—C7—C12—N136.02 (13)C17—C18—C19—C200.48 (18)
C8—C7—C12—C1122.49 (15)C17—C18—C19—Br1179.52 (9)
C6—C7—C12—C11156.58 (10)C18—C19—C20—C210.43 (18)
C10—C11—C12—N1171.22 (9)Br1—C19—C20—C21179.48 (9)
C10—C11—C12—C750.93 (13)C17—C16—C21—C201.35 (17)
C12—N1—C13—N2178.28 (10)N2—C16—C21—C20177.11 (10)
C12—N1—C13—S11.01 (15)C19—C20—C21—C160.48 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C18—H18A···O1i0.932.333.2333 (15)164
C17—H17A···Cg1ii0.932.883.5802 (15)133
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC21H19BrN2OS
Mr427.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.4573 (1), 16.6662 (3), 13.8812 (2)
β (°) 122.665 (1)
V3)1841.88 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.36
Crystal size (mm)0.45 × 0.29 × 0.25
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.418, 0.587
No. of measured, independent and
observed [I > 2σ(I)] reflections
24632, 6727, 5751
Rint0.021
(sin θ/λ)max1)0.761
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.069, 1.04
No. of reflections6727
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C18—H18A···O1i0.932.333.2333 (15)164
C17—H17A···Cg1ii0.932.883.5802 (15)133
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

CWO, HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). CWO also thanks the Malaysian Goverment and USM for the award of the post of Research Officer under Research University Grant No. 1001/PFIZIK/811160.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, o2706.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOoi, C. W., Fun, H.-K., Quah, C. K., Sathishkumar, M. & Ponnuswamy, A. (2012a). Acta Cryst. E68, o1796–o1797.  CSD CrossRef IUCr Journals Google Scholar
First citationOoi, C. W., Fun, H.-K., Quah, C. K., Sathishkumar, M. & Ponnuswamy, A. (2012b). Acta Cryst. E68, o1999–o2000.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds