organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(Adamantan-1-yl)-4-[(E)-(2,6-di­fluoro­benzyl­­idene)amino]-1-[(4-phenyl­piperazin-1-yl)meth­yl]-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 30 May 2012; accepted 2 June 2012; online 13 June 2012)

The imine residue [C=N = 1.268 (3) Å; conformation = E] is twisted [N—N—C—N = 87.8 (2)°] out of the plane (r.m.s. deviation = 0.016 Å) of the central 1,2,4-triazole ring in the title compound, C30H34F2N6S. A small twist also occurs between the imine and terminal benzene rings [N—C—C—C = −169.8 (2)°]. The piperazine ring (chair conformation) occupies a position almost normal to the central plane [N—N—C—N = 87.8 (2)°]. In the crystal, the mol­ecules are consolidated into a three-dimensional architecture via C—H⋯S, C—H⋯π and ππ inter­actions, the latter between centrosymmetrically related difluoro­benzene rings [inter-centroid distance = 3.9389 (18) Å].

Related literature

For a related structure and background to the biological activity of adamantane derivatives, see: El-Emam et al. (2012[El-Emam, A. A., Al-Omar, M. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1766-o1767.]). For further synthetic details, see: Al-Omar et al. (2010[Al-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526-2550.]).

[Scheme 1]

Experimental

Crystal data
  • C30H34F2N6S

  • Mr = 548.69

  • Monoclinic, P 21 /n

  • a = 17.2712 (3) Å

  • b = 7.7141 (1) Å

  • c = 21.3157 (4) Å

  • β = 95.245 (2)°

  • V = 2828.04 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.38 mm−1

  • T = 294 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.702, Tmax = 1.000

  • 20801 measured reflections

  • 5884 independent reflections

  • 4712 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.161

  • S = 1.04

  • 5884 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C25–C30 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20B⋯S1i 0.97 2.86 3.397 (2) 116
C28—H28⋯Cg1ii 0.93 2.99 3.832 (3) 151
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{5\over 2}}, -y+{\script{1\over 2}}, z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation to our interest in the chemical and pharmacological properties of adamantane derivatives, and as part of on-going structural studies (El-Emam et al., 2012), the title compound (I) was synthesized as potential chemotherapeutic agent (Al-Omar et al., 2010).

In (I), the central 1,2,4-triazole ring (r.m.s. deviation = 0.016 Å) is twisted with respect to the adjacent imine bond (1.268 (3) Å; conformation = E) as seen in the value of the C13—N1—N2—C11 torsion angle of 148.49 (19)°. There is a small twist between the latter and the connected benzene ring with the N1—C13—C14—C15 torsion angle being -169.8 (2)°. The piperazine ring (chair conformation) projects nearly normal to the central plane [N3—N4—C20—N5 = 87.8 (2)°].

Molecules are consolidated in the crystal packing by a combination of C—H···S and C—H···π interactions, Table 1, as well as weak ππ interactions between centrosymmetrically related C(14—C19) benzene rings [inter-centroid distance = 3.9389 (18) Å for 1 - x, 1 - y, 1 - z], Fig. 2.

Related literature top

For a related structure and background to the biological activity of adamantane derivatives, see: El-Emam et al. (2012). For further synthetic details, see: Al-Omar et al. (2010).

Experimental top

A mixture of the 5-(adamantan-1-yl)-4-(2,6-difluorobenzylideneamino)-4H-1,2,4-triazole-3-thiol (347 mg, 1 mmol), 1-phenylpiperazine (162 mg, 1 mmol) and 37% formaldehyde solution (0.5 ml), in ethanol (8 ml), was heated under reflux for 15 min. after which a clear solution was obtained. Stirring was continued for 12 h at room temperature and the mixture was allowed to stand overnight. Cold water (5 ml) was added and the mixture was stirred for a further 20 min. The precipitated crude product was filtered, washed with water, dried, and crystallized from ethanol to yield 434 mg (79%) of the title compound (I) as crystals. M.pt: 424–426 K. Light yellow prisms were obtained by slow evaporation of CHCl3:EtOH (1:1; 5 ml) solution at room temperature. 1H NMR (DMSO-d6, 500.13 MHz): δ 1.80 (s, 6H, adamantane-H), 2.10 (s, 3H, adamantane-H), 2.19 (s, 6H, adamantane-H), 3.04 (s, 4H, piperazine-H), 3.23 (s, 4H, piperazine-H), 5.24 (s, 2H, CH2), 6.89 (t, 1H, Ar—H, J = 7.0 Hz), 6.94 (d, 2H, Ar—H, J = 8.0 Hz), 7.03 (t. 2H, Ar—H, J = 8.5 Hz), 7.26–7.28 (m, 2H, Ar—H), 7.47–7.50 (m. 1H, Ar—H), 10.67 (s, 1H, CH=N). 13C NMR (DMSO-d6, 125.76 MHz): δ 28.0, 35.56, 36.46, 38.37 (adamantane-C), 49.41, 50.55 (piperazine-C), 68.82 (CH2), 110.76, 112.19, 116.31, 119.88, 129.10, 133.27, 151.38, 152.24 (Ar—C), 155.64, 161.06 (triazole C-5 & CH=N), 163.22 (C=S).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.93 to 0.98 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

Structure description top

In continuation to our interest in the chemical and pharmacological properties of adamantane derivatives, and as part of on-going structural studies (El-Emam et al., 2012), the title compound (I) was synthesized as potential chemotherapeutic agent (Al-Omar et al., 2010).

In (I), the central 1,2,4-triazole ring (r.m.s. deviation = 0.016 Å) is twisted with respect to the adjacent imine bond (1.268 (3) Å; conformation = E) as seen in the value of the C13—N1—N2—C11 torsion angle of 148.49 (19)°. There is a small twist between the latter and the connected benzene ring with the N1—C13—C14—C15 torsion angle being -169.8 (2)°. The piperazine ring (chair conformation) projects nearly normal to the central plane [N3—N4—C20—N5 = 87.8 (2)°].

Molecules are consolidated in the crystal packing by a combination of C—H···S and C—H···π interactions, Table 1, as well as weak ππ interactions between centrosymmetrically related C(14—C19) benzene rings [inter-centroid distance = 3.9389 (18) Å for 1 - x, 1 - y, 1 - z], Fig. 2.

For a related structure and background to the biological activity of adamantane derivatives, see: El-Emam et al. (2012). For further synthetic details, see: Al-Omar et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view in projection down the b axis of the unit-cell contents for (I). The C—H···S, C—H···π and ππ interactions are shown as orange, purple and brown dashed lines, respectively.
3-(Adamantan-1-yl)-4-[(E)-(2,6-difluorobenzylidene)amino]-1-[(4- phenylpiperazin-1-yl)methyl]-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C30H34F2N6SF(000) = 1160
Mr = 548.69Dx = 1.289 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 6884 reflections
a = 17.2712 (3) Åθ = 3.2–76.4°
b = 7.7141 (1) ŵ = 1.38 mm1
c = 21.3157 (4) ÅT = 294 K
β = 95.245 (2)°Prism, light-yellow
V = 2828.04 (8) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
5884 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4712 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4041 pixels mm-1θmax = 76.6°, θmin = 3.2°
ω scanh = 2111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 99
Tmin = 0.702, Tmax = 1.000l = 2426
20801 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0841P)2 + 0.8642P]
where P = (Fo2 + 2Fc2)/3
5884 reflections(Δ/σ)max < 0.001
352 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C30H34F2N6SV = 2828.04 (8) Å3
Mr = 548.69Z = 4
Monoclinic, P21/nCu Kα radiation
a = 17.2712 (3) ŵ = 1.38 mm1
b = 7.7141 (1) ÅT = 294 K
c = 21.3157 (4) Å0.35 × 0.30 × 0.25 mm
β = 95.245 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
5884 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
4712 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 1.000Rint = 0.027
20801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.04Δρmax = 0.70 e Å3
5884 reflectionsΔρmin = 0.42 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.71076 (3)0.89349 (8)0.68065 (3)0.06427 (19)
N10.70514 (9)0.6526 (2)0.55097 (8)0.0518 (4)
N20.76034 (9)0.6366 (2)0.60276 (8)0.0454 (4)
N30.87099 (9)0.5541 (2)0.65262 (8)0.0471 (4)
N40.83637 (9)0.6826 (2)0.68561 (8)0.0479 (4)
N50.93244 (10)0.8605 (2)0.75009 (8)0.0501 (4)
N61.03325 (10)1.1263 (2)0.71401 (8)0.0502 (4)
F10.49418 (9)0.7917 (3)0.59319 (7)0.1000 (6)
F20.64051 (11)0.6213 (4)0.43092 (8)0.1399 (11)
C10.83845 (10)0.3955 (2)0.55331 (9)0.0443 (4)
C20.84385 (14)0.4736 (3)0.48742 (10)0.0599 (5)
H2A0.79590.53370.47380.072*
H2B0.88620.55660.48880.072*
C30.85804 (18)0.3275 (4)0.44079 (11)0.0759 (8)
H30.86060.37680.39870.091*
C40.79106 (18)0.1981 (4)0.43920 (15)0.0944 (11)
H4A0.79850.10800.40860.113*
H4B0.74240.25670.42660.113*
C50.78757 (15)0.1172 (3)0.50410 (15)0.0760 (8)
H50.74520.03250.50250.091*
C60.86387 (16)0.0277 (3)0.52427 (14)0.0707 (7)
H6A0.87290.06440.49480.085*
H6B0.86170.02340.56560.085*
C70.92952 (13)0.1579 (3)0.52613 (11)0.0577 (5)
H70.97860.09940.53950.069*
C80.91554 (11)0.3024 (3)0.57298 (10)0.0511 (5)
H8A0.95800.38500.57440.061*
H8B0.91390.25360.61480.061*
C90.77257 (13)0.2608 (3)0.55135 (13)0.0616 (6)
H9A0.77000.21100.59290.074*
H9B0.72320.31650.53890.074*
C100.93432 (16)0.2354 (3)0.46118 (12)0.0699 (7)
H10A0.94360.14460.43130.084*
H10B0.97710.31720.46220.084*
C110.82487 (10)0.5307 (2)0.60164 (9)0.0437 (4)
C120.76867 (11)0.7375 (2)0.65675 (9)0.0467 (4)
C130.63618 (11)0.6808 (3)0.56417 (10)0.0531 (5)
H130.62580.68420.60620.064*
C140.57280 (11)0.7082 (3)0.51524 (10)0.0519 (5)
C150.50136 (12)0.7655 (3)0.53143 (11)0.0598 (5)
C160.43828 (14)0.8010 (4)0.48995 (13)0.0734 (7)
H160.39220.84210.50390.088*
C170.44493 (16)0.7743 (4)0.42783 (13)0.0836 (8)
H170.40280.79720.39860.100*
C180.51275 (19)0.7141 (5)0.40770 (13)0.0967 (11)
H180.51690.69490.36510.116*
C190.57489 (15)0.6823 (5)0.45122 (12)0.0794 (8)
C200.87344 (13)0.7298 (3)0.74837 (9)0.0529 (5)
H20A0.83320.76900.77390.064*
H20B0.89620.62600.76800.064*
C210.99593 (13)0.8207 (3)0.71174 (11)0.0560 (5)
H21A0.97730.82590.66750.067*
H21B1.01480.70420.72100.067*
C221.06122 (12)0.9487 (3)0.72533 (11)0.0566 (5)
H22A1.08250.93710.76880.068*
H22B1.10240.92410.69860.068*
C230.96833 (13)1.1645 (3)0.75066 (11)0.0582 (5)
H23A0.94931.28060.74090.070*
H23B0.98571.16010.79520.070*
C240.90366 (12)1.0356 (3)0.73619 (11)0.0546 (5)
H24A0.86111.06130.76140.066*
H24B0.88441.04390.69210.066*
C251.09395 (12)1.2508 (3)0.71727 (10)0.0525 (5)
C261.14778 (15)1.2456 (3)0.67281 (12)0.0653 (6)
H261.14301.16230.64120.078*
C271.20870 (15)1.3638 (4)0.67517 (14)0.0754 (7)
H271.24471.35730.64540.090*
C281.21662 (16)1.4893 (4)0.72056 (15)0.0796 (8)
H281.25741.56830.72170.096*
C291.16349 (17)1.4969 (4)0.76432 (16)0.0864 (8)
H291.16821.58210.79530.104*
C301.10264 (15)1.3788 (3)0.76298 (13)0.0705 (6)
H301.06721.38570.79320.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0526 (3)0.0593 (3)0.0821 (4)0.0057 (2)0.0122 (3)0.0215 (3)
N10.0425 (8)0.0561 (9)0.0551 (9)0.0104 (7)0.0041 (7)0.0122 (8)
N20.0376 (7)0.0450 (8)0.0528 (9)0.0048 (6)0.0006 (6)0.0087 (7)
N30.0449 (8)0.0433 (8)0.0526 (9)0.0020 (6)0.0018 (7)0.0036 (7)
N40.0469 (8)0.0469 (8)0.0496 (9)0.0021 (7)0.0022 (7)0.0059 (7)
N50.0538 (9)0.0519 (9)0.0444 (8)0.0070 (7)0.0029 (7)0.0015 (7)
N60.0504 (9)0.0468 (9)0.0533 (9)0.0008 (7)0.0035 (7)0.0014 (7)
F10.0608 (9)0.179 (2)0.0605 (9)0.0320 (10)0.0098 (7)0.0038 (10)
F20.0842 (12)0.269 (3)0.0661 (10)0.0617 (16)0.0053 (8)0.0370 (14)
C10.0386 (9)0.0411 (9)0.0530 (10)0.0057 (7)0.0039 (7)0.0042 (8)
C20.0686 (13)0.0560 (12)0.0551 (12)0.0226 (10)0.0052 (10)0.0066 (9)
C30.0965 (19)0.0818 (17)0.0489 (12)0.0411 (16)0.0042 (12)0.0001 (11)
C40.0862 (19)0.103 (2)0.088 (2)0.0409 (18)0.0264 (15)0.0497 (18)
C50.0591 (13)0.0621 (14)0.106 (2)0.0035 (11)0.0020 (13)0.0342 (14)
C60.0834 (17)0.0453 (11)0.0852 (17)0.0111 (11)0.0181 (13)0.0101 (11)
C70.0553 (12)0.0524 (11)0.0657 (13)0.0215 (9)0.0073 (10)0.0006 (9)
C80.0457 (10)0.0487 (10)0.0583 (11)0.0123 (8)0.0016 (8)0.0008 (9)
C90.0464 (11)0.0537 (11)0.0856 (16)0.0028 (9)0.0116 (10)0.0178 (11)
C100.0753 (15)0.0689 (14)0.0686 (14)0.0246 (12)0.0234 (12)0.0017 (11)
C110.0358 (8)0.0400 (9)0.0552 (10)0.0021 (7)0.0037 (7)0.0018 (8)
C120.0416 (9)0.0453 (9)0.0536 (10)0.0048 (7)0.0060 (8)0.0056 (8)
C130.0437 (10)0.0663 (12)0.0486 (10)0.0059 (9)0.0002 (8)0.0017 (9)
C140.0420 (10)0.0614 (12)0.0512 (11)0.0073 (9)0.0018 (8)0.0035 (9)
C150.0465 (11)0.0773 (15)0.0548 (12)0.0054 (10)0.0005 (9)0.0012 (10)
C160.0440 (11)0.0945 (19)0.0794 (16)0.0116 (12)0.0074 (11)0.0006 (14)
C170.0622 (15)0.112 (2)0.0715 (17)0.0029 (15)0.0201 (12)0.0101 (15)
C180.0803 (19)0.155 (3)0.0513 (14)0.012 (2)0.0112 (12)0.0078 (17)
C190.0598 (14)0.122 (2)0.0553 (13)0.0187 (15)0.0008 (11)0.0115 (14)
C200.0589 (12)0.0555 (11)0.0440 (10)0.0103 (9)0.0031 (8)0.0012 (8)
C210.0549 (11)0.0461 (10)0.0672 (13)0.0014 (9)0.0068 (10)0.0027 (9)
C220.0515 (11)0.0505 (11)0.0674 (13)0.0014 (9)0.0035 (9)0.0008 (9)
C230.0590 (12)0.0504 (11)0.0662 (13)0.0052 (9)0.0113 (10)0.0125 (10)
C240.0531 (11)0.0497 (11)0.0622 (12)0.0033 (9)0.0113 (9)0.0086 (9)
C250.0506 (11)0.0503 (10)0.0551 (11)0.0004 (8)0.0028 (9)0.0073 (9)
C260.0664 (14)0.0652 (14)0.0647 (13)0.0024 (11)0.0084 (11)0.0098 (11)
C270.0595 (14)0.0806 (17)0.0866 (18)0.0024 (12)0.0090 (13)0.0292 (15)
C280.0610 (15)0.0745 (17)0.100 (2)0.0154 (13)0.0108 (14)0.0199 (15)
C290.0782 (18)0.0761 (17)0.103 (2)0.0223 (15)0.0043 (16)0.0118 (16)
C300.0657 (14)0.0648 (14)0.0804 (16)0.0138 (11)0.0038 (12)0.0098 (12)
Geometric parameters (Å, º) top
S1—C121.6735 (19)C8—H8B0.9700
N1—C131.268 (3)C9—H9A0.9700
N1—N21.397 (2)C9—H9B0.9700
N2—C111.384 (2)C10—H10A0.9700
N2—C121.386 (2)C10—H10B0.9700
N3—C111.300 (2)C13—C141.457 (3)
N3—N41.382 (2)C13—H130.9300
N4—C121.339 (3)C14—C191.383 (3)
N4—C201.475 (2)C14—C151.384 (3)
N5—C201.431 (3)C15—C161.366 (3)
N5—C211.459 (3)C16—C171.355 (4)
N5—C241.461 (3)C16—H160.9300
N6—C251.419 (3)C17—C181.365 (4)
N6—C231.454 (3)C17—H170.9300
N6—C221.465 (3)C18—C191.375 (4)
F1—C151.349 (3)C18—H180.9300
F2—C191.335 (3)C20—H20A0.9700
C1—C111.500 (3)C20—H20B0.9700
C1—C81.537 (2)C21—C221.507 (3)
C1—C21.539 (3)C21—H21A0.9700
C1—C91.539 (3)C21—H21B0.9700
C2—C31.537 (3)C22—H22A0.9700
C2—H2A0.9700C22—H22B0.9700
C2—H2B0.9700C23—C241.506 (3)
C3—C41.526 (5)C23—H23A0.9700
C3—C101.525 (3)C23—H23B0.9700
C3—H30.9800C24—H24A0.9700
C4—C51.524 (5)C24—H24B0.9700
C4—H4A0.9700C25—C261.387 (3)
C4—H4B0.9700C25—C301.386 (3)
C5—C61.515 (4)C26—C271.390 (4)
C5—C91.535 (3)C26—H260.9300
C5—H50.9800C27—C281.367 (4)
C6—C71.512 (4)C27—H270.9300
C6—H6A0.9700C28—C291.368 (4)
C6—H6B0.9700C28—H280.9300
C7—C101.517 (3)C29—C301.389 (4)
C7—C81.531 (3)C29—H290.9300
C7—H70.9800C30—H300.9300
C8—H8A0.9700
C13—N1—N2115.28 (17)N3—C11—C1123.27 (16)
C11—N2—C12108.85 (15)N2—C11—C1126.81 (16)
C11—N2—N1122.08 (15)N4—C12—N2102.93 (16)
C12—N2—N1128.21 (15)N4—C12—S1127.49 (15)
C11—N3—N4105.32 (15)N2—C12—S1129.57 (15)
C12—N4—N3113.15 (16)N1—C13—C14121.72 (19)
C12—N4—C20128.81 (17)N1—C13—H13119.1
N3—N4—C20117.80 (16)C14—C13—H13119.1
C20—N5—C21114.03 (17)C19—C14—C15113.36 (19)
C20—N5—C24114.70 (17)C19—C14—C13126.9 (2)
C21—N5—C24109.89 (16)C15—C14—C13119.77 (19)
C25—N6—C23116.06 (16)F1—C15—C16117.5 (2)
C25—N6—C22113.18 (16)F1—C15—C14117.06 (19)
C23—N6—C22111.08 (17)C16—C15—C14125.4 (2)
C11—C1—C8108.87 (16)C17—C16—C15117.9 (2)
C11—C1—C2112.39 (16)C17—C16—H16121.1
C8—C1—C2107.97 (16)C15—C16—H16121.1
C11—C1—C9109.08 (15)C16—C17—C18120.7 (2)
C8—C1—C9108.18 (16)C16—C17—H17119.7
C2—C1—C9110.24 (18)C18—C17—H17119.7
C3—C2—C1109.26 (18)C17—C18—C19119.2 (3)
C3—C2—H2A109.8C17—C18—H18120.4
C1—C2—H2A109.8C19—C18—H18120.4
C3—C2—H2B109.8F2—C19—C18118.5 (2)
C1—C2—H2B109.8F2—C19—C14118.0 (2)
H2A—C2—H2B108.3C18—C19—C14123.4 (2)
C4—C3—C10109.6 (2)N5—C20—N4116.50 (16)
C4—C3—C2109.2 (2)N5—C20—H20A108.2
C10—C3—C2110.0 (2)N4—C20—H20A108.2
C4—C3—H3109.4N5—C20—H20B108.2
C10—C3—H3109.4N4—C20—H20B108.2
C2—C3—H3109.4H20A—C20—H20B107.3
C3—C4—C5109.9 (2)N5—C21—C22109.98 (18)
C3—C4—H4A109.7N5—C21—H21A109.7
C5—C4—H4A109.7C22—C21—H21A109.7
C3—C4—H4B109.7N5—C21—H21B109.7
C5—C4—H4B109.7C22—C21—H21B109.7
H4A—C4—H4B108.2H21A—C21—H21B108.2
C6—C5—C4109.8 (2)N6—C22—C21110.58 (17)
C6—C5—C9109.7 (2)N6—C22—H22A109.5
C4—C5—C9108.9 (2)C21—C22—H22A109.5
C6—C5—H5109.5N6—C22—H22B109.5
C4—C5—H5109.5C21—C22—H22B109.5
C9—C5—H5109.5H22A—C22—H22B108.1
C5—C6—C7109.6 (2)N6—C23—C24110.50 (17)
C5—C6—H6A109.8N6—C23—H23A109.6
C7—C6—H6A109.8C24—C23—H23A109.6
C5—C6—H6B109.8N6—C23—H23B109.6
C7—C6—H6B109.8C24—C23—H23B109.6
H6A—C6—H6B108.2H23A—C23—H23B108.1
C6—C7—C10110.0 (2)N5—C24—C23109.68 (18)
C6—C7—C8109.76 (18)N5—C24—H24A109.7
C10—C7—C8109.45 (19)C23—C24—H24A109.7
C6—C7—H7109.2N5—C24—H24B109.7
C10—C7—H7109.2C23—C24—H24B109.7
C8—C7—H7109.2H24A—C24—H24B108.2
C7—C8—C1110.28 (17)C26—C25—C30117.7 (2)
C7—C8—H8A109.6C26—C25—N6119.0 (2)
C1—C8—H8A109.6C30—C25—N6123.3 (2)
C7—C8—H8B109.6C25—C26—C27120.6 (3)
C1—C8—H8B109.6C25—C26—H26119.7
H8A—C8—H8B108.1C27—C26—H26119.7
C5—C9—C1109.66 (18)C28—C27—C26121.1 (3)
C5—C9—H9A109.7C28—C27—H27119.4
C1—C9—H9A109.7C26—C27—H27119.4
C5—C9—H9B109.7C27—C28—C29118.9 (3)
C1—C9—H9B109.7C27—C28—H28120.6
H9A—C9—H9B108.2C29—C28—H28120.6
C7—C10—C3109.02 (19)C28—C29—C30120.7 (3)
C7—C10—H10A109.9C28—C29—H29119.6
C3—C10—H10A109.9C30—C29—H29119.6
C7—C10—H10B109.9C29—C30—C25121.0 (3)
C3—C10—H10B109.9C29—C30—H30119.5
H10A—C10—H10B108.3C25—C30—H30119.5
N3—C11—N2109.67 (16)
C13—N1—N2—C11148.49 (19)C11—N2—C12—N41.8 (2)
C13—N1—N2—C1243.3 (3)N1—N2—C12—N4171.19 (18)
C11—N3—N4—C121.3 (2)C11—N2—C12—S1176.97 (15)
C11—N3—N4—C20176.19 (16)N1—N2—C12—S17.5 (3)
C11—C1—C2—C3179.79 (19)N2—N1—C13—C14177.22 (19)
C8—C1—C2—C359.7 (2)N1—C13—C14—C1910.4 (4)
C9—C1—C2—C358.3 (2)N1—C13—C14—C15169.8 (2)
C1—C2—C3—C459.4 (3)C19—C14—C15—F1179.2 (3)
C1—C2—C3—C1060.8 (3)C13—C14—C15—F10.7 (4)
C10—C3—C4—C558.8 (3)C19—C14—C15—C162.3 (4)
C2—C3—C4—C561.7 (3)C13—C14—C15—C16177.9 (3)
C3—C4—C5—C658.6 (3)F1—C15—C16—C17179.7 (3)
C3—C4—C5—C961.6 (3)C14—C15—C16—C171.7 (5)
C4—C5—C6—C759.2 (3)C15—C16—C17—C180.1 (5)
C9—C5—C6—C760.4 (3)C16—C17—C18—C190.7 (6)
C5—C6—C7—C1060.6 (2)C17—C18—C19—F2179.1 (4)
C5—C6—C7—C859.9 (3)C17—C18—C19—C140.0 (6)
C6—C7—C8—C159.9 (2)C15—C14—C19—F2177.8 (3)
C10—C7—C8—C160.9 (2)C13—C14—C19—F22.0 (5)
C11—C1—C8—C7177.53 (17)C15—C14—C19—C181.4 (5)
C2—C1—C8—C760.2 (2)C13—C14—C19—C18178.8 (3)
C9—C1—C8—C759.1 (2)C21—N5—C20—N456.1 (2)
C6—C5—C9—C160.6 (3)C24—N5—C20—N471.8 (2)
C4—C5—C9—C159.6 (3)C12—N4—C20—N598.2 (2)
C11—C1—C9—C5177.6 (2)N3—N4—C20—N587.8 (2)
C8—C1—C9—C559.3 (3)C20—N5—C21—C22170.14 (18)
C2—C1—C9—C558.6 (2)C24—N5—C21—C2259.5 (2)
C6—C7—C10—C360.6 (3)C25—N6—C22—C21171.53 (18)
C8—C7—C10—C360.0 (3)C23—N6—C22—C2155.8 (2)
C4—C3—C10—C759.5 (3)N5—C21—C22—N657.1 (2)
C2—C3—C10—C760.5 (3)C25—N6—C23—C24172.32 (18)
N4—N3—C11—N22.3 (2)C22—N6—C23—C2456.5 (2)
N4—N3—C11—C1176.97 (16)C20—N5—C24—C23169.94 (17)
C12—N2—C11—N32.7 (2)C21—N5—C24—C2360.0 (2)
N1—N2—C11—N3172.89 (17)N6—C23—C24—N558.5 (2)
C12—N2—C11—C1177.08 (18)C23—N6—C25—C26164.6 (2)
N1—N2—C11—C112.7 (3)C22—N6—C25—C2665.2 (3)
C8—C1—C11—N33.0 (3)C23—N6—C25—C3015.4 (3)
C2—C1—C11—N3122.6 (2)C22—N6—C25—C30114.7 (2)
C9—C1—C11—N3114.9 (2)C30—C25—C26—C271.0 (3)
C8—C1—C11—N2176.68 (18)N6—C25—C26—C27179.0 (2)
C2—C1—C11—N263.7 (2)C25—C26—C27—C281.0 (4)
C9—C1—C11—N258.8 (3)C26—C27—C28—C290.3 (4)
N3—N4—C12—N20.4 (2)C27—C28—C29—C300.3 (5)
C20—N4—C12—N2173.89 (18)C28—C29—C30—C250.2 (5)
N3—N4—C12—S1178.41 (14)C26—C25—C30—C290.4 (4)
C20—N4—C12—S17.3 (3)N6—C25—C30—C29179.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C25–C30 ring.
D—H···AD—HH···AD···AD—H···A
C20—H20B···S1i0.972.863.397 (2)116
C28—H28···Cg1ii0.932.993.832 (3)151
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+5/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC30H34F2N6S
Mr548.69
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)17.2712 (3), 7.7141 (1), 21.3157 (4)
β (°) 95.245 (2)
V3)2828.04 (8)
Z4
Radiation typeCu Kα
µ (mm1)1.38
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.702, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
20801, 5884, 4712
Rint0.027
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.161, 1.04
No. of reflections5884
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.42

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C25–C30 ring.
D—H···AD—HH···AD···AD—H···A
C20—H20B···S1i0.972.863.397 (2)116
C28—H28···Cg1ii0.932.993.832 (3)151
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+5/2, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: elemam5@hotmail.com.

Acknowledgements

The financial support of the Research Center for Female Scientific and Medical Colleges, King Saud University, is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526–2550.  Web of Science CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Emam, A. A., Al-Omar, M. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1766–o1767.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds