organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3,4-Dihy­dr­oxy­benzyl­­idene)-2-meth­­oxy­benzohydrazide

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, and bEngineering and Technology Center of Gansu Province for Botanical Pesticides, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: shentonglz@163.com

(Received 30 May 2012; accepted 5 June 2012; online 13 June 2012)

The title compound, C15H14N2O4, was prepared from 3,4-dihy­droxy­benzaldehyde and 2-meth­oxy­benzhydrazide in absolute methanol. An intra­molecular N–H⋯O hydrogen bond makes an S(6) ring motif and the dihedral angle between the aromatic rings is 3.2 (3)°. The meta-O atom is disordered over two positions in a 0.809 (6):0.191 (6) ratio. The crystal structure features O—H⋯N and O—H⋯O hydrogen bonds.

Related literature

For the structures and biological aspects of benzohydrazone derivatives, see: Horkaew et al. (2012[Horkaew, J., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2012). Acta Cryst. E68, o1069-o1070.]); Rassem et al. (2012[Rassem, H. H., Salhin, A., Bin Salleh, B., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, o1832.]); Zhang et al. (2012[Zhang, M., Xian, D.-M., Li, H.-H., Zhang, J.-C. & You, Z.-L. (2012). Aust. J. Chem. 65, 343-350.]); Fun et al. (2011[Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644-o2645.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]);.

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O4

  • Mr = 286.28

  • Orthorhombic, P b c a

  • a = 13.796 (2) Å

  • b = 8.412 (2) Å

  • c = 24.004 (3) Å

  • V = 2785.7 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.13 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.987, Tmax = 0.990

  • 12495 measured reflections

  • 2570 independent reflections

  • 1231 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.159

  • S = 1.03

  • 2570 reflections

  • 205 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2i 0.82 1.91 2.730 (3) 174
O3—H3B⋯N2i 0.82 2.31 2.789 (4) 118
O3—H3B⋯O2i 0.82 2.36 3.166 (4) 167
N1—H1⋯O1 0.90 (1) 1.88 (3) 2.620 (4) 138 (3)
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, benzohydrazone derivatives have received much attention especially for their structures and biological aspects (Horkaew et al., 2012; Rassem et al., 2012; Zhang et al., 2012; Fun et al., 2011). We report herein the title new benzohydrazone derivative, (I).

The molecule of the title compound displays a trans-configuration about the C9 N2 bond (Fig. 1). An intramolecular N–H···O hydrogen bond makes an S(6) ring motif (Bernstein et al., 1995). The dihedral angle between the aromatic rings C1—C6 and C10—C15 is 3.2 (3)°. In the crystal, molecules are linked by O–H···N, O–H···O, and N–H···O hydrogen bonds (Table 1) to form one-dimensional zigzag chains along the b axis (Fig. 2).

Related literature top

For the structures and biological aspects of benzohydrazone derivatives, see: Horkaew et al. (2012); Rassem et al. (2012); Zhang et al. (2012); Fun et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995); .

Experimental top

The title compound was prepared by stirring 3,4-dihydroxybenzaldehyde (1 mmol, 0.14 g) and 2-methoxybenzohydrazide (1 mmol, 0.17 g) in absolute methanol (30 ml). The mixture was refluxed for 1 h. The solution was then cooled to room temperature. Colorless blocks were recrystallized from methanol by slow evaporation of the solvent at room temperature after a few days.

Refinement top

The amide H atom was located in a difference map and refined isotropically [N–H = 0.90 (1) Å]. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C–H = 0.93 Å for aromatic and CH and 0.96 Å for CH3 atoms, O–H = 0.82 Å. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl and hydroxyl H atoms and 1.2Ueq for the remaining H atoms. The O3 atom is disordered over two sites with occupancies of 0.809 (2) and 0.191 (2), respectively.

Structure description top

In recent years, benzohydrazone derivatives have received much attention especially for their structures and biological aspects (Horkaew et al., 2012; Rassem et al., 2012; Zhang et al., 2012; Fun et al., 2011). We report herein the title new benzohydrazone derivative, (I).

The molecule of the title compound displays a trans-configuration about the C9 N2 bond (Fig. 1). An intramolecular N–H···O hydrogen bond makes an S(6) ring motif (Bernstein et al., 1995). The dihedral angle between the aromatic rings C1—C6 and C10—C15 is 3.2 (3)°. In the crystal, molecules are linked by O–H···N, O–H···O, and N–H···O hydrogen bonds (Table 1) to form one-dimensional zigzag chains along the b axis (Fig. 2).

For the structures and biological aspects of benzohydrazone derivatives, see: Horkaew et al. (2012); Rassem et al. (2012); Zhang et al. (2012); Fun et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995); .

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Hydrogen bond was drawn as a dashed line. Only the major component of the disordered group is shown.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound viewed along the a axis. Hydrogen bonds were drawn as dashed lines.
N'-(3,4-Dihydroxybenzylidene)-2-methoxybenzohydrazide top
Crystal data top
C15H14N2O4Dx = 1.365 Mg m3
Mr = 286.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 1590 reflections
a = 13.796 (2) Åθ = 2.9–26.4°
b = 8.412 (2) ŵ = 0.10 mm1
c = 24.004 (3) ÅT = 298 K
V = 2785.7 (9) Å3Block, colorless
Z = 80.13 × 0.10 × 0.10 mm
F(000) = 1200
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2570 independent reflections
Radiation source: fine-focus sealed tube1231 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
ω scanθmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1516
Tmin = 0.987, Tmax = 0.990k = 1010
12495 measured reflectionsl = 2922
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0613P)2]
where P = (Fo2 + 2Fc2)/3
2570 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.24 e Å3
3 restraintsΔρmin = 0.18 e Å3
Crystal data top
C15H14N2O4V = 2785.7 (9) Å3
Mr = 286.28Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.796 (2) ŵ = 0.10 mm1
b = 8.412 (2) ÅT = 298 K
c = 24.004 (3) Å0.13 × 0.10 × 0.10 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2570 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1231 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.990Rint = 0.093
12495 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0683 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.24 e Å3
2570 reflectionsΔρmin = 0.18 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.2622 (2)0.4522 (3)0.14012 (12)0.0466 (8)
N20.19869 (19)0.3787 (3)0.17652 (11)0.0447 (7)
O10.43832 (18)0.5280 (3)0.10901 (11)0.0693 (8)
O20.14022 (18)0.5770 (3)0.09575 (10)0.0661 (8)
O40.02926 (17)0.0612 (3)0.37116 (11)0.0641 (8)
H40.02270.01920.37880.096*
C10.4002 (3)0.6162 (5)0.06652 (15)0.0550 (10)
C20.2990 (3)0.6235 (4)0.06167 (14)0.0475 (9)
C30.2609 (3)0.7113 (5)0.01798 (16)0.0683 (12)
H3A0.19390.71640.01370.082*
C40.3189 (4)0.7910 (6)0.01924 (18)0.0890 (15)
H4A0.29150.84880.04820.107*
C50.4165 (4)0.7845 (6)0.0133 (2)0.0914 (16)
H50.45580.83920.03830.110*
C60.4583 (3)0.6986 (5)0.02896 (18)0.0740 (13)
H60.52550.69550.03250.089*
C70.5400 (3)0.5248 (5)0.11890 (18)0.0830 (14)
H7A0.57250.48390.08660.124*
H7B0.55350.45770.15030.124*
H7C0.56250.63060.12650.124*
C80.2274 (3)0.5489 (4)0.10027 (14)0.0454 (9)
C90.2381 (3)0.2932 (4)0.21392 (14)0.0467 (9)
H90.30540.28810.21540.056*
C100.1824 (2)0.2036 (4)0.25412 (14)0.0417 (8)
C110.0823 (2)0.1919 (4)0.25076 (14)0.0468 (9)
H110.05000.24440.22210.056*
C130.0768 (3)0.0289 (4)0.33218 (14)0.0446 (9)
C150.2287 (2)0.1215 (4)0.29653 (14)0.0513 (10)
H150.29590.12450.29910.062*
H10.3270 (8)0.446 (4)0.1439 (15)0.080*
O30.06579 (19)0.0949 (4)0.27963 (12)0.0658 (13)0.809 (6)
H3B0.09410.08940.30960.099*0.809 (6)
C120.0295 (2)0.1053 (4)0.28842 (15)0.0473 (9)0.809 (6)
C140.1761 (3)0.0351 (4)0.33496 (15)0.0515 (10)0.809 (6)
H14A0.20830.01950.36310.062*0.809 (6)
O3'0.2166 (10)0.0452 (18)0.3729 (5)0.085 (6)0.191 (6)
H3'A0.17520.08870.39210.128*0.191 (6)
C12'0.1761 (3)0.0351 (4)0.33496 (15)0.0515 (10)0.191 (6)
C14'0.0295 (2)0.1053 (4)0.28842 (15)0.0473 (9)0.191 (6)
H14B0.03750.09760.28480.057*0.191 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0481 (17)0.0459 (19)0.0458 (18)0.0011 (16)0.0106 (16)0.0062 (16)
N20.0495 (17)0.0410 (18)0.0435 (17)0.0027 (14)0.0091 (15)0.0033 (15)
O10.0498 (17)0.086 (2)0.0719 (19)0.0096 (14)0.0032 (14)0.0102 (16)
O20.0530 (17)0.0765 (19)0.0689 (18)0.0119 (14)0.0049 (13)0.0195 (15)
O40.0639 (18)0.0618 (18)0.0665 (18)0.0026 (13)0.0144 (14)0.0224 (15)
C10.070 (3)0.051 (2)0.044 (2)0.012 (2)0.011 (2)0.009 (2)
C20.063 (2)0.042 (2)0.038 (2)0.0035 (19)0.0095 (19)0.0021 (18)
C30.089 (3)0.066 (3)0.051 (3)0.004 (2)0.004 (2)0.009 (2)
C40.128 (4)0.079 (3)0.060 (3)0.003 (3)0.014 (3)0.023 (3)
C50.135 (5)0.081 (4)0.058 (3)0.030 (4)0.033 (3)0.005 (3)
C60.082 (3)0.078 (3)0.062 (3)0.025 (2)0.025 (2)0.012 (3)
C70.059 (3)0.089 (4)0.101 (4)0.008 (2)0.002 (2)0.012 (3)
C80.060 (3)0.039 (2)0.037 (2)0.0035 (18)0.0050 (19)0.0050 (18)
C90.045 (2)0.046 (2)0.048 (2)0.0032 (18)0.0069 (18)0.0037 (19)
C100.042 (2)0.039 (2)0.044 (2)0.0030 (17)0.0043 (18)0.0017 (18)
C110.054 (2)0.038 (2)0.048 (2)0.0012 (18)0.0066 (18)0.0098 (18)
C130.053 (2)0.035 (2)0.046 (2)0.0016 (17)0.0073 (19)0.0017 (18)
C150.044 (2)0.062 (3)0.049 (2)0.0040 (19)0.0021 (18)0.006 (2)
O30.035 (2)0.078 (3)0.084 (2)0.0011 (16)0.0014 (15)0.0331 (18)
C120.044 (2)0.041 (2)0.058 (2)0.0004 (17)0.0027 (18)0.0087 (19)
C140.055 (2)0.060 (3)0.039 (2)0.011 (2)0.005 (2)0.010 (2)
O3'0.077 (11)0.120 (15)0.059 (11)0.005 (9)0.004 (8)0.014 (9)
C12'0.055 (2)0.060 (3)0.039 (2)0.011 (2)0.005 (2)0.010 (2)
C14'0.044 (2)0.041 (2)0.058 (2)0.0004 (17)0.0027 (18)0.0087 (19)
Geometric parameters (Å, º) top
N1—C81.345 (4)C6—H60.9300
N1—N21.383 (4)C7—H7A0.9600
N1—H10.899 (10)C7—H7B0.9600
N2—C91.273 (4)C7—H7C0.9600
O1—C11.367 (4)C9—C101.446 (4)
O1—C71.423 (4)C9—H90.9300
O2—C81.230 (4)C10—C151.386 (4)
O4—C131.372 (4)C10—C111.387 (4)
O4—H40.8200C11—C121.371 (4)
C1—C61.391 (5)C11—H110.9300
C1—C21.403 (5)C13—C141.371 (4)
C2—C31.386 (5)C13—C121.394 (5)
C2—C81.493 (5)C15—C141.381 (4)
C3—C41.374 (5)C15—H150.9300
C3—H3A0.9300O3—C121.334 (4)
C4—C51.356 (6)O3—H3B0.8200
C4—H4A0.9300C14—H14A0.9300
C5—C61.372 (6)O3'—H3'A0.8200
C5—H50.9300
C8—N1—N2119.5 (3)H7A—C7—H7C109.5
C8—N1—H1117 (2)H7B—C7—H7C109.5
N2—N1—H1123 (2)O2—C8—N1121.9 (3)
C9—N2—N1115.3 (3)O2—C8—C2120.8 (3)
C1—O1—C7120.9 (3)N1—C8—C2117.3 (3)
C13—O4—H4109.5N2—C9—C10122.6 (3)
O1—C1—C6122.2 (4)N2—C9—H9118.7
O1—C1—C2117.9 (3)C10—C9—H9118.7
C6—C1—C2119.9 (4)C15—C10—C11117.8 (3)
C3—C2—C1117.7 (4)C15—C10—C9120.3 (3)
C3—C2—C8116.2 (3)C11—C10—C9121.8 (3)
C1—C2—C8126.1 (3)C12—C11—C10121.9 (3)
C4—C3—C2122.0 (4)C12—C11—H11119.0
C4—C3—H3A119.0C10—C11—H11119.0
C2—C3—H3A119.0C14—C13—O4117.8 (3)
C5—C4—C3119.4 (5)C14—C13—C12119.1 (3)
C5—C4—H4A120.3O4—C13—C12123.0 (3)
C3—C4—H4A120.3C14—C15—C10120.7 (3)
C4—C5—C6121.1 (5)C14—C15—H15119.7
C4—C5—H5119.4C10—C15—H15119.7
C6—C5—H5119.4C12—O3—H3B109.5
C5—C6—C1119.9 (4)O3—C12—C11117.0 (3)
C5—C6—H6120.0O3—C12—C13123.4 (3)
C1—C6—H6120.0C11—C12—C13119.5 (3)
O1—C7—H7A109.5C13—C14—C15120.9 (3)
O1—C7—H7B109.5C13—C14—H14A119.6
H7A—C7—H7B109.5C15—C14—H14A119.6
O1—C7—H7C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.821.912.730 (3)174
O3—H3B···N2i0.822.312.789 (4)118
O3—H3B···O2i0.822.363.166 (4)167
N1—H1···O10.90 (1)1.88 (3)2.620 (4)138 (3)
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H14N2O4
Mr286.28
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)13.796 (2), 8.412 (2), 24.004 (3)
V3)2785.7 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.13 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.987, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
12495, 2570, 1231
Rint0.093
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.159, 1.03
No. of reflections2570
No. of parameters205
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.18

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.821.912.730 (3)174
O3—H3B···N2i0.822.312.789 (4)118
O3—H3B···O2i0.822.363.166 (4)167
N1—H1···O10.899 (10)1.88 (3)2.620 (4)138 (3)
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Major Science and Technology Projects of Gansu (grant No. 1002NKDA025) and the Engineering and Technology Center Projects of Gansu (grant No. 1106 N T GA013).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHorkaew, J., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2012). Acta Cryst. E68, o1069–o1070.  CSD CrossRef IUCr Journals Google Scholar
First citationRassem, H. H., Salhin, A., Bin Salleh, B., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, o1832.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, M., Xian, D.-M., Li, H.-H., Zhang, J.-C. & You, Z.-L. (2012). Aust. J. Chem. 65, 343–350.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds