organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-3-(2-methyl­phen­yl)-4-oxo-3,4-di­hydro­quinazolin-8-yl 4-chloro­benzoate

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt, cDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 31 May 2012; accepted 2 June 2012; online 13 June 2012)

In the title compound, C23H17ClN2O3, the quinazoline fused-ring system, including the ring-bound carbonyl-O and methyl-C atoms, is close to being planar (r.m.s. deviation = 0.044 Å) and is essentially orthogonal to both the 2-tolyl ring [dihedral angle = 89.51 (8)°] and to the ester group [the C—O—C—C torsion angle = −103.69 (16)°]. The carboxyl­ate group is almost coplanar with the benzene ring to which it is attached [O—C—C—C torsion angle = −4.7 (2)°]. The 2-tolyl ring system is disordered over two orientations in a 0.871 (3):0.129 (3) ratio. In the crystal, mol­ecules are consolidated into a three-dimensional architecture by C—H⋯Cl, C—H⋯O, C—H⋯N, C—H⋯π and ππ inter­actions [inter-centroid distances = 3.6443 (9) and 3.8557 (11) Å].

Related literature

For further synthetic details and the anti-convulsant activity of the title compound, see: El-Azab et al. (2011[El-Azab, A. S., ElTahir, K. H. & Attia, S. M. (2011). Monatsh. Chem. 142, 837-848.]).

[Scheme 1]

Experimental

Crystal data
  • C23H17ClN2O3

  • Mr = 404.84

  • Monoclinic, P 21 /c

  • a = 18.6703 (5) Å

  • b = 7.6203 (2) Å

  • c = 13.3756 (3) Å

  • β = 98.006 (3)°

  • V = 1884.44 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.03 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.631, Tmax = 0.750

  • 7495 measured reflections

  • 3883 independent reflections

  • 3529 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.108

  • S = 1.04

  • 3883 reflections

  • 287 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1,N2,C9–C11,C16 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯Cl1i 0.98 2.82 3.6162 (17) 139
C8—H8C⋯O2ii 0.98 2.51 3.4058 (19) 153
C22—H22⋯N2iii 0.95 2.55 3.457 (2) 159
C3—H3⋯Cg1ii 0.95 2.94 3.834 (2) 158
C12—H12⋯Cg2iv 0.95 2.81 3.6865 (17) 154
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) -x+1, -y+1, -z+1; (iv) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was previously investigated by us in relation to its biological activity (El-Azab et al., 2011) and we now describe its crystal structure.

The quinazolinyl fused-ring system in (I), Fig. 1, inclusive of the carbonyl-O1 and methyl-C8 atoms, is planar (r.m.s. deviation = 0.044 Å) with maximum deviations of 0.064 (2) Å [C12] and -0.065 (2) Å [C15]. The 2-tolyl ring is orthogonal to this plane, forming a dihedral angle of 89.51 (8)°. The ester group is also twisted significantly out of the plane with the C17—O3—C15—C14 torsion angle being -103.69 (16)°. The carboxylate group is co-planar with the attached benzene ring as seen in the value of the O2—C17—C18—C19 torsion angle of -4.7 (2)°.

Supramolecular layers are formed in the bc plane by a combination of C—H···Cl, C—H···O, C—H···N and C—H···π interactions, Table 1, as well as ππ interactions between centrosymmetrically related chlorobenzene rings [inter-centroid distance = 3.6443 (9) Å for symmetry operation: 1 - x, 2 - y, 1 - z]. Links between the layers along the a axis are of the type ππ and occur between the major component of the 2-tolyl rings [inter-centroid distance = 3.8557 (11) Å for symmetry operation: -x, -y, 1 - z], Fig. 2.

Related literature top

For further synthetic details and the anti-convulsant activity of the title compound, see: El-Azab et al. (2011).

Experimental top

The compound was prepared in accord with the literature procedure (El-Azab et al., 2011). A mixture of 8-hydroxymethaqualone (532 mg, 0.002 M) and 4-chlorobenzoyl chloride (365 mg, 0.0021 M) in 10 ml pyridine was stirred at room temperature for 10 h. The solvent was removed under reduced pressure, and the residue was triturated with water and filtered. The solid obtained was dried and recrystallized from EtOH solution as colourless prisms. M.pt: 493–495 K. Yield: 95%. 1H NMR (CDCl3): δ = 8.27–8.08 (m, 3H), 7.61 (d, 1H, J = 7.5 Hz), 7.55–7.37 (m, 6H), 7.15 (d, 1H, J = 7.5 Hz), 2.14 (s, 3H), 2.11 (s, 3H) p.p.m.. 13C NMR (CDCl3): δ = 17.4, 24.3, 122.5, 125.1, 126.4, 127.1, 127.7, 129.0, 129.4, 131.6, 131.8, 135.4, 136.7, 140.2, 141.4, 146.0, 154.9, 161.1, 164.4 p.p.m.. MS (70 eV): m/z = 404, 406 (M +2).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The 2-tolyl group is disordered over two positions in a 0.871 (3): 0.129 (3) ratio. The N—C1 and N—C1' bond lengths were restrained to within 0.01 Å of each other. The 1,2-related C—C distances were restrained to within 0.01 Å and the 1,3-related ones to within 0.02 Å of each other. The anisotropic displacement parameters were restrained to be nearly isotropic and those of the primed atoms were set to those of the unprimed ones.

Structure description top

The title compound was previously investigated by us in relation to its biological activity (El-Azab et al., 2011) and we now describe its crystal structure.

The quinazolinyl fused-ring system in (I), Fig. 1, inclusive of the carbonyl-O1 and methyl-C8 atoms, is planar (r.m.s. deviation = 0.044 Å) with maximum deviations of 0.064 (2) Å [C12] and -0.065 (2) Å [C15]. The 2-tolyl ring is orthogonal to this plane, forming a dihedral angle of 89.51 (8)°. The ester group is also twisted significantly out of the plane with the C17—O3—C15—C14 torsion angle being -103.69 (16)°. The carboxylate group is co-planar with the attached benzene ring as seen in the value of the O2—C17—C18—C19 torsion angle of -4.7 (2)°.

Supramolecular layers are formed in the bc plane by a combination of C—H···Cl, C—H···O, C—H···N and C—H···π interactions, Table 1, as well as ππ interactions between centrosymmetrically related chlorobenzene rings [inter-centroid distance = 3.6443 (9) Å for symmetry operation: 1 - x, 2 - y, 1 - z]. Links between the layers along the a axis are of the type ππ and occur between the major component of the 2-tolyl rings [inter-centroid distance = 3.8557 (11) Å for symmetry operation: -x, -y, 1 - z], Fig. 2.

For further synthetic details and the anti-convulsant activity of the title compound, see: El-Azab et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view in projection down the b axis of the unit-cell contents for (I). The C—H···Cl, C—H···O, C—H···N, C—H···π and ππ interactions are shown as pink, orange, blue, brown and purple dashed lines, respectively.
2-Methyl-3-(2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-8-yl 4-chlorobenzoate top
Crystal data top
C23H17ClN2O3F(000) = 840
Mr = 404.84Dx = 1.427 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 3710 reflections
a = 18.6703 (5) Åθ = 3.3–76.2°
b = 7.6203 (2) ŵ = 2.03 mm1
c = 13.3756 (3) ÅT = 100 K
β = 98.006 (3)°Prism, colourless
V = 1884.44 (8) Å30.25 × 0.15 × 0.15 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
3883 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3529 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 10.4041 pixels mm-1θmax = 76.4°, θmin = 4.8°
ω scanh = 2223
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 96
Tmin = 0.631, Tmax = 0.750l = 1416
7495 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.9858P]
where P = (Fo2 + 2Fc2)/3
3883 reflections(Δ/σ)max = 0.001
287 parametersΔρmax = 0.38 e Å3
16 restraintsΔρmin = 0.42 e Å3
Crystal data top
C23H17ClN2O3V = 1884.44 (8) Å3
Mr = 404.84Z = 4
Monoclinic, P21/cCu Kα radiation
a = 18.6703 (5) ŵ = 2.03 mm1
b = 7.6203 (2) ÅT = 100 K
c = 13.3756 (3) Å0.25 × 0.15 × 0.15 mm
β = 98.006 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
3883 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3529 reflections with I > 2σ(I)
Tmin = 0.631, Tmax = 0.750Rint = 0.020
7495 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04016 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.04Δρmax = 0.38 e Å3
3883 reflectionsΔρmin = 0.42 e Å3
287 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.62417 (2)0.78020 (5)0.29279 (3)0.02700 (13)
O10.10707 (7)0.32870 (18)0.65344 (9)0.0316 (3)
O20.31981 (6)0.91961 (15)0.49641 (9)0.0248 (3)
O30.37759 (6)0.72310 (14)0.60522 (8)0.0183 (2)
N10.17437 (8)0.3089 (2)0.52309 (10)0.0243 (3)
N20.27604 (7)0.49071 (17)0.51250 (9)0.0174 (3)
C10.13094 (9)0.1590 (2)0.48158 (13)0.0196 (4)0.871 (3)
C20.15124 (10)0.0104 (2)0.51140 (14)0.0216 (4)0.871 (3)
H20.19350.03020.55850.026*0.871 (3)
C30.10906 (10)0.1505 (3)0.47157 (14)0.0251 (4)0.871 (3)
H30.12270.26730.49050.030*0.871 (3)
C40.04682 (11)0.1196 (3)0.40390 (15)0.0262 (4)0.871 (3)
H40.01760.21510.37690.031*0.871 (3)
C50.02748 (11)0.0501 (3)0.37602 (15)0.0260 (5)0.871 (3)
H50.01500.06940.32930.031*0.871 (3)
C60.06855 (10)0.1944 (2)0.41446 (13)0.0223 (4)0.871 (3)
C70.04656 (12)0.3783 (3)0.38574 (17)0.0308 (5)0.871 (3)
H7A0.04370.44720.44690.046*0.871 (3)
H7B0.00080.37720.34370.046*0.871 (3)
H7C0.08240.43080.34780.046*0.871 (3)
C1'0.1078 (5)0.2358 (13)0.4647 (8)0.0196 (4)0.129
C2'0.0550 (6)0.3062 (16)0.3940 (9)0.0216 (4)0.129
H2'0.05620.42810.37930.026*0.129 (3)
C3'0.0004 (6)0.2041 (13)0.3439 (9)0.0251 (4)0.129
H3'0.03680.25480.29700.030*0.129 (3)
C4'0.0012 (7)0.0255 (14)0.3637 (10)0.0262 (4)0.129
H4'0.03560.04770.32970.031*0.129 (3)
C5'0.0552 (6)0.0469 (15)0.4329 (9)0.0260 (5)0.129
H5'0.05610.17020.44340.031*0.129 (3)
C6'0.1086 (6)0.0571 (13)0.4875 (8)0.0223 (4)0.129
C7'0.1625 (7)0.0153 (18)0.5711 (10)0.0308 (5)0.129
H7'10.21140.00370.55290.046*0.129 (3)
H7'20.15200.13940.58150.046*0.129 (3)
H7'30.15940.05010.63350.046*0.129 (3)
C80.24217 (9)0.2826 (2)0.37860 (12)0.0235 (3)
H8A0.28040.34400.34920.035*
H8B0.19690.28790.33170.035*
H8C0.25610.15970.39110.035*
C90.23159 (8)0.3684 (2)0.47614 (11)0.0194 (3)
C100.15779 (9)0.3829 (2)0.61339 (11)0.0227 (3)
C110.20631 (8)0.5246 (2)0.65359 (11)0.0180 (3)
C120.19532 (8)0.6111 (2)0.74303 (11)0.0200 (3)
H120.15500.58180.77590.024*
C130.24322 (9)0.7383 (2)0.78277 (11)0.0213 (3)
H130.23560.79830.84260.026*
C140.30343 (9)0.77953 (19)0.73509 (11)0.0199 (3)
H140.33700.86590.76330.024*
C150.31367 (8)0.6948 (2)0.64760 (11)0.0179 (3)
C160.26491 (8)0.5679 (2)0.60282 (10)0.0171 (3)
C170.37191 (8)0.83016 (19)0.52257 (11)0.0173 (3)
C180.43716 (8)0.81991 (19)0.47050 (11)0.0175 (3)
C190.43557 (9)0.9123 (2)0.38000 (11)0.0205 (3)
H190.39480.98270.35580.025*
C200.49338 (9)0.9014 (2)0.32531 (11)0.0220 (3)
H200.49250.96350.26350.026*
C210.55220 (9)0.7988 (2)0.36223 (12)0.0208 (3)
C220.55602 (9)0.7088 (2)0.45344 (12)0.0212 (3)
H220.59750.64130.47830.025*
C230.49768 (9)0.7204 (2)0.50707 (12)0.0196 (3)
H230.49910.65980.56940.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0307 (2)0.0241 (2)0.0300 (2)0.00170 (15)0.01781 (16)0.00279 (15)
O10.0292 (6)0.0445 (7)0.0237 (6)0.0170 (6)0.0128 (5)0.0074 (5)
O20.0219 (6)0.0272 (6)0.0262 (6)0.0043 (5)0.0061 (4)0.0070 (5)
O30.0159 (5)0.0213 (5)0.0180 (5)0.0016 (4)0.0036 (4)0.0032 (4)
N10.0256 (7)0.0319 (7)0.0167 (6)0.0115 (6)0.0072 (5)0.0051 (5)
N20.0189 (6)0.0188 (6)0.0152 (6)0.0011 (5)0.0049 (5)0.0009 (5)
C10.0204 (9)0.0219 (10)0.0172 (8)0.0032 (7)0.0052 (7)0.0029 (7)
C20.0199 (9)0.0256 (9)0.0199 (9)0.0003 (7)0.0042 (7)0.0007 (7)
C30.0270 (10)0.0236 (9)0.0263 (9)0.0034 (7)0.0091 (7)0.0006 (7)
C40.0250 (10)0.0303 (10)0.0245 (9)0.0094 (8)0.0079 (7)0.0086 (8)
C50.0188 (9)0.0388 (11)0.0209 (9)0.0035 (8)0.0043 (7)0.0079 (8)
C60.0231 (9)0.0255 (10)0.0192 (8)0.0026 (7)0.0065 (7)0.0012 (7)
C70.0290 (11)0.0287 (11)0.0329 (10)0.0062 (8)0.0020 (8)0.0016 (9)
C1'0.0204 (9)0.0219 (10)0.0172 (8)0.0032 (7)0.0052 (7)0.0029 (7)
C2'0.0199 (9)0.0256 (9)0.0199 (9)0.0003 (7)0.0042 (7)0.0007 (7)
C3'0.0270 (10)0.0236 (9)0.0263 (9)0.0034 (7)0.0091 (7)0.0006 (7)
C4'0.0250 (10)0.0303 (10)0.0245 (9)0.0094 (8)0.0079 (7)0.0086 (8)
C5'0.0188 (9)0.0388 (11)0.0209 (9)0.0035 (8)0.0043 (7)0.0079 (8)
C6'0.0231 (9)0.0255 (10)0.0192 (8)0.0026 (7)0.0065 (7)0.0012 (7)
C7'0.0290 (11)0.0287 (11)0.0329 (10)0.0062 (8)0.0020 (8)0.0016 (9)
C80.0294 (8)0.0258 (8)0.0170 (7)0.0046 (6)0.0091 (6)0.0032 (6)
C90.0207 (7)0.0236 (7)0.0148 (6)0.0020 (6)0.0054 (5)0.0016 (6)
C100.0224 (8)0.0315 (8)0.0151 (7)0.0054 (7)0.0055 (6)0.0017 (6)
C110.0182 (7)0.0210 (7)0.0147 (6)0.0003 (6)0.0027 (5)0.0014 (6)
C120.0214 (7)0.0234 (7)0.0161 (7)0.0010 (6)0.0063 (5)0.0023 (6)
C130.0276 (8)0.0208 (7)0.0160 (7)0.0023 (6)0.0053 (6)0.0010 (6)
C140.0230 (7)0.0174 (7)0.0187 (7)0.0009 (6)0.0005 (6)0.0003 (6)
C150.0167 (7)0.0193 (7)0.0177 (7)0.0000 (6)0.0031 (5)0.0036 (6)
C160.0185 (7)0.0186 (7)0.0144 (6)0.0018 (6)0.0027 (5)0.0026 (5)
C170.0189 (7)0.0160 (6)0.0169 (6)0.0033 (6)0.0017 (5)0.0011 (5)
C180.0196 (7)0.0160 (6)0.0175 (7)0.0038 (6)0.0039 (5)0.0021 (5)
C190.0220 (8)0.0206 (7)0.0188 (7)0.0010 (6)0.0019 (6)0.0008 (6)
C200.0288 (8)0.0203 (7)0.0174 (7)0.0042 (6)0.0054 (6)0.0003 (6)
C210.0235 (8)0.0188 (7)0.0221 (7)0.0052 (6)0.0100 (6)0.0052 (6)
C220.0217 (8)0.0175 (7)0.0252 (7)0.0005 (6)0.0060 (6)0.0001 (6)
C230.0219 (7)0.0180 (7)0.0193 (7)0.0014 (6)0.0045 (6)0.0003 (6)
Geometric parameters (Å, º) top
Cl1—C211.7424 (16)C4'—H4'0.9500
O1—C101.223 (2)C5'—C6'1.397 (9)
O2—C171.1993 (19)C5'—H5'0.9500
O3—C171.3661 (18)C6'—C7'1.502 (9)
O3—C151.4075 (18)C7'—H7'10.9800
N1—C91.389 (2)C7'—H7'20.9800
N1—C101.406 (2)C7'—H7'30.9800
N1—C11.465 (2)C8—C91.497 (2)
N1—C1'1.481 (7)C8—H8A0.9800
N2—C91.297 (2)C8—H8B0.9800
N2—C161.3852 (19)C8—H8C0.9800
C1—C21.388 (3)C10—C111.463 (2)
C1—C61.394 (2)C11—C161.405 (2)
C2—C31.388 (3)C11—C121.406 (2)
C2—H20.9500C12—C131.374 (2)
C3—C41.390 (3)C12—H120.9500
C3—H30.9500C13—C141.403 (2)
C4—C51.380 (3)C13—H130.9500
C4—H40.9500C14—C151.373 (2)
C5—C61.397 (3)C14—H140.9500
C5—H50.9500C15—C161.404 (2)
C6—C71.495 (3)C17—C181.487 (2)
C7—H7A0.9800C18—C231.392 (2)
C7—H7B0.9800C18—C191.397 (2)
C7—H7C0.9800C19—C201.388 (2)
C1'—C2'1.376 (9)C19—H190.9500
C1'—C6'1.395 (8)C20—C211.382 (2)
C2'—C3'1.380 (9)C20—H200.9500
C2'—H2'0.9500C21—C221.393 (2)
C3'—C4'1.386 (9)C22—C231.388 (2)
C3'—H3'0.9500C22—H220.9500
C4'—C5'1.385 (9)C23—H230.9500
C17—O3—C15116.28 (11)C9—C8—H8B109.5
C9—N1—C10122.22 (13)H8A—C8—H8B109.5
C9—N1—C1120.22 (13)C9—C8—H8C109.5
C10—N1—C1117.50 (13)H8A—C8—H8C109.5
C9—N1—C1'121.7 (5)H8B—C8—H8C109.5
C10—N1—C1'109.6 (5)N2—C9—N1123.88 (14)
C9—N2—C16117.81 (13)N2—C9—C8119.06 (14)
C2—C1—C6122.32 (17)N1—C9—C8117.06 (14)
C2—C1—N1120.13 (15)O1—C10—N1121.19 (15)
C6—C1—N1117.53 (16)O1—C10—C11124.45 (14)
C3—C2—C1119.17 (17)N1—C10—C11114.36 (13)
C3—C2—H2120.4C16—C11—C12121.14 (14)
C1—C2—H2120.4C16—C11—C10118.66 (13)
C2—C3—C4119.85 (18)C12—C11—C10120.17 (14)
C2—C3—H3120.1C13—C12—C11119.70 (14)
C4—C3—H3120.1C13—C12—H12120.2
C5—C4—C3119.89 (18)C11—C12—H12120.2
C5—C4—H4120.1C12—C13—C14120.11 (14)
C3—C4—H4120.1C12—C13—H13119.9
C4—C5—C6121.91 (18)C14—C13—H13119.9
C4—C5—H5119.0C15—C14—C13119.82 (14)
C6—C5—H5119.0C15—C14—H14120.1
C5—C6—C1116.85 (17)C13—C14—H14120.1
C5—C6—C7121.74 (18)C14—C15—C16121.91 (14)
C1—C6—C7121.42 (18)C14—C15—O3119.85 (13)
C2'—C1'—C6'121.0 (8)C16—C15—O3118.01 (13)
C2'—C1'—N1133.1 (8)N2—C16—C15119.83 (13)
C6'—C1'—N1105.6 (7)N2—C16—C11122.91 (14)
C1'—C2'—C3'121.6 (9)C15—C16—C11117.25 (13)
C1'—C2'—H2'119.2O2—C17—O3122.95 (14)
C3'—C2'—H2'119.2O2—C17—C18125.26 (14)
C2'—C3'—C4'118.2 (9)O3—C17—C18111.79 (12)
C2'—C3'—H3'120.9C23—C18—C19119.83 (14)
C4'—C3'—H3'120.9C23—C18—C17122.81 (13)
C5'—C4'—C3'120.4 (9)C19—C18—C17117.34 (14)
C5'—C4'—H4'119.8C20—C19—C18120.15 (14)
C3'—C4'—H4'119.8C20—C19—H19119.9
C4'—C5'—C6'121.6 (9)C18—C19—H19119.9
C4'—C5'—H5'119.2C21—C20—C19118.87 (14)
C6'—C5'—H5'119.2C21—C20—H20120.6
C5'—C6'—C1'117.0 (8)C19—C20—H20120.6
C5'—C6'—C7'122.4 (9)C20—C21—C22122.20 (15)
C1'—C6'—C7'120.4 (8)C20—C21—Cl1119.27 (12)
C6'—C7'—H7'1109.5C22—C21—Cl1118.53 (13)
C6'—C7'—H7'2109.5C23—C22—C21118.25 (15)
H7'1—C7'—H7'2109.5C23—C22—H22120.9
C6'—C7'—H7'3109.5C21—C22—H22120.9
H7'1—C7'—H7'3109.5C22—C23—C18120.67 (14)
H7'2—C7'—H7'3109.5C22—C23—H23119.7
C9—C8—H8A109.5C18—C23—H23119.7
C9—N1—C1—C288.8 (2)C1—N1—C10—O13.0 (3)
C10—N1—C1—C288.4 (2)C1'—N1—C10—O127.8 (4)
C1'—N1—C1—C2169.4 (10)C9—N1—C10—C110.8 (2)
C9—N1—C1—C693.0 (2)C1—N1—C10—C11176.30 (14)
C10—N1—C1—C689.87 (19)C1'—N1—C10—C11152.9 (4)
C1'—N1—C1—C68.9 (10)O1—C10—C11—C16176.65 (16)
C6—C1—C2—C31.5 (3)N1—C10—C11—C162.6 (2)
N1—C1—C2—C3179.62 (16)O1—C10—C11—C121.4 (3)
C1—C2—C3—C41.0 (3)N1—C10—C11—C12179.36 (14)
C2—C3—C4—C50.5 (3)C16—C11—C12—C131.1 (2)
C3—C4—C5—C60.5 (3)C10—C11—C12—C13176.87 (14)
C4—C5—C6—C10.9 (3)C11—C12—C13—C141.0 (2)
C4—C5—C6—C7178.67 (19)C12—C13—C14—C151.2 (2)
C2—C1—C6—C51.4 (3)C13—C14—C15—C160.8 (2)
N1—C1—C6—C5179.61 (15)C13—C14—C15—O3173.65 (13)
C2—C1—C6—C7178.16 (18)C17—O3—C15—C14103.69 (16)
N1—C1—C6—C70.0 (3)C17—O3—C15—C1681.68 (16)
C9—N1—C1'—C2'63.7 (16)C9—N2—C16—C15176.90 (14)
C10—N1—C1'—C2'88.6 (15)C9—N2—C16—C112.8 (2)
C1—N1—C1'—C2'160 (2)C14—C15—C16—N2177.56 (14)
C9—N1—C1'—C6'110.8 (8)O3—C15—C16—N27.9 (2)
C10—N1—C1'—C6'96.9 (9)C14—C15—C16—C112.7 (2)
C1—N1—C1'—C6'14.7 (6)O3—C15—C16—C11171.76 (12)
C6'—C1'—C2'—C3'1 (2)C12—C11—C16—N2177.41 (14)
N1—C1'—C2'—C3'174.7 (12)C10—C11—C16—N24.6 (2)
C1'—C2'—C3'—C4'2 (2)C12—C11—C16—C152.9 (2)
C2'—C3'—C4'—C5'1 (2)C10—C11—C16—C15175.09 (13)
C3'—C4'—C5'—C6'3 (2)C15—O3—C17—O212.3 (2)
C4'—C5'—C6'—C1'4 (2)C15—O3—C17—C18167.29 (12)
C4'—C5'—C6'—C7'172.8 (14)O2—C17—C18—C23176.69 (15)
C2'—C1'—C6'—C5'2.3 (19)O3—C17—C18—C233.7 (2)
N1—C1'—C6'—C5'173.0 (10)O2—C17—C18—C194.7 (2)
C2'—C1'—C6'—C7'174.6 (13)O3—C17—C18—C19174.85 (13)
N1—C1'—C6'—C7'10.0 (16)C23—C18—C19—C201.6 (2)
C16—N2—C9—N11.0 (2)C17—C18—C19—C20176.97 (13)
C16—N2—C9—C8179.94 (13)C18—C19—C20—C210.3 (2)
C10—N1—C9—N22.8 (3)C19—C20—C21—C221.3 (2)
C1—N1—C9—N2174.24 (15)C19—C20—C21—Cl1178.53 (12)
C1'—N1—C9—N2151.6 (5)C20—C21—C22—C231.5 (2)
C10—N1—C9—C8178.10 (15)Cl1—C21—C22—C23178.29 (11)
C1—N1—C9—C84.9 (2)C21—C22—C23—C180.2 (2)
C1'—N1—C9—C829.3 (5)C19—C18—C23—C221.4 (2)
C9—N1—C10—O1179.89 (16)C17—C18—C23—C22177.15 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1,N2,C9–C11,C16 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8A···Cl1i0.982.823.6162 (17)139
C8—H8C···O2ii0.982.513.4058 (19)153
C22—H22···N2iii0.952.553.457 (2)159
C3—H3···Cg1ii0.952.943.834 (2)158
C12—H12···Cg2iv0.952.813.6865 (17)154
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1, z; (iii) x+1, y+1, z+1; (iv) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC23H17ClN2O3
Mr404.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)18.6703 (5), 7.6203 (2), 13.3756 (3)
β (°) 98.006 (3)
V3)1884.44 (8)
Z4
Radiation typeCu Kα
µ (mm1)2.03
Crystal size (mm)0.25 × 0.15 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.631, 0.750
No. of measured, independent and
observed [I > 2σ(I)] reflections
7495, 3883, 3529
Rint0.020
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.04
No. of reflections3883
No. of parameters287
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.42

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1,N2,C9–C11,C16 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8A···Cl1i0.982.823.6162 (17)139
C8—H8C···O2ii0.982.513.4058 (19)153
C22—H22···N2iii0.952.553.457 (2)159
C3—H3···Cg1ii0.952.943.834 (2)158
C12—H12···Cg2iv0.952.813.6865 (17)154
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1, z; (iii) x+1, y+1, z+1; (iv) x, y1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: adelazaba@yahoo.com.

Acknowledgements

The authors extend their appreciation to the Research Center of Pharmacy, King Saud University, for funding this work. They also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Azab, A. S., ElTahir, K. H. & Attia, S. M. (2011). Monatsh. Chem. 142, 837–848.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds